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Introduction

Biochemical and toxicological studies have de
monstrated that the toxicity of elements does not depend 
solely on their content in the environment, but also on the 
type and quantity of different physicochemical forms in 
which they are introduced to the environment and exist in 
it. In order to obtain additional information about the tox-
icity of elements, it is necessary to identify and determine 
quantitatively individual species in a given ecosystem. 
This discovery has resulted in the rapid growth of specia-
tion analysis [1].

The term speciation analysis first appeared in the lite
rature in 1954 and was at the time associated with a com-

plex biogeochemical cycle of trace elements in sea water. 
In the 1960s, numerous papers dealt with speciation of 
metals in water, but research on metal speciation in solid 
samples was rare. The interest in metal speciation in solid 
matrices did not pick up until the 1970s and at present 
the term speciation analysis also includes the analysis of 
organic compounds. There are diverse definitions of spe-
ciation and a number of contradictions in the literature. 
According to the IUPAC recommendations from 2000, 
the term “speciation” is defined as identification and 
quantitative determination of all the chemical species and 
their physical forms in which a given element occurs in a 
specific part of the environment based on the samples col-
lected using the principles of Good Laboratory Practice, 
whereas the term speciation analysis pertains solely to the 
analysis of specific chemical forms [2].
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In environmental investigations, where one of the 
main objectives is the determination of potential hazards 
to humans from the environment, “organometallic specia-
tion” is among the topics of interest, because organic de-
rivatives of metals are often much more toxic than their 
inorganic forms [3].

Organometallic compounds are defined as a group of 
compounds containing in their molecules at least one me
tal atom bonded to the atom of carbon being a part of an 
organic functional group [4]. They have different physi-
cochemical properties, which depend both on the kind of 
metal and the organic groups bonded to it. Many organo-
metallic compounds are solid, others are liquid and some 
exhibit a substantial volatility and occur as gases [5].

The degree of difficulty of speciation analysis in-
creases with an increase in lability of the species being 
determined: from thermodynamically and kinetically 
stable typical organometallic compounds (e.g. dimethyl-
mercury) all the way up to labile forms of elements (e.g. 
hydrolyzed metal ions) [6]. Speciation analysis of heavy 
metals poses problems due to a variety of forms of mer-
cury [6-8], lead [6, 9], tin [10, 11], selenium [12, 13] or 
arsenic [14, 15] occurring in nature (Table 1), and the so-
lution to each problem requires the development of an in-
dividual procedure using known analytical techniques.

This review deals with speciation analysis of mercury, 
lead, tin, selenium and arsenic in two types of environ-
mental samples – soil and bottom sediments.

Speciation Analysis of Selected Organometallic 
Compounds

The term speciation analysis was originally associated 
with the analytical methods used to determine the quantity 

and form of occurrence of a given element in the sample 
examined. Such information has proven to be essential 
for the development of a number of disciplines (medicine, 
environmental science, geology), because it allowed us 
to evaluate toxicity and to understand bioavailability and 
biogeochemical cycles of a given element in the environ-
ment [5].

Analytical procedures used in speciation analysis are 
different than the procedures used for the determination of 
total content of elements. Speciation analysis makes use 
of mostly trace analysis, which poses many problems at 
the sample collection and preparation steps and imposes 
on the analyst the need for strict adherence to the analyti-
cal procedures used [5]. Only a few analytical procedures 
allow examination of samples in their original state, with-
out prior preparation. As a rule, several time-consuming 
steps, such as extraction, enrichment or derivatization, 
which enable indirect determination of the analytes in 
a sample, are required [16]. Preparation of samples for 
analysis is especially important in speciation analysis due 
to the ease of destruction of some species of the elements 
being determined.

The majority of operations and processes used to pre-
pare samples of sediments and soils for the speciation 
analysis of organometallic compounds of Hg, Pb, Sn, 
As, and Se are similar, which is depicted schematically 
in Fig. 1.

Preparation of Samples of Soils and Bottom 
Sediments for Speciation Analysis

Preliminary steps of speciation analysis, prior to final 
determination, are particularly difficult because every activ-
ity is a potential interference which can disturb a complex 

Fig. 1. Operations and processes used during preparation of samples of sediments and soils for the determination of organometallic 
compounds.

Table 1. Selected organometallic compounds of Hg, Pb, Sn, Se, and As occurring in the environment.

