
Introduction

In recent years, construction has begun on a number 
of tunnels through the Loess Plateau, the largest loess 
deposit in the world. It is widely recognized that the 
stability of tunnels through loess deposits is generally 
poor due to the weak rheology of loess deposits. 
Therefore, a comprehensive and intelligent evaluation of 

loess deposits proposed for tunneling is a key step for 
tunnel design and construction.

Loess deposits, formed in a dry climate during the 
Quaternary period, consist of porous yellow powdery 
soil with columnar joints [1-3]. Loess deposits have 
a metastable structure made up of loose particles, a 
significant amount of macroscopic pores [4-5], low shear 
strength, and great compressibility with relatively small 
changes in stress [6-8]. In addition, as water content 
increases, unsaturated loess matric suction decreases, the 
force on tunnel supports increases, and the radius of the 
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ductile deformation zone increases [9-10], indicating that 
water content is a key factor influencing the stability of 
loess deposits.

Properties of loess are closely related to geologic 
age, sediment transport processes, and sedimentation 
characteristics [11-12]. Generally, the stratigraphic section 
of the loess deposits is composed of four loess strata – 
Q1, Q2, Q3, and Q4 [13-14] – each with distinct physical, 
mechanical, and geotechnical properties. Geologic 
age has been the primary basis for classifying loess 
deposits. Typical physical and mechanical properties, 
such as specific weight, elastic modulus, Poisson’s ratio, 
cohesion, and internal friction angle, were obtained by 
laboratory and field tests [15].

Some progress has been made on the stability 
assessment of rock mass. A variety of methods and 
techniques have been developed. For example, an 
improved method combining the traditional key block 
theory (KBT) and the force transfer algorithm to 
accurately calculate the safety factors of probabilistic 
key blocks in the surrounding rock mass has been 
proposed. The stereographic projection method and the 
vector analysis method were employed to determine the 
locations of dangerous joints, search the random blocks, 
determine the sliding directions of random blocks, and 
calculate the block sizes and safety factors near the 
free surface of the underground cavern [16]. A high-
resolution microseismic monitoring system was used 
to determine the relationship between the measured 
microseismic activities and the excavation damage zones 
of the surrounding rock mass. The excavation damage 
zones and potential risk regions in the underground 
caverns were identified by analyzing the tempo-spatial 
distribution of microseismic activities [17]. In addition, 
acoustic emission (AE) is a technique providing crucial 
information on a variety of fracture behavior such as 
elastic waves, generated due to the deformation, and a 
prospective method to install AE sensors into the rock 
slope (WEAD) was introduced, followed by a successful 
application using WEAD with the actual rock slope [18]. 
Nevertheless, research on the stability of loess deposits 
is not enough.

Current loess classification schemes primarily rely 
on engineering experience. In practical applications, 
evaluating loess deposits using this method does not 
accurately reflect the physical state of loess deposits, 
forcing tunneling plans to change during construction. 
Therefore, a multi-index intelligent classification method 
for loess deposits around tunnels is proposed in this 
study. Although nonlinear methods already have a wide 
range of engineering applications [19-28], there is little 
research on the application of nonlinear methods for 
evaluating loess deposits. 

This study proposes a multi-index intelligent 
classification model for loess deposits around tunnels. 
Water content, natural density, cohesion, internal friction 
angle, elastic modulus, and Poisson ratio are analyzed 
in the model using rough set theory, which reveals the 
core indicators of tunnel stability in loess deposits and 

provides a new approach to classifying loess as well as a 
reference for future studies. 

Study Area

The Menghua Railway is currently the largest coal 
transportation line in China. It starts at Haolebaoji Station 
in the Autonomous Region of Inner Mongolia and ends at 
Ji’an Station in Jiangxi Province. The Menghua Railway 
is 1837 km long and has a capacity of 200 million tons 
per year.

