
Original Research

Polish J. of Environ. Stud. Vol. 17, No. 3 (2008), 363-368

Introduction

It is known that phosphorus plays a major role in bio-
logical metabolism ecosystems [1-5]. The enrichment of 
surface waters with phosphorus can have a large and un-
desirable impact on their tropic state, usage and appear-
ance. Predictive models of phosphorus concentrations in 
waters can provide decisions that support preventive and 
operational control of these events. However, predicting 
the behavior of nutrient-enriched water bodies is difficult 
because of the complex physical, chemical and biological 
processes involved. Therefore, in engineering study, time 
series models are often used to make rapid preliminary 
estimates of water quality changes. Due to high variance 
and the inherent non-linear relationship of the water qual-
ity time series, it is difficult to produce a reliable model 
with conventional modeling approaches. The continuous 

development of computing facilities has made the analy-
sis of multivariate data much more customary. Recently, 
alternative methods of data analysis, like artificial neural 
networks (ANNs), have emerged as interesting tools for 
time series analysis. Compared to the conventional mod-
eling approaches in water treatment, ANN modeling has a 
number of distinct advantages. ANNs require no a priori 
assumptions about the model in terms of mathematical 
relationships or distribution of data. The network simply 
learns from the sample data and generates a black-box
‑type relationship. Thus ANNs have the potential to dis-
cover useful models where domain knowledge of ecosys-
tem processes is limited. The ANN modeling approach is 
fast and flexible. Even a complicated neural mode can be 
completed relatively quickly once the data are collected. 
In addition, if some changes in the treatment process are 
necessary, the network can be quickly adjusted to the new 
process through model retraining, in which the new data 
describing the new process are added to the network’s 
learning procedure.*e-mail: Janina.Mozejko@ps.pl
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Abstract

This paper describes the application of artificial neural networks (ANNs) for the time series modeling 
of total phosphorous concentrations in the Odra River. Data from the monitoring site Police in the lower 
part of the Odra were used for training, validating and testing the models. Two models are proposed to 
prove the satisfactory forecast of phosphorus concentrations: a simpler one with a single input variable and 
a more complex one with 14 input variables. Both ANN models show a high ability to predict from the new 
data set. On the basis of sensitivity analysis the relationships between phosphorus concentrations and other 
water quality variables were established. 

Keywords: neural network, Odra River, total phosphorus



Możejko J., Gniot R.364

A typical neural network consists of a large number 
of elements called neurons or nodes. Each neuron is con-
nected to other neurons by means of direct communication 
links, each with an associated weight. The weights repre-
sent information being used by the net to solve a problem. 
Neurons are arranged in a layered structure. The first layer 
is called the input layer because the external inputs are ap-
plied here. The last layer called the output layer because 
it is where the outputs are processed as well as extracted. 
The layers between the input and output layers are called 
the hidden layers (not directly accessible). There can be 
one or more hidden layers and the number of neurons in 
each layer is an important parameter of the network.

Currently, many types of neural networks are known, 
mutually different in architecture and in the way the 
weights are adjusted. The most popular type of neural 
network is the multiple-layer perceptron (MLP). This net-
work has a simple interpretation as a form of input-output 
model, with the weights and thresholds (biases) the free 
parameters of the model. Such networks can model func-
tions of almost arbitrary complexity, with the number of 
layers, and the number of units in each layer, determining 
function complexity. Important issues in MLP design in-
clude specification of the number of hidden layers and the 
number of units in these layers.

A radial basis function network (RBF) has a hidden 
layer of radial units, each modeling a Gaussian response 
surface. Since these functions are non-linear, it is not ac-
tually necessary to have more than one hidden layer to 
model any shape of function: sufficient radial units will 
always be enough to model any function.

Generalized regression (GRNN) and probabilistic (PNN) 
networks are variants of the radial basis function (RBF) net-
work. Unlike the standard RBF, the weights of theses net-
works can be calculated analytically. PNNs are designed for 
classification tasks and GRNNs for regression.

In the PNN, there are at least three layers: input, ra-
dial, and output layers. The radial units are copied di-
rectly from the training data, one per case. Each models 
a Gaussian function centered at the training case. There 
is one output unit per class. Each is connected to all the 
radial units belonging to its class, with zero connections 
from all other radial units.