Mercury Lead Tin Selenium Arsenic
Me2Hg, Et2Hg, Pr2Hg

MeHg+, EtHg+, PhHg+

Me4Pb, Me3EtPb, 
Me2Et2Pb, MeEt3Pb, 

Et4Pb

Me2Pb2+, Et2Pb2+, 
Me3Pb+,Et3Pb+ 

BuMe3Sn, Bu2Me2Sn, 
Bu3MeSn, Bu4Sn

BuSn3+,Bu2Sn2+, Bu3Sn+, 
PhSn3+, Ph2Sn2+, Ph3Sn2+, 
Ph3Sn+, Et3Sn+, MeSn3+, 

Me2Sn2+, Me3Sn+

Me2Se2, Me2Se, Et2Se, 
Et2Se2, SeC(NH2)2

Me3Se+

MeAsO(OH)2,  
Me2AsOOH, Me3AsO

Me3AsCH2COOH+, 
Me4As+
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system of physicochemical equilibria of a given analyte in 
a sample. On the other hand, usually none of the steps can 
be avoided, since environmental analysis typically deals 
with the ultratrace contents of elements in samples having 
a very complex matrix and even very sensitive analytical 
techniques that require enrichment of chemical species 
present in samples prior to the final determination [6].

Collection of Representative Samples

Collection of representative samples of soils and sedi-
ments for analysis, and particularly speciation analysis, 
being the key step of the analytical procedure, must be 
carried out in the way ensuring minimum losses of the 
elements being determined or their different forms and 
maximum protection from introducing contaminants, as 
well as protecting the collected samples from the fac-
tors disturbing the equilibria taking place in the analyzed 
macrosystem. This is especially important in speciation 
analysis, because the total content of a given element 
may remain constant while the ratio of different physical 
and chemical species initially present in the sample may 
change [5].

Solid materials are characterized by heterogeneity and 
the complexity of interactions with their surroundings 
(water, air), which requires proper selection of a sample 
collection method to minimize conversions of different 
species of the organometallic compounds being deter-
mined. Subsurface, nonoxidized layers of soils and sedi-
ments are isolated under oxidizing conditions of water or 
air, which makes it important to protect them during the 
entire process of sample collection. This also results in the 
complication of subsequent extraction and determination 
of different species in various solid fractions, as exposure 
to air can result in a rapid change in distribution of the 
analyte in a sample [17].

In order to ensure representativeness of the sample, 
parameters such as number of samples, sampling time 
ensuring preservation of the equilibria characteristic of a 
given environment, sampling depth and meteorological 
conditions prevailing during sample collection, should be 
decided upon prior to the sampling. If there is a chance of 
migration of a toxic substance to deeper layers of soil, two 
samples from different depths should be collected [16]. In 
speciation analysis, particular attention should be paid to 
the proper selection of material of a container used to col-
lect and store a sample. Sample containers should be used 
solely to collect samples of the same type and properly 
cleaned after each use following appropriate procedures.

Speciation of organometallic compounds is usually 
investigated in the surface layers of soils (to a depth of 
5-10 cm) and sediments, because they provide most in-
formation about the degree of atmospheric pollution and 
bioavailability and conversions taking place in the sur-
rounding water [17].

Samples of soil to be analyzed for the content of or-
ganometallic compounds are usually collected from the 
topsoil layer using a scoop.

Collecting samples of bottom sediments using a va-
riety of samplers is a more difficult task than collecting 
soil samples. In the former case, samplers and probes are 
generally heavy and require the use of lifts. A variety of 
sediment samplers, including grab samplers (in which 
case samples of partly disturbed structure are obtained) 
and core samplers are used depending on the objective 
of investigations. As a rule, such samplers and sampling 
techniques are employed that result in a possibly undis-
turbed structure of the surface layer of a sediment.

The above condition is met by the Niemistö core sam-
pler, which is used to collect soft sediments. A cryogenic 
sampler is also utilized for the collection of sediment sam-
ples. It allows freezing of a sample right after its collec-
tion, which prevents losses of the most volatile analytes 
[16].

Storage, Preservation and Homogenization of Samples

During the period between sample collection and final 
determination samples can change their properties due to 
chemical, physical or biological processes taking place 
in them. These adverse phenomena can be minimized 
through proper storage and the selection of an appropriate 
method of sample preservation prior to subsequent steps 
of the analytical procedure.