The tunnels (Fig. 1) examined in this study are 
located in the Loess Plateau. The terrain is a typical 
erosive geomorphic type with a dendritic distribution of 
V-shape gullies. According to surveys, the land surface 
is divided into two geomorphic units – loess hills and 
loess gullies – with the general topographic relief of 
50~200 m, elevation of 1213.0-1469.0 m, and natural 
slope of 30~70°. According to climate zones designated 
for railway projects, the study area belongs to the cold 
area, which has a standard freezing depth of 1.0 m.

The strata in the study area are primarily: Quaternary 
Upper Pleistocene eolian (Q3eol) sandy new loess and 
clay new loess; Middle Pleistocene pluvial (Q2pl) clay 
old loess and fine round gravel soil; and Jurassic middle 
(J2) sandstone and mudstone. The study area is located 
within the southeast wing of the Shaanxi-Gansu-Ningxia 
platform (also known as the Ordos Basin). The Ordos 
Basin is a Mesozoic basin recording multiple cycles of 
tectonic activity. Tectonic fabrics are relatively weak. 
Folds and faults are not developed. Deposits in the Ordos 
Basin form a W-NW-trending monocline. 

Fig. 1. Map showing the location of study area.
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Surface water is mainly surface runoff formed from 
atmospheric precipitation and outflow of groundwater. 
The amount of water is small and is affected by seasonal 
precipitation. Groundwater is mainly Quaternary pore 
dives and bedrock fissure water. 

The new Austrian tunneling method (NATM) 
has been adopted in tunnel construction, in which 
deformation monitoring plays a key role in ensuring 
construction quality and safety. In order to prevent 
deformation and collapse of the tunnel, the sequential 
excavation method (SEM) with pipe roof supports, steel 
arches, and hanging nets is used to strengthen the soil 
and limit stress redistribution of the surrounding rock 
(Fig. 2). 

Methodology

Rough set theory

Rough set theory is a nonlinear mathematical method 
[29] proposed by Polish scholar Pawlak in 1982 for 
dealing with inconsistent, incomplete, and inaccurate 
information. The primary goal of rough set theory 
is to derive the decision or classification rules of a 
problem through knowledge (attribute) reduction, while 
maintaining the classification ability of the knowledge 
[30-32].

Knowledge expression system 
and attribute reduction

Suppose S = (U, A, V, f ) is a knowledge expression 
system. U, called the universe, represents a nonempty 
finite set of objects; A = C È D, C | D = ∅, C is called the 
set of condition attributes, and D is called the set of 

decision attributes; a
a A

V V
∈

= U , Va is the range of attribute 

a; and f represents U×A→V, which is an information 
function assigning an information value to each property 
of each object: a ∈ A, a A∀ ∈ , x ∈ u, f(x, a) ∈ V. We call 
the knowledge expression system with condition 
attributes and decision attributes the decision table [33-
36]. 

Each attribute subset P ⊆ A determines a binary 
indistinguishable relationship IND(P):

( ) {( , ) | , ( , ) ( , )}IND P x y U U a A f x a f y a= ∈ × ∀ ∈ =
( ) ({ })

a A
IND P IND a

∈
= I

, , , ( ) ( )P Q A P Q IND Q IND P⊆ ⊆ ⊆ [37-39]

The relationship IND(P)(P ⊆ A) constitutes a division 
of U, denoted by U / IND(P) and abbreviated as U/P. 
Any element [x]P in U / IND(P) is called an equivalence 
class. U / IND(P) is the knowledge related to P in the 
knowledge expression system S = (U, A, V, f ), and the 
smallest unrecognized object set reflecting the highest 
discrimination ability of the knowledge expression 
system:

P,Q ⊆ A, U / IND(P) = U / IND(Q) → x U∀ ∈ ,   

[x]P = [x]Q 

Support of condition attribute for decision

Suppose S = (U, A, V, f ) is a knowledge expression 
system (A = C  D, C  D = ∅), C is the set of condition 
attributes, and D is the set of decision attributes. 
If U / C = {X1, X2, ..., Xn} and U / D = {X1, X2, ..., Xm}, 
the support of condition attribute C for decision attribute 
D is defined as follows:

1 1

1 1( ) ( ) ,  /
m m

C i C i i
i i

K D CY pos Y Y U D
U U= =

= = ∈∑ ∑
  (1)

…where | | represents the amount of elements  
contained in the collection and KC (D) indicates the 
support degree of knowledge C for the overall decision 
U / D. Generally, 0≤ KC (D) ≤1. When KC (D) = 1, the 
decision information is completely determined by the 
condition information, all objects in U can be accurately 
classified into the module of class U / D by knowledge C, 
and it is also shown that knowledge C has no effect on 
decision U / D.

Fig. 2. Photographs showing the construction site.
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Importance of condition attribute on decision

Suppose S = (U, A, V, f ) is a knowledge expression 
system (A = C  D, C  D = ∅), C is the set of condition 
attributes, and D is the set of decision attributes. The 
importance of attribute c ∈ C to D is defined as follows:

{ ] { }( ) ( ) ( )D
C c C C csig c K D K D− −= −           (2)

In particular, when C={c}, ( )Dsig c is used to express
( )Dsig c∅ :

( ) ( ) ( ) ( ) ( )D D
C Csig c sig c K D K D K D∅ ∅= = − = ,

/ { }U U∅ = , ( ) 0K D∅ =

The above definitions indicate that the importance of 
attribute c ∈ C to the decision U / D can be measured by 
the magnitude of change of support degree caused by the 
removal of c in C.

Rough set theory analysis process

Rough set theory is used for analyzing evaluation 
indicators of loess deposits surrounding tunnels. 
Evaluation indices are taken as condition attributes and 
stability level is taken as the decision attribute. Based 
on samples and classification criteria, a decision table is 
constructed. Formulas (1) and (2) are used to calculate 
the support degree KC (D) and attribute importance

{ }( )D
C csig c− of each condition attribute using MATLAB. 

If KC (D) = 1 (or { } ( ) 0D
C csig c− = ), the condition attribute 

can be removed. 

Back propagation neural network

A back propagation (BP) neural network is a multi-
layer feed-forward neural network with an input layer, 
an output layer, and one or more hidden layers (Fig. 4). 
Its ability relies on the quality of the signals used for 

training and the performance of the training algorithms, 
and their parameters do not contain information that can 
be directly understood by the human operator or that can 
easily be related to the physical properties of the system 
to be modelled [40]. There is no association between 
neurons in the same layer and a forward connect between 
the neurons in different layers. The basic principle is: 
1)	 Put the input data into the input units, which will 

be delivered to the hidden layer units; after being 
processed in the hidden layer units, information will 
be passed to the output layer for further processing; 
then the network will produce an output. This is 
called the forward propagation process.

2)	 Calculate the error between the actual output and 
target output, propagate the error backwards along 
the network and adjust the weights and thresholds of 
propagation functions between neurons. This is the 
error back propagation process.

3)	 Repeat the above process until the target error is 
satisfied.

Fig. 3. Composition of the decision system for analyzing 
evaluation indicators; (C) the set of condition attributes; (D) the 
set of decision attributes.

Fig. 4. Diagram showing the structural diagram of the BP neural 
network.

Fig. 5. Flow chart showing the process of the BP neural network.



957Multi-Index Classification Model...

The learning process can map any non-linear function 
from the input space to output space.

At present, BP neural networks have become the 
most widely used artificial neural network model, and 
its MATLAB toolbox has a wide range of engineering 
applications [41-43]. In this paper, a BP neural network 

is used to learn the nonlinear relationship between 
indicators and the stability level of loess deposits. After 
the error satisfies the target, the nonlinear model can be 
used for evaluating loess deposits by putting indicator 
values into the network (Fig. 5).

Table 1. Evaluation standards of loess deposits.

Table 2. Statistical data from borehole samples.