Generalized regression neural networks (GRNNs) 
work in a similar fashion to PNNs. As with the PNN, 
Gaussian kernel functions are located at each training case. 
Each case can be regarded as evidence that the response 
surface is a given height at that point in input space, with 
progressively decaying evidence in the immediate vicinity. 
The GRNN copies the training cases into the network to be 
used to estimate the response on new points. The output is 
estimated using a weighted average of the outputs of the 
training cases, where the weighting is related to the dis-
tance of the point from the point being estimated. The first 
hidden layer in the GRNN contains the radial units. A sec-
ond hidden layer contains units which help to estimate the 
weighted average. Each output has a special unit assigned 
in this layer which forms the weighted sum for the cor-

responding output. To get the weighted average from the 
weighted sum, the weighted sum must be divided through 
by the sum of the weighting factors. A single special unit 
in the second layer calculates the latter value and then the 
output layer performs the actual divisions (using special 
“division” units). Hence, the second hidden layer always 
has exactly one more unit than the output layer. In regres-
sion problems, typically only a single output is estimated, 
and so the second hidden layer usually has two units.

The most widely used kind of neural network is the lin-
ear neural network. In neural network terms, a linear mod-
el is represented by a network having no hidden layers, but 
an output layer with fully linear units (that is, linear units 
with linear activation function). The weights correspond to 
the matrix, and the thresholds to the bias vector. When the 
network is executed, it effectively multiplies the input by 
the weights matrix and then adds the bias vector [16-17].

In time series problems, the objective is to predict 
ahead the value of a variable that varies in time, using 
previous values of that and/or other variables. Any type 
of network can be used for time series prediction. The 
network can also have any number of input and output 
variables. However, most commonly there is a single vari-
able that is both the input and the output. One of the ma-
jor issues in neural network forecasting is how much data 
are necessary for neural networks to capture the dynamic 
nature of the process in a time series [18]. There are two 
facets to this issue:
	–	 how many lagged observations should be used as in-

puts to the neural network
	–	 how much past observation to use in training the neu-

ral network.
Determining an appropriate sample size for model 

building is not necessarily an easy task. Although a larger 
sample size in the form of a longer time series is usually 
recommended in model development, empirical results 
suggest that longer time series do not always yield models 
that provide the best forecasting performance.

In recent years there have been some successful ANN ap-
plications in water resource engineering. For example, Huang 
and Foo [6] applied ANN for salinity forecasting. Scardi et 
al.[7-8] and Jeong et al. [9] used ANN for phytoplankton 
primary production modeling. Wilson and Recknagel [10] 
applied ANN to predict algal blooms. Several authors ap-
plied ANNs for eutrophication modeling (Karul et. al., [11], 
Walter et. al [12]. Kuo et. al. [13]. Successful applications 
of ANN for forecasting water colour and pH have also been 
reported (Zhang et. al. [14] and Moatar et. al. [15]). 

In this paper, the artificial neural network (ANN) mod-
eling technique is used to establish a model for forecasting 
total phosphorus concentrations (TP) in the lower part of the 
Odra River. The Odra is a transboundary river and one of 
the longest watercourses in the Baltic Sea catchment area. 
Its total length amounts to 854.3 km, of which 741.9 km is 
in Poland. The river has its source in the Czech Republic. Its 
middle reach constitutes the boundary between Poland and 
Germany before reaching the Baltic Sea via a lagoon north of 
the Polish city of Szczecin. The Odra transports considerable 
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quantities of organic matter as well as a variety of organic 
and inorganic contaminants in both dissolved and particulate 
forms. These are not expected to directly enter the Baltic, 
but to be deposited first in the Szczecin Lagoon. High con-
centrations of nutrients and organic matter result in blooms 
of blue–green algae, especially in summer, and gives rise to 
eutrophication in this area. Phosphorus is a factor limiting 
growth of phytoplankton in the Odra ecosystem.

Material and Methods

Data

Phosphorus concentrations and other water quality pa-
rameters of the lower Odra River used in the study were mea-
sured at the monitoring site in Police between 1991 and 2005. 
Police is a small city located about 10 km north of Szczecin. 
The data were collected monthly by the National Inspection 
Board for Environmental Protection in Szczecin. All variables 
are characterized by strong seasonal fluctuations.

Results

Statistical Analysis of Data

Statistical analysis consisted of the determination of para-
metric (mean, standard deviation and coefficient of varia-
tion) and non-parametric (minimum, maximum, median and 
quartiles) statistical parameters for the annual sets of data [19]. 

All analyses were performed using the computer software Sta-
tistica 6.1. The results of analysis are shown in Table 1.

Large variations in total phosphorus concentrations 
were observed between samples (Table 1), with a coeffi-
cient of variation from 19 to 58%. Extremely high values 
were observed in the years 1991-1992 and 1996. From 1991 
to 2004, the annual mean P contents in the Odra decreased 
remarkably. Comparing the mean and median concentra-
tions provides an indication of distributions of sample con-
centrations. In most cases the mean concentrations of total 
phosphorus are higher than median concentrations, indicat-
ing non-normal distributions with values skewed toward 
lower values, with a few high-concentration occurrences. 
This kind of distribution is frequent in ecological data. 