There are no definite rules for the preservation of solid 
samples of environmental materials prior to speciation 
analysis. Since sample storage can affect the distribution 
of species, it is recommended that the analysis be carried 
out immediately after sample collection. However, in 
most cases some form of sample storage and preparation 
that can influence speciation is required. The following 
operations are used most often [17]:
	–	A ir drying (for up to two weeks) and desiccator dry-

ing (one week) – both operations carried out at room 
temperature;

	–	 drying at elevated temperature (oven, 100 °C, 4 h) or 
using an IR lamp (1.5 h);

	–	 lyophilization.
Air drying and drying at elevated temperature should 

be eliminated. The removal of moisture in a desicca-
tor and through lyophilization preserves organometallic 
compounds for about one year [6]. The drying and storage 
method must, however, be selected individually, depend-
ing upon the objective of the analysis and its scope as well 
as the planned method of dissolving the sample. For exam-
ple, lyophilization or freeze-drying, the process involving 
the removal of water (and some volatile organometallic 
compounds, which can be a source of errors) from sample 
bypassing the liquid state, can significantly change the 
sample structure. When carried out under optimum condi-
tions, it yields a porous structure, amenable to dissolution 
[6]. An important step in the preparation of solid samples 
following their drying or freezing is homogenization us-
ing special mills or comminutors. The samples to be ana-
lyzed for their content of volatile compounds should be 
extracted immediately after collection [5]. The technique 
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which can be successfully used for direct extraction of 
volatile organometallic compounds is solid-phase micro-
extraction [18]. Samples of soils and sediments are usu-
ally stored in polyethylene or PTFE containers.

Isolation and Enrichment of Analytes from Solid 
Samples

Solid samples are an example of environmental sam-
ples in which analytes cannot be determined directly by 
the majority of methods employed in environmental analy
sis. Liquid, gas, and solid-phase extractions are used to 
make these samples amenable to the common methods of 
final determination [19]. Due to the fact that organometal-
lic compounds are usually present in samples at very low 
concentration levels, the main objective of the extraction 
step is analyte enrichment.

The determination of organic forms of metals still 
presents a challenge for analytical chemists, because 
these species are often labile and, in addition, their con-
centrations in various matrices are very low: in the or-
der of 1 µg/L (e.g. alkyl species of lead or tin) or even 1 
ng/L (e.g. estuarine water), and in the order of 1 ng/g in 
samples of sediments, soils and biological tissues, while 
at the same time the inorganic metal species can be pre
sent in a sample at a thousand-fold higher concentration. 
For this reason, sensitive and selective atomic absorption 
spectroscopic techniques are useful in the area of specia-
tion analysis, primarily in combination with chromato-
graphic techniques. The complexity of such a system has 
a direct effect on the time of analysis; however, the most 
tedious and time-consuming step in the entire procedure 
is sample preparation aimed at quantitative isolation of 
chemical species of the analytes from the matrix to a spe-
cific solvent in order to facilitate their introduction into 
a chromatographic column. This requires extraction and 
derivatization of the analytes, which increases the num-
ber of operations and, therefore, the probability of analyte 
losses, and calls for experience and high qualifications of 
the analyst [20].

A number of extraction techniques for the analytes 
from such environmental samples as soils and sediments 
have been proposed. The techniques can be classified ac-
cording to various criteria, for example:
	–	 polarity of the solvent used,
	–	 sample acidity used to improve analyte recovery,
	–	 use of chelating agents.

Traditional liquid-solid extraction has significant 
shortcomings, of which the most important is the need 
for large volumes of organic solvents. Other types of 
extraction are based on techniques improving the effec-
tiveness and speed of isolation of the analytes from the 
matrix. These include microwave- or ultrasound-assisted 
liquid extraction, supercritical fluid extraction and extrac-
tions carried out at elevated temperature and/or pressure 
as well as solid-phase microextraction, which offer new 
methods of chemical treatment of different species and 

have an advantage over classical liquid-liquid extraction 
of a substantial reduction in time and the possibility of 
on-line analysis [19].

The new generation of sample preparation techniques 
finds use in extraction methods applied in the analysis of 
organometallic compounds occurring at a level below 1 
pg. However, the disadvantages of rapid extraction tech-
niques, such as the possibility of losses of the chemical 
species being determined due to their chemical instabil-
ity during the extraction step resulting from the use high 
pressure and/or temperature (e.g. in supercritical fluid ex-
traction, accelerated solvent extraction or microwave-as-
sisted extraction), should also be pointed out [20].