No. w
(%)

ρ
(g/cm3)

c
(kPa)

φ
(°)

E
(MPa) μ Level

1 <11 1.90~2.05 56~70 27~30 240~320 0.28~0.31 IVa

2 11~17.5 1.75~1.90 42~56 23~26 160~240 0.31~0.34 IVb

3 17.5~18.1 1.60~1.75 29~42 19~22 80~160 0.34~0.37 Va

4 18.1~18.4 1.45~1.60 15~29 15~18 50~80 0.37~0.40 Vb

5 >18.4 <1.45 <15 <15 <50 0.40~0.43 VI

Notes: w – Water content; ρ – Natural density; c – Cohesion; φ – Internal friction angle; E – Elastic modulus; μ – Poisson ratio; 
Level – The stability level of the loess deposits in excavation

w
(%)

ρ
(g/cm3)

c
(kPa)

φ
(°)

E
(MPa) μ Level

10.4 1.67 51 24 256 0.29 IVa

14 1.97 32 25 180 0.32 IVb

16.8 1.94 23 20 76 0.33 Va

18.0 1.98 19 16 89 0.33 Vb

18.2 2.00 9 14 34 0.42 VI

18.3 1.52 11 13 42 0.41 VI

17.6 1.92 8 17 109 0.32 Vb

13.1 1.81 24 20 72 0.32 Va

15.2 1.66 36 26 196 0.33 IVb

17.7 1.71 13 16 117 0.33 Vb

10.8 1.77 44 26 254 0.30 IVa

16.3 1.50 62 29 278 0.29 IVa

15.4 1.98 51 28 313 0.32 IVb

17.7 1.88 17 22 148 0.30 Va

18.0 1.96 27 16 93 0.33 Vb

18.9 1.93 7 13 41 0.36 VI

18.2 1.81 25 17 129 0.32 Vb

17.6 2.01 19 20 72 0.30 Va

16.8 2.03 37 25 199 0.29 IVb

18.8 2.02 18 14 25 0.35 VI

Notes: w – Water content; ρ – Natural density; c – Cohesion; 
φ – Internal friction angle; E –Elastic modulus; 
μ – Poisson ratio; Level – The stability level of the loess 
deposits in excavation.

Table 3. Decision table.

w ρ c φ E μ Level

1 3 2 2 1 1 1

2 1 3 2 2 2 2

2 1 4 3 4 2 3

3 1 4 4 3 2 4

4 1 5 5 5 5 5

4 4 5 5 5 5 5

3 1 5 4 3 2 4

2 2 4 3 4 2 3

2 3 3 2 2 2 2

3 3 5 4 3 2 4

1 2 2 2 1 1 1

2 4 1 1 1 1 1

2 1 2 1 1 2 2

3 2 4 3 3 1 3

3 1 4 4 3 2 4

5 1 5 5 5 3 5

4 2 4 4 3 2 4

3 1 4 3 4 1 3

2 1 3 2 2 1 2

5 1 4 5 5 3 5

Notes: w – Water content; ρ – Natural density; c – Cohesion; 
φ – Internal friction angle; E – Elastic modulus; 
μ – Poisson ratio; Level – The stability level of the loess 
deposits in excavation.
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Establishing a stability evaluation model
for loess deposits surrounding tunnels 

Evaluation indicators

According to previous studies about the physical 
and mechanical properties of loess deposits [13, 44-45], 
water content, natural density, cohesion, internal friction 
angle, elastic modulus, and Poisson ratio are selected as 
indicators for stability evaluation.

Water Content (w)

Water content has a significant impact on mechanical 
and deformation characteristics of loess [9-10, 44]. As 
the primary parameter affecting the stability of loess 
deposits, water content was selected as an evaluation 
indicator.

Natural density (ρ)

Soil density is related to its physical properties 
such as composition, porosity, and particle gradation. 
Determined by formation period and depositional 
environment, natural density has been shown to be a 
factor affecting loess stability [44]. Therefore, natural 
density is selected as an evaluation indicator.