Box-and-whisker plots (Fig. 1) for the data obtained in 
particular months during the period 1991-2004 illustrate 
the strong seasonality for TP concentrations. Box upper 
and lower bounds represent the 25th and 75th percentiles 
(first and second quartiles). In the middle of the box is the 
50th percentile (the median). The upper and lower values 
represent the minimum and maximum total phosphorus 
concentrations. The highest total phosphorus concentra-
tions were recorded in August. The median of the data 
reaches its minimum in April.

Artificial Neural Networks for Modeling Total 
Phosphorus Concentrations in the Odra

The Statistica Neural Networks computer software 
was used to create neural networks in our calculations. 

Table 1. Statistical parameters of the annual set of total phosphorus concentrations.

Year Mean
mgP/dm3

Standard 
deviation
mgP/dm3

Coeff.of 
variation

%

Minimum
mgP/dm3

Maximum
mgP/dm3

First quartile
mgP/dm3

Median
mgP/dm3

Third quartile 
mgP/dm3

1991 0.46 0.16 35 0.24 0.95 0.34 0.47 0.53

1992 0.40 0.22 55 0.17 0.91 0.27 0.35 0.47

1993 0.39 0.15 38 0.22 0.78 0.29 0.35 0.45

1994 0.36 0.21 58 0.13 0.87 0.21 0.30 0.44

1995 0.26 0.05 19 0.19 0.37 0.23 0.26 0.29

1996 0.34 0.19 56 0.22 0.91 0.26 0.29 0.33

1997 0.26 0.05 19 0.18 0.36 0.22 0.25 0.30

1998 0.31 0.13 42 0.18 0.51 0.20 0.24 0.46

1999 0.26 0.06 23 0.18 0.35 0.21 0.27 0.30

2000 0.26 0.08 31 0.10 0.39 0.21 0.23 0.34

2001 0.23 0.06 26 0.14 0.36 0.19 0.22 0.26

2002 0.23 0.10 43 0.12 0.50 0.16 0.21 0.27

2003 0.25 0.12 48 0.13 0.56 0.17 0.20 0.31

2004 0.25 0.10 40 0.15 0.50 0.17 0.21 0.29
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For predicting total phosphorus concentrations in the low-
er Odra we built two models: a simple model with total 
phosphorus concentrations as input and output variable 
(Model A) and a model with total phosphorus and oth-
er available water quality parameters as inputs and total 
phosphorus as output variable (Model B). Table 2 shows 
the variables used for developing the models.

Five different types of ANN models were employed 
in this study: linear, Generalized Regression Neural Net-
work – GRNN, Radial Basis Function – RBF, Multilayer 
Perceptron with one hidden layer – MLP(1) and Multi-
layer Perceptron with two hidden layers – MLP(2).

In Statistica Neural Networks, the network for time se-
ries prediction is configured by setting its Steps and Loo-
kahead parameter [20]. The Steps parameter indicates how 
many cases should be fed in as inputs and the Lookahead 

parameter how far ahead the prediction should be made. 
Because this study focused on modeling of short-term fore-
casts (one month ahead), the Lookahead parameter was set 
to 1. The Step parameter was changed from 1 to 12.

To develop the ANN models, input and output data of 
the years 1991–2004 (n=168) were used for training neural 
networks. The first few cases were only used as inputs for 
patterns. The remaining data set was randomly divided into 
three subsets: training (54% of cases), verification (23%) and 
test (23%). Observations in the verification set were used 
to perform an “independent check” of the network perfor-
mance during training, to avoid over-fitting the data (i.e., to 
determine when to terminate training the network). The test 
set was not used in training at all, and was designed to give 
an independent assessment of the network’s performance 
when an entire network design procedure is completed.

Network quality was estimated on the basis of follow-
ing standard statistical parameters:
	–	 Mean Error (ME) – Average error (residual between 

target and actual output values) of the output vari-
able.

	–	 Mean Absolute Error (MAE) – Average absolute error 
(difference between target and actual output values) of 
the output variable.

	–	 Error S.D – Standard deviation of errors for the output 
variable.

	–	 S.D. Ratio – The error: data standard deviation ratio. 
If this is 1.0 or higher, then the network is no better 
than a simple average model. A lower ratio indicates a 
better estimate.

	–	 Correlation coefficient R – The standard Pearson-R 
correlation coefficient between the target and actual 
output values.
The optimal network was selected from the one which 

resulted in minimum error and the best correlation between 
model predictions and observations. After testing a few hun-
dred different network topologies, the GRNN networks with 
two hidden layers were found to have the best performance 
with the best correlation. Fig. 2 shows the structures of the 
models. Both models use data from the previous season 
(Step=12 observations) as inputs. The GRNN network with 
single input (model A) has 106 neurons in the first hidden 
layer and 2 neurons in the second. Model B has 100 neurons 
in the first hidden layer and 2 neurons in the second.