Extractive methods of isolation can be used in spe-
ciation analysis to isolate various element species from 
solid materials such as soils, marine sediments, and sedi-
ments from water reservoirs and running water. The ex-
tracting agents are selected individually for each material 
and type of analyte (organic solvents, such as hexane, 
cyclohexane, chloroform, methylene chloride, methanol, 
acetone, dimethylformamide, solutions of acids and bases 
– separately or in mixtures, sometimes with an addition 
of complexing agents used in the case of organometallic 
compounds) [6].

Recent liquid-solid extraction techniques fall into one 
of three categories:
	–	 “classic” techniques,
	–	 techniques, in which additional factors (ultrasounds, 

microwave radiation, elevated temperature and pres-
sure) are used to assist the extraction process,

	–	 techniques making use of supercritical fluids [19].
Gas- and solid-phase extractions are used for volatile 

organometallic compounds. A number of variants of this 
type of extraction technique have been developed thus 
far.

The information on extraction of organometallic com-
pounds from solid matrices (bottom sediments, soils) is 
compiled in Table 2.

Derivatization

Derivatization is used in the majority of procedures 
for the determination of organometallic compounds. In-
dividual species of the elements of interest are converted 
into derivatives to facilitate further analysis. Derivatiza-
tion is one of the most effective ways of improving detec-
tion limits in gas and liquid chromatography and in capil-
lary electrophoresis.

The techniques of determination of total elemental 
content are well known and documented [42-51]. How-
ever, identification of various species is a challenge in 
analytical and biomedical studies. Chromatographic tech-
niques constitute a powerful tool for the separation of 
various chemical species of elements, but compounds of 
mercury, lead, tin, arsenic and selenium generally occur in 
the environment in ionic and polar forms. Consequently, 
when using analytical methods based on GC, the com-
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 m
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 c
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 m
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 m
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 m
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m
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 m
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 m
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 m
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st

 p
H

 to
 5

), 
ad

d 
1 

m
L 

is
oo

ct
an

e 
an

d 
10

0 
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l t
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-b
en

ze
ne

 
so

lu
tio

n 
(s

ha
ke

 fo
r 1

0 
m

in
). 

W
as

h 
ex
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 re
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at
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 c
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, d
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 d
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 c
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 re
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m
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 o
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pounds have to be extracted from the sample matrix and 
converted into volatile and thermally stable derivatives 
[52].

Most often, derivatization of mercury, lead, tin, arse-
nic and selenium compounds involves converting them 
into [6]:
	–	 volatile hydrides using sodium tetrahydroborate,
	–	 ethyl derivatives using sodium tetraethylborate,
	–	 butyl derivatives using tetrabutylammonium tetrabu-

tylborate,
	–	 higher alkyl or aryl derivatives using Grignard re-

agents,
	–	 volatile complexes.

The formation of halogen derivatives, finding use 
in speciation analysis of tin compounds, is not used in 
the determination of lead and mercury species. The de-
rivatization techniques most commonly used in gas chro-
matography are compiled in Table 3.

Reduction of nonvolatile compounds to volatile hy-
drides using sodium tetrahydroborate is one of the most 
common methods of derivatization in speciation analysis 
of Hg, Pb, Sn, As, and Se [53], although some authors 
question the notion of formation of volatile hydrides by 

Se and Pb [54]. Mono- and dimethylarsenic acids can be 
determined simultaneously as MeAsH2 and Me2AsH, re-
spectively. Trialkyllead compounds easily form volatile 
hydrides in the presence of NaBH4, while dialkyllead 
compounds do not react with this reagent. The technique 
has found most use in speciation analysis of organotin 
compounds due to the possibility of simultaneous chro-
matographic determination of ionic methyl and butyl 
forms of tin [55].

The conversion of organometallic compounds into 
volatile hydrides using sodium tetraborate can be carried 
out in a separate vessel (off line), from which the products 
are transferred into the GC column via layer absorbing 
water, or on-line. The external reactor is often connected 
to the GC column through an additional module enabling 
preliminary separation of species by means of the purge-
and-trap technique. In the online mode the first segment 
of the GC column constitutes the zone of reaction with 
NaBH4 or the reaction is carried out in the injection cham-
ber in front of the column, which contains a minireactor 
with this reagent. Following separation from the post-re-
action mixture using an inert carrier gas (argon, helium), 
volatile hydrides are directed to the atomization (AFS, 

Table 3. Comparison of selected methods of derivatization of organometallic compounds [5, 52, 56-58].