Cohesion (c) and internal friction angle (φ)

Cohesion and internal friction angle determine the 
shear strength of loess. Compared with other indexes, they 
are a direct manifestation of the stability of surrounding 
loess. So they are very necessary as evaluation indicators. 
By laboratory and field tests, we get their values from 
borehole samples.

Elastic modulus (E) and Poisson ratio (μ)

Elastic modulus and Poisson ratio reflect deformation 
characteristics of loess and have an important effect on 
the stability of loess deposits [13]. Therefore, they were 
also chosen as evaluation indicators.

Evaluation standards

Referencing the classification standards for rock 
surrounding a tunnel, the level of loess deposits is 
basically below IV. According to statistical data of 

borehole samples and related studies [13, 45], the quality 
of loess is divided into five levels: IVa, IVb, Va, Vb, and 
VI, and evaluation standards are determined (Table 1).

Results 

The weights of water content, natural density, cohesion, 
internal friction angle, elastic modulus, and Poisson ratio 
were calculated through analyzing statistical data of 
borehole samples (Table 2) using MATLAB. According 
to evaluation standards (Table 1), a decision table was 
established (Table 3). From Table 4, the weight of natural 
density is 0, therefore it should be removed. In addition, 
the weight of water content, cohesion, internal friction 
angle, elastic modulus, and Poisson ratio are respectively 
10.26%, 33.33%, 25.64%, 20.51%, and 10.26%. 

Using water content, cohesion, internal friction angle, 
elastic modulus, and Poisson ratio as input nodes and 
stability level as output node, 25 data samples (Table 5) 
were collected (1-20 for learning; 21-25 for testing). In 
addition, (1, 0, 0, 0, 0) represents expected output IVa; 
(0, 1, 0, 0, 0) represents expected output IVb; (0, 0, 1, 0, 
0) represents expected output Va; (0, 0, 0, 1, 0) represents 
expected output Vb; and (0, 0, 0, 0, 1) represents expected 
output VI. One hidden layer with 15 nodes was set and 
target error was set as 0.02. After 62963 iterations, the 
model error satisfied the target (Fig. 6). Therefore, the 
model was built.

Table 4. Support degree, attribute importance, and weight of indicators.

Index w ρ c φ E μ

Support 0.86667 1 0.56667 0.66667 0.73333 0.86667

Importance 0.13333 0 0.43333 0.33333 0.26667 0.13333

Weight 0.1026 0 0.3333 0.2564 0.2051 0.1026

Notes: w – Water content; ρ – Natural density; c – Cohesion; φ – Internal friction angle; E – Elastic modulus; μ – Poisson ratio

Fig. 6. Graph showing the convergence curve of the learning 
process.
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Table 5. Learning and testing samples for the BP neural network.

No. w
(%)

c
(kPa)

φ
(°)