As summarized in Table 3, the correlation coefficients 
between model predictions and observations is 0.803 for 
model A (with total phosphorus concentrations as input 

Fig.1. Box-and-whisker plots of total phosphorus concentrations 
in particular months.

Table 2. Neural network input and output variables (model B). 

Division Variable Units

Input

Water temperature (TW) oC
Air temperature (TA) oC
pH
Total Kjeldahl nitrogen (TNK) mgN/dm3

Nitrate-N (N-NO3) mgN/dm3

Nitrite–N (N-NO2) mgN/dm3

Total phosphorus (TP) mgP/dm3

Orthophosphate (P-PO4) mgP/dm3

Dissolved oxygen (DO) mgO2/dm3

Biochemical oxygen demand (BOD5) mgO2/dm3

Chemical oxygen demand (COD) mgO2/dm3

Sulphate concentration (SO4) mgSO4/dm3

Chloride concentration (Cl) mgCl/dm3

Total suspension concentration (TS) mg/dm3

Output Total phosphorus (TP) mgP/dm3

Fig.2. GRNN network structures for time-series modeling of to-
tal phosphorus in the Odra River.
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and output variable) and 0.931 for model B (with 14 wa-
ter quality parameters as inputs), and the MAE errors are 
0.042 and 0.032 mgP/dm3, respectively.

For model B, sensitivity analysis of input variables 
was performed to evaluate their relative significance in 
determining the forecast values. The analysis indicated 
that for this input data, beside previous TP concentrations, 
BOD5 and N-NO3 were the predominant variables for esti-
mating the actual phosphorus concentrations.

In order to simulate a real-time forecasting situation, the 
inputs for the unseen data from January to September 2005 
were presented to the selected best networks. The scatter-
plots of actual versus predicted values of the TP concentra-
tions in 2005 obtained using Model A and B are shown in 
Fig. 3. The model’s predictions matched reasonably with 
the observations. Corresponding values of R and MAE are 
given in Table 3. It can be seen that the model B predictions 
of TP concentrations in 2005 are quite good, with the R = 
0.865 and the MAE = 0.024 mgP/dm3. The predictions of 
model A are not quite as good, with the R = 0.799 and the 
MAE of 0.038 mgP/dm3, but are still acceptable.

Comparisons of the time series of phosphorus from 
the model B predictions and observations are presented in 
Fig.4. The timing and magnitudes of the estimated output 
values compares well with the observed data.

Conclusion

The Odra River system represents a complicated eco-
system with a distinct seasonal pattern of total phosphorus 
dynamics. The results from this study indicate that ANN 
models can be trained to provide satisfactory estimations 

Table 3. Performances of the selected GRNN networks.                                         

Parameter Model A Model B
For data used  
for calibration

For unseen data  
from 2005

For data used  
for calibration

For unseen data  
from 2005

Mean Error (ME) -0.0069 -0.024 0.0005 -0.020

Error S.D 0.083 0.044 0.051 0.038

Mean Absolute Error (MAE) 0.042 0.038 0.032 0.024

S.D. Ratio 0.602 0.605 0.368 0.516

Correlation coefficient R 0.803 0.799 0.931 0.865

Fig.3 Scatterplots of actual versus predicted values of the TP concentrations in 2005 obtained using Models A and B.

Fig.4. Comparisons of the time series of phosphorus from the 
model B predictions and observations.
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of time series of total phosphorus concentrations. The 
specific ANN architecture suited well the high complex-
ity and non-linearity of the river ecosystem. Two GRNN 
networks with two hidden layers were selected to have the 
best performance. These ANN models predicted phospho-
rus concentrations with good accuracy with time-delayed 
inputs. The best network found to forecast total phospho-
rus concentrations one month ahead was one with total 
phosphorus and other available water quality parameters 
as inputs and total phosphorus as output variable with the 
average absolute error of the output variable (MAE) of 
0.032 mgP/dm3. This complex model also performed sat-
isfactorily over the range of the data used for calibration 
with the MAE of 0.024 mgP/dm3. However, the model 
with total phosphorus concentrations as input and output 
variable can be a useful tool as well, because of its sim-
plicity. The predictions of this model are also acceptable

Time series modeling of the Odra River by ANN proved 
to be suitable and useful for both prediction and elucida-
tion of total phosphorus dynamics. The sensitivity analysis 
demonstrated the potential of ANN time series models to 
test hypothesis and elucidate causal relationships between 
environment-driving variables. The analysis indicated that 
for this input data, beside previous TP concentrations, 
BOD5 and N-NO3 were the predominant variables to esti-
mate the actual phosphorus concentrations.

The results of this study have encouraged us to con-
tinue our modeling efforts by means of machine learning 
techniques to find the optimal model for short- and long- 
term forecasting water quality. 
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