Reduction with NaBH4 Ethylation with NaBEt4 Alkylation with Grignard reagents

Method description
Mix acidified sample solution with deriva-
tizing agent (NaBH4). Purge reaction mix-
ture with an inert gas to transfer hydrides 

formed to gaseous phase.

Add buffer (pH 3-5) to sample solution 
and mix with NaBEt4. Purge reaction mix-

ture with an inert gas to transfer deriva-
tized analytes to gaseous phase.

Reaction is carried out in organic solvents. 
Excess of derivatizing agent is removed by 

adding an acid to the sample. 

Reaction time

Very short 2-10 min 30-180 min

Advantages
– Reaction takes place in aqueous medium 

compatible with most samples
– Reactions are fast

– Low cost
– High yield

– Simplicity and high sensitivity
– Shorter times of reaction and purge of 

volatile derivatives compared to ethylation 
with NaBEt4

– Method well described in literature.

– Reaction takes place in aqueous medium 
compatible with most samples

– High yield
– Short reaction time

– No need to remove organic solvent 
(required in Grignard reaction)

– Method well described in literature.

– Low volatility of analytes
– High yield

– Possibility of use in derivatization of 
various alkyl groups (propyl, butyl, pentyl, 

hexyl, methyl or ethyl) and phenyl
– Method well described in literature.

Disadvantages
– Susceptibility to all kinds of interferences 

(affects precision and speed of determination)
– Derivatives can be too volatile (possible 

analyte losses)
– Method limited to elements which can 
form volatile hydrides in reaction with 

NaBH4 (hydrides are not formed by com-
pounds with high b.p., e.g. phenyltin)

– Lability and possibility of dismutation of 
hydrides of lead, mercury, arsenic and tin 

– Expensive reagent
– Not as well characterized as NaBH4 

reduction
– Cannot be used in speciation analysis of 
ethyl derivatives of lead (they lose their 

chemical identity)
– Incomplete derivatization due to inter-
ference from matrix components of the 

sample.

– Slow derivatization process
– Lack of compatibility with procedures 
based on aqueous extracting agents (rec-

ommended change of solvent)
– Tediousness and time consumption, as-
sociated with using nonaqueous medium.

– Large solvent consumption.
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AAS) or excitation (ICP, MIP) system and determined us-
ing a specific detector.

The greatest advantage of this approach is its simplic-
ity and high sensitivity. Moreover, the procedure has shorter 
times of reaction and purging volatile derivatives from the 
reactor compared with the ethylation in the aqueous phase 
technique [56]. However, the applicability of this procedure 
to speciation analysis is limited to the elements which are 
capable of formation of volatile hydrides in reaction with 
NaBH4 (such volatile hydrides are not formed by the com-
pounds with high boiling points, such as phenyltin [57]). An-
other disadvantage of the generation of volatile hydrides is its 
susceptibility to all kinds of interference, which adversely af-
fects precision and speed of analysis. In addition, one should 
remember that hydrides of lead, mercury, arsenic and tin are 
unstable and easily undergo dismutation [56].

Alkylation using Grignard reagents (alkylmagne-
sium halides) resulting in the formation of alkyl deriva-
tives is carried out in nonaqueous media, mainly after 
extracting the investigated species into organic phase in 
the presence of complexing agents (tropolone, dithiocar-
bamates). Derivatives with lower molecular masses have 
found wider application due to their higher volatility. Gri-
gnard reagents are used in speciation analysis of selenium, 
arsenic, tin, lead and mercury [56], although in speciation 
analysis of tin they are being replaced with easier and less 
time consuming derivatization with NaBH4.

The main advantage of derivatization with Grignard 
reagents is its high yield, the possibility of using a variety 
of alkyl groups (propyl, butyl, pentyl, hexyl and phenyl in 
addition to methyl and ethyl) [52], as well as applicability 
to samples having a complex composition of matrix.

The shortcoming of the method is its tediousness and 
time consumption resulting from the necessity of using 
nonaqueous media [5].