E
(MPa) μ

Expected Output
IVa IVb Va Vb VI

1 10.4 51 24 256 0.29 1 0 0 0 0

2 14 32 25 180 0.32 0 1 0 0 0

3 16.8 23 20 76 0.33 0 0 1 0 0

4 18.0 19 16 89 0.33 0 0 0 1 0

5 18.2 9 14 34 0.42 0 0 0 0 1

6 18.3 11 13 42 0.41 0 0 0 0 1

7 18.3 14 14 39 0.41 0 0 0 0 1

8 17.9 8 17 112 0.32 0 0 0 1 0

9 17.6 7 16 156 0.33 0 0 0 1 0

10 12 22 21 67 0.33 0 0 1 0 0

11 13.1 27 19 54 0.32 0 0 1 0 0

12 16.3 32 24 178 0.33 0 1 0 0 0

13 15.4 40 23 223 0.32 0 1 0 0 0

14 17.7 14 18 148 0.33 0 0 0 1 0

15 10.1 53 26 273 0.29 1 0 0 0 0

16 9.8 49 25 314 0.30 1 0 0 0 0

17 10.9 48 26 309 0.28 1 0 0 0 0

18 17.3 24 22 62 0.32 0 0 1 0 0

19 17.9 28 15 149 0.32 0 0 0 1 0

20 11.5 33 21 168 0.33 0 1 0 0 0

21 10.1 50 24 267 0.29 1 0 0 0 0

22 13.4 37 25 188 0.32 0 1 0 0 0

23 16.8 22 21 77 0.33 0 0 1 0 0

24 17.7 16 18 123 0.33 0 0 0 1 0

25 18.8 13 13 42 0.42 0 0 0 0 1

Notes: w – Water content; c – Cohesion; φ – Internal friction angle; E – Elastic modulus; μ – Poisson ratio; Expected Output – 
The stability level of samples is converted into the mathematical form for learning by neural networks

Table 6. Test results.

No.
Output Value

Output Level Actual Level
IVa IVb Va Vb VI

1 0.8311 0.0577 0.0200 -0.0672 0.0524 IVa IVa

2 0.3904 0.8516 -0.0049 -0.0214 -0.0837 IVb IVb

3 -0.1499 -0.0254 0.9523 -0.0101 0.1764 Va Va

4 -0.1335 0.2356 0.0288 0.9896 -0.1450 Vb Vb

5 0.1411 0.0000 0.1548 -0.1830 1.1372 VI VI

Notes: For each sample, the level with the output value close to 1 is the output level. The actual level is the actual stability level  
of the loess deposits in excavation. 
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21-25 samples were used to test the model. Calculation 
results (Table 6) are consistent with actual levels and the 
proportion of output level in each sample is all over 50% 
(Fig. 7), indicating that the model has a high-resolution 
for classification.

The model is further validated by another 12 
engineering samples (Table 7). Results show that output 
levels are consistent with the actual values (Table 8,  
Fig. 8).

Discussion

The values of indicators significantly vary for different 
quality loess deposits [13, 45-47]. Rough set theory 

Fig. 7. Pie charts showing the proportion of each grade: a) sample 1 with output level IVa (81%), b) sample 2 with output level IVb (63%), 
c) sample 3 with output level Va (73%), d) sample 4 with output level Vb (65%), e) sample 5 with output level VI (70%)
Notes: For each sample, the level with the output value close to 100% is the output level.

Table 7. Samples for verification.

No. w
(%)

c
(kPa)

φ
(°)

E
(MPa) μ Level

1 17.6 11 17 109 0.32 Vb

2 13.1 19 20 72 0.32 Va

3 15.2 35 26 196 0.33 IVb

4 17.7 1.41 16 117 0.33 Vb

5 10.8 12 26 254 0.30 IVa

6 16.3 47 29 278 0.29 IVa

7 15.4 48 28 313 0.32 IVb

8 18.0 26 16 93 0.33 Vb

9 18.9 13 13 41 0.36 VI

10 18.2 23 17 129 0.32 Vb

11 17.6 25 20 72 0.30 Va

12 16.8 34 25 199 0.29 IVb

Notes: w – Water content; ρ – Natural density; c – Cohesion; 
φ – Internal friction angle; E – Elastic modulus; 
μ – Poisson ratio; Level – The stability level of the loess 
deposits in excavation.

Fig. 8. Distribution of verification results. 1-12 represent  
the number of samples. 
Notes: For each sample, the level with the largest value is  
the output level.
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was used to reveal the nonlinear relationship between 
these indicators and the loess stability by analyzing 
statistical data of borehole samples. Result shows that the 
correlation degree of natural density is 0, which indicates 
that it should not be considered an evaluation indicator. 
In addition, cohesion, internal friction angle, elastic 
modulus, and Poisson ratio determine the quality of loess 
deposits to a large extent with a total weight of 89.74%.

To a certain degree, the weights obtained by decision 
table are determined by the indicator value ranges 
according to the characteristics of rough set theory. 
For example, in this study, the range of natural density 
is limited by the loess deposits, which makes the study 
results unavailable for other types of geological body. 
And its weight is also relative to the other four indicators, 
which does not mean that natural density has absolutely 
no effect on stability.