Ethylation with sodium tetraethylborate (STEB) 
can be carried out in the aqueous medium (as opposed to 
the alkylation using Grignard reagents), which makes the 
technique more attractive thanks to shorter time of analy-
sis and no need to remove organic solvent. However, the 
technique can only be used to distinguish among inorgan-
ic and methyl lead and mercury species. Ethyllead species 
and inorganic lead species are converted solely into tetra-
ethyllead and lose their chemical identity [56]. Ethylation 
is also successfully used for the derivatization of organo-
tin compounds prior to their GC separation [69-26]; how-
ever, butyl- and phenyltin species must be extracted from 
solution after derivatization due to their lower volatility 
compared with methyltin [54]. Also in this case, there are 
difficulties in obtaining quantitative conversion to ethyl-
ated species resulting from interference by some matrix 
components of the analyzed sample.

Specific derivatization of organometallic compounds 
prior to their introduction into the capillary or during 

Table 4. Selected derivatization techniques used in speciation analysis of Pb, Hg, As, Sn and Se (literature data).

Separated species Method/Derivatizing agent Literature

Organometallic compounds of Hg, Pb, Sn, As Grignard reagent, NaBH4, NaBR4, where R- C2H5,C3H7, 
C6H5

[52]

MBT, DBT, TBT, MMHg NaBEt4 [60]

Organometallic compounds of Hg, Pb, Sn NaBEt4 [61]
Organometallic compounds of Hg, Pb, Sn, As, Se

MMHg
NaBH4
NaBEt4

[53]

Organometallic compounds of Hg, Sn, Pb NaBEt4, NaBPr4 [62]

Organotin compounds Grignard reagent, NaBH4 [63]

Organotin compounds NaBEt4 [23, 25, 57]

MMHg NaBH4, NaBEt4 [64]

MMHg, DMHg NaBEt4 [65, 66]

MMHg, EtHg NaBEt4, NaBPr4, NaBPh4 [67]

MMHg, PrHg NaBEt4, NaBPr4 [68]

MMHg NaBEt4 [69]

MMAA, DMAA NaBH4 [70]

MMAA, DMAA, TMAO NaBH4 [14]

Organometallic compounds of Hg, Pb, Sn, As, Se NaBH4 [54, 71]

Hg, Sn, As, Se NaBH4 [72]

Hg, As, Se NaBH4 [73]
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separation is also carried out using electrophoretic me
thods. Complexation of metal ions with different oxida-
tion numbers allows differentiating their charge density, 
thus facilitating separation. Sometimes anionic and cat-
ionic species are converted into complex ions with like 
charges, thus simplifying electrophoresis. The efficiency 
of separation of organometallic species is also improved 
by complexing them prior to their introduction into the 
capillary (e.g. complexing various mercury species with 
cysteine or dithizone) or by modifying the electrolyte 
with weak ligands, such as cyclodextrin [59].

Precolumn derivatization is rarely used in liquid chro-
matography. The species to be separated are modified 
using ion-pair chromatography; complexing agents are 
sometimes added to the mobile phase in reverse phase 
chromatography. The fundamental role in liquid chroma-
tography is played by postcolumn derivatization. It aims 
to convert the separated species into the form best suited 
for the detection system used: colored complexes (for 
UV-vis detection), fluorescent (fluorimetry), volatile com-
pounds (spectral detectors). In the last case any method 
suitable for precolumn derivatization in GC can be used; 
the cold vapor technique for the determination of mercury 
also is important [6].

The literature data on various derivatization methods 
for organometallic compounds are compiled in Table 4.

Methods of Separation and Determination of 
Organometallic Compounds

Speciation analysis makes use of analytical methods 
allowing selective determination of various chemical spe-
cies present in a sample, often at very low concentrations. 
Selective determinations of elemental species can be 
carried out by preliminary separation of the species, fol-
lowed by their quantitative determination using the same 
techniques as those employed at this stage for the deter-
mination of total contents of elements [76]. The methods 
primarily applied for this purpose are chromatographic 
techniques, such as liquid, gas or supercritical fluid chro-
matography as well as other separation techniques, e.g. 
capillary electrophoresis.

Role of Chromatographic Techniques in Speciation 
Analysis

Chromatography can be used in a variety of modes, 
thus allowing for the selection of the best technique in 
speciation analysis, depending mostly on chemical prop-
erties of the species to be separated. Liquid chroma-
tography is best suited for nonvolatile or thermally un-
stable compounds as well as polar and ionic substances; 
gas chromatography is appropriate for the separation of 
volatile and thermally stable compounds. Supercritical 
fluid chromatography is complementary to gas and liq-
uid chromatography. Each technique, particularly liquid 
chromatography, can be further classified into subgroups 

differing with respect to the type of stationary and mobile 
phases [6]. It should be pointed out that in some cases 
liquid chromatography allows speciation analysis without 
prior derivatization of the analytes [5].

In speciation analysis of organometallic compounds 
the following chromatographic techniques have found the 
widest use:
	–	 gas chromatography [75, 53, 56, 61, 76-82],
	–	 normal or reverse phase liquid chromatography [75, 

56, 82-88],
	–	 supercritical fluid chromatography [89, 90, 83, 91,],
	–	 ion-pair chromatography [82, 87],
	–	 micellar chromatography [82, 87],
	–	 ion exchange chromatography [82, 87],
	–	 exclusion chromatography [82, 87].

Typical instrumentation employed in speciation analy
sis of organometallic compounds involves techniques 
combining the process of chromatographic separation of 
mixtures with the selective detection of analytes in the 
column effluent. The main technical problems in combin-
ing chromatography with selective detectors are interfer-
ences taking place during separation and detection that af-
fect the detector signal as well as the long time needed for 
data acquisition (required to characterize many transient 
signals composing a chromatogram) [58].

The majority of determinations of organometal-
lic compounds are carried out by gas chromatography. 
The advantages of GC include very high resolution, low 
background resulting from high purity of the carrier gas, 
relatively low cost of the instrumentation and the ease of 
coupling GC to a variety of systems of final determination 
and identification of the analytes. The disadvantage of this 
approach is the fact that the majority of organometallic 
compounds occurring at trace levels cannot be directly 
separated by GC due to their thermal lability, high reactiv-
ity and ionic nature. Consequently, the analyte derivatiza-
tion step is required prior to analysis [58].

Due to the fact that the majority of species of organo-
metallic compounds are ionic or polar, mainly occurring in 
water, the application of liquid chromatography as a sepa-
ration technique would seem to be a natural choice. How-
ever, the number of detectors used for speciation analysis 
is limited and many of them require sample nebulization, 
which can cause a loss of up to 98% of the analyte [3]. 
The type of sample matrix can also limit the choice of 
detector. Consequently, detection limits for the methods 
based on liquid chromatography [88, 92, 93] are usually 
higher by several orders of magnitude compared to those 
based on GC (e.g. the detection limit for methylmercury is 
about 50 ng/g when using the CV-AAS detector [94]). On 
the other hand, the coupling of LC with the detectors such 
as atomic fluorescence spectrometer (AFS) or inductively 
coupled plasma – mass spectrometer (ICP-MS) enables 
reaching low detection limits, which is especially impor-
tant in speciation analysis of the elements that cannot be 
directly determined by GC.

Properties of supercritical fluids and their application 
to extraction of different elemental species from solids 
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were discussed in the section dealing with the extraction 
and enrichment of organometallic compounds from sol-
id matrices. Supercritical fluids are also used as mobile 
phases in chromatographic separations. Compared with 
other chromatographic methods, SFC offers a number 
of advantages; on the other hand, the properties of the 
most common supercritical fluid, carbon dioxide, limit 
the method to the separation of nonpolar and electrically 
neutral species. The use of polar fluids (water, ammonia) 
requires much higher temperatures and pressures. This 
problem can be solved by adding modified agents, for ex-
ample methanol, to carbon dioxide, which increases its 
polarity.

The main reason for a very limited use of SFC, also in 
cases of separation of organometallic compounds, seems 
to be the high cost of instrumentation compared to other 
chromatographic techniques [95].

Electrophoretic Techniques [3, 5, 6, 96]

One of the most interesting separation techniques that 
have recently been introduced in analytical chemistry is 
capillary electrophoresis (CE). The process of separa-
tion of sample components is based on the phenomena 
of electrophoresis and electroosmosis taking place in cap-
illaries of small diameter upon applying a high voltage 
(10‑30 kV). The technique is characterized by its high 
resolution, short analysis time and low cost of operation 
due to low reagent and sample consumption. Capillary 
electrophoresis systems can be readily automated and are 
easy to couple to a variety of detectors (spectrophotomet-
ric, mass, fluorescence, conductometric, etc.), thus find-
ing a wide applicability.

Three modes of capillary electrophoresis have found 
use in speciation analysis [9]:
	–	 capillary zone electrophoresis,
	–	 micellar electrokinetic capillary chromatography,
	–	 capillary gel electrophoresis.