Compared with other methods, such as Delphi and 
analytic hierarchy process (AHP) methods (which rely 
mainly on expert experience), rough set theory is good 
at objectively analyzing the weight through data mining. 
Based on enough and representative data samples of the 
project in this study, it was adopted.

Removing natural density from evaluation indicators 
reduces the input nodes, optimizing the structure and 
improving the learning efficiency of the BP neural 
network. The simplified set of learning samples prevents 
the neural network from learning useless information, 
which improves the accuracy of the model.

BP neural network was used to learn sample data in 
this study. One hidden layer and 15 hidden nodes were 
set in the network to reach the target error 0.02. For the 
artificial neural network, setting of the parameters has a 
direct impact on the learning results. Therefore, we need 

to constantly adjust the parameters to ensure the learning 
efficiency, classification accuracy, and generalization 
ability of the model.

The samples for learning and testing were acquired 
from the practical project, which is the objective basis 
of this study. In the samples (Table 2, Table 5), the 
“stability level” was determined by the actual situation of 
surrounding rock as revealed by tunnel excavation. The 
smaller the excavation deformation, the more stable the 
surrounding rock. Considering a variety of factors, it was 
classified into five levels: IVa, IVb, Va, Vb, and VI.

According to verification results, the evaluation 
system is feasible, while the stability of loess deposits 
is affected by various factors. Therefore, the evaluation 
system should be constantly improved, and the model 
should be continuously checked.

Conclusions

  On the basis of previous studies, physical and 
mechanical indicators are first proposed to quantitatively 
evaluate the stability of loess deposits surrounding 
tunnels. Combined with tunnel projects in the Loess 
Plateau of China, samples are acquired and evaluation 
standards are determined.  

  The importance (weight) of water content, natural 
density, cohesion, internal friction angle, elastic 
modulus, and Poisson ratio is analyzed by rough set 
theory based on statistical data of borehole samples. 
Natural density with the smallest weight (0) is removed 
from the evaluation system, which reduces the number of 
input nodes, optimizing the structure and improving the 
learning efficiency of the BP neural network. In addition, 

Table 8. Verification results.

No.
Calculation Results

Output Level Actual Level
IVa IVb Va Vb VI

1 0.0307 0.0297 0.2374 1.0372 -0.1066 Vb Vb

2 -0.1623 0.0654 0.9773 -0.1010 0.0142 Va Va

3 -0.1043 1.3839 -0.1737 -0.3364 0.1409 IVb IVb

4 -0.0193 0.0122 -0.0145 1.0564 0.0058 Vb Vb

5 0.9139 0.0499 -0.0455 0.0220 0.0249 IVa IVa

6 0.8730 0.5037 0.0021 -0.3019 0.1379 IVa IVa 

7 -0.3534 1.4636 -0.4051 -0.4128 0.0354 IVb IVb

8 -0.0192 -0.0013 -0.1461 0.9114 0.0563 Vb Vb

9 0.0367 -0.2677 0.0805 0.0799 0.6455 VI VI

10 0.0443 0.0198 -0.0595 0.9918 -0.0103 Vb Vb

11 0.1401 -0.1408 1.2186 0.0976 -0.2183 Va Va

12 0.0555 0.8267 0.6353 0.1025 0.0552 IVb IVb

Notes: For each sample, the level with the output value close to 1 is the output level. The actual level is the actual stability level  
of the loess deposits in excavation. 
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the weight of water content, cohesion, internal friction 
angle, elastic modulus, and Poisson ratio are respectively 
10.26%, 33.33%, 25.64%, 20.51%, and 10.26%.

With water content, cohesion, internal friction angle, 
elastic modulus, and Poisson ratio as indicators, a BP 
neural network model for stability evaluation of loess 
deposits is established after training for 62936 iterations. 
The model is tested and further verified by another 
several samples, and the output is consistent with actual 
results. This multi-index evaluation model provides a 
reference for future studies, engineering practices, and 
the intelligent excavation of loess tunnels in the future.
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