In addition, the newest technique combining the ad-
vantages of liquid chromatography and capillary electro-
phoresis – capillary electrochromatography may prove 
useful in speciation analysis. In this technique, the separa-
tion process is carried out in packed columns (like in LC) 

but of greatly reduced diameters; the driving force is the 
electroosmotic flow (like in CE).

Thus far, the electrophoretic techniques mentioned 
above have had marginal application in speciation analy-
sis of organometallic compounds. One of the reasons for 
this is the need for highly sensitive detectors as a result of 
very small sample volumes that can be transported to the 
detector.

Analytical Techniques Used for the Detection and 
Quantitative Determination of Organometallic 

Compounds

The most commonly used techniques in speciation 
analysis are hyphenated methods (Fig. 2) – chromatogra-
phy as a separation technique coupled to atomic spectros-
copy methods – atomic absorption spectroscopy (AAS) 
[7, 8, 9, 43, 39, 97], atomic fluorescence spectroscopy 
(AFS) [66, 98, 99], microwave induced plasma- atomic 
emission spectroscopy (MIP-AES) [65, 77, 100], induc-
tively coupled plasma – atomic emission spectroscopy 
(ICP-AES) [58-47, 96-85] or inductively coupled plasma 
– mass spectrometry (MS, ICP-MS) [14, 54, 72, 76, 84, 
93, 98, 101, 102, 103]. The flame photometric detector 
(FPD) can also be used [104, 105, 106], particularly for 
the determination of volatile organotin derivatives. Thus, 
the hyphenated methods are an extension of chromato-
graphic techniques in which “classical” GC and LC de-
tectors have been replaced by the methods of selective 
determination of elements with low detection limits [74]. 
The majority of hyphenated methods offers the power of 
high resolution chromatography combined with high sen-
sitivity and element specificity.

Selected references on most common hyphenated tech-
niques used for the separation and determination of some 
organometallic compounds are compiled in Table 2.

Summary

Trace elements are important components of the bio-
sphere. Proper functioning of all living organisms depends 
on their concentration, kind of species and mutual ratio 

Fig. 2 Selected hyphenated techniques used in speciation analysis of organometallic compounds present in samples of soil and sedi-
ments [107].
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in the tissues. Many trace elements are known for play-
ing an essential role in maintaining system homeostasis. 
The natural cycle of trace elements in the environment is 
generally balanced, whereas all the elements introduced 
through anthropogenic activity undergo a variety of trans-
formations, migrations and gradual inclusion into the 
natural cycles. Hence, human activity affects directly or 
indirectly chemical changes of individual components of 
the environment and food products, thus influencing hu-
man health.

The determination of total content of trace elements in 
biological and environmental samples is often insufficient 
for the evaluation of their effect on living organisms and 
the environment. Various species of a given element have 
different chemical and physicochemical properties, which 
results in their diverse effect (including toxicity) on liv-
ing organisms. This calls for the application of speciation 
analysis, which allows both the identification of differ-
ent elemental species occurring in a specific material and 
their quantitative determination. Speciation analysis has 
become one of the most important trends in the develop-
ment of trace analysis.

Organometallic compounds, being persistent and 
biologically available and therefore undergoing bioaccu-
mulation, are a special kind of anthropogenic pollutant. 
Based on a search of the available literature it can be 
concluded that there are no universal procedures of col-
lection, preparation and determination of organometallic 
compounds of Hg, Sn, Pb, As and Se in soils and sedi-
ments. The selection of analytical procedure is limited by 
the form of analytes and type of matrix as well as the con-
centration range of analytes; hence, each sample requires 
an individual approach.

Speciation analysis of organometallic compounds in 
environmental samples faces a number of problems, which 
presents a serious challenge to the analysts. These include:
	–	 the possibility of change in sample composition dur-

ing their collection, storage and analysis due to trans-
formation and degradation of the analytes affected by 
external factors (temperature, light, exposure to air);

	–	 limited availability of reference materials, which makes 
validation of analytical procedures more difficult;

	–	 necessity of usage of very sensitive determination 
methods due to low concentration levels of the ana-
lytes in the sample.
The data regarding methods of extraction and deter-

mination of organometallic compounds of Hg, Sn, Pb, As 
and Se in soils and sediments are compiled in Table 2. 
The compiled data reveal that there are a variety of pro-
cedures for the determination of such compounds in solid 
matrices.
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