Original Research

Frequency of Polymorphisms in Gene-Coding Xenobiotic Metabolizing Enzymes and DNA Repair Proteins in Young, Healthy Polish Individuals

M. M. Sasiadek^{1*}, I. Laczmanska¹, P. Karpinski¹, J. Gil¹, A. Trusewicz¹, K. Pesz¹, D. Ramsey², N. Blin³

 ¹Department of Genetics, Wrocław Medical University, Marcinkowskiego 1, 50-367 Wrocław, Poland
²School of Mathematics and Statistics, University of Limerick, Limerick, Ireland
³Division of Molecular Genetics, University of Tuebingen, Institute of Human Genetics, Wilhelmstr. 27, D-72074 Tuebingen, Germany

> Received: 23 May, 2008 Accepted: 6 October, 2008

Abstract

The association between polymorphism in both DNA repair and xenobiotic metabolism genes and cancer risk has been reported by many authors. Recent studies have revealed the genetic heterogeneity of various populations. Therefore, the aim of our study was to evaluate the frequency of selected polymorphisms/mutations in 17 minor susceptibility genes and to analyze the pattern of their distribution in a group of 146 healthy, young Polish individuals. The results of our study show that the distribution of studied polymorphisms displayed a distinct pattern.

Keywords: XME (xenobiotic metabolising enzymes), DNA repair, frequency of polymorphism, SNPs

Introduction

Many authors have observed a correlation between polymorphisms in gene coding for either DNA repair proteins or xenobiotic metabolizing enzymes (XMEs) and susceptibility to various environmental mutagens, as well as the risk of cancer [1-4]. Numerous recent studies have enabled the identification of a variety of single nucleotide polymorphisms (SNPs) that influence the structure and function of proteins, and in this way modulate an individual's susceptibility to environment-related diseases.

However, analysis of recently published data has revealed differences in the distribution of SNPs in various populations, as well as differences in the associations between SNPs and the risk of cancer among the studies [2, 3, 5-8]. These controversies may be partially explained either by the low penetration of "minor impact" genes, differences in the structure of the groups examined, such as ethnic origin and strength of social ties within a group, or by the differences between laboratory procedures. Taioli et al. concluded from their study on the significance of allele frequency estimates in epidemiology that "in order to study a genetic-disease association, it is vital to know the true allele frequencies of the pathway related genes in the healthy population" [9]. Their analyses also indicated that only large studies of either one huge group or studies on pooled, already published data could provide sufficiently rich information on allelic frequencies in control populations.

^{*}e-mail: sasiadek@gen.am.wroc.pl

Such groups should be even larger in studies on gene-gene or gene-environment interactions; for example, the expected frequency of associated polymorphisms in genes employed in the metabolism of polycyclic aromatic hydrocarbons is about $7x10^{-5}$ [9]. Furthermore, in testing for linkage disequilibrium among genes involved in a variety of pathways that modulate mutagen sensitivity, the analysis of SNP distribution should be performed on one defined group. This will eliminate the possible influence of a variety of confounding factors, such as ethnicity, non-homogenous genetic composition [9], and any other factors which differ among the groups studied by different authors [3, 10].

Therefore, the aim of our study was to analyse "minor impact" genes such as DNA-repair and xenobiotic metabolising genes, which are involved in the modulation of individual susceptibility to xenobiotics with respect to the distribution of SNPs and possible associations between them, in healthy, non-smoking, young inhabitants of the Lower Silesia region in Poland.

Experimental Procedures

The study protocol was approved by the University Ethics Committee. The allele frequencies were determined for 146 healthy volunteers, 94 women and 52 men, students of the 3rd year of Medical Faculty, Wrocław Medical University. The students were included to the study group after a selection based on detailed interviews and pedigree analysis. Individuals with a family history of cancer were excluded (at least one cancer in the family to the 3rd degree of relationship). The mean age of the group was 22.54 with a standard deviation of 1.56 years.

Analysis of Polymorphisms

For the analysis of the distribution of SNPs in DNArepair genes, we chose the genes involved in the main DNArepair pathways, which had been observed to be associated with susceptibility to xenobiotics such as: XRCC1 Arg³⁹⁹Gln, XRCC1 Arg¹⁹⁴Trp (base excision repair; BER); XPA A23G, XPA G709A, XPC Lys939Gln, XPC C/A intron 11 (i11), XPD Asp³¹²Asn, XPD Lys⁷⁵¹Gln, XPD Ile¹⁹⁹Met, XPG Asp¹¹⁰⁴His, XPF Arg⁴¹⁵Gln, ERCC1 C¹¹⁸T, ERCC1 C⁸⁰⁹²A (nucleotide excision repair; NER); BRCA1 5382insC, BRCA1 C61G, RAD51 135C, NBS1 Glu185Gln, XRCC2 Arg188His, and XRCC3 Thr²⁴¹Met (homologous recombination; HR). For the analysis of genes coding for XMEs, we also chose genes recently revealed to be significant in the modulation of mutagen sensitivity: CYP1A1 T6235C (*2A), T5639C (*3), A4889G (*2C) and C4887A (*4), CYP2E1 c1/c2 (involved in the activation of xenobiotics) and NAT2 C481T, G590A, G857A, GSTT1(+/-), EPHX Tyr113His (exon 3) and His139Arg (exon 4) (involved in the detoxification of xenobiotics).

The analysis of the polymorphisms was performed as previously described [11]. The accuracy of genotyping was confirmed using RFLP by repeating the analysis of 10% of the samples tested. In all cases the results revealed 100% of concordance.

Statistical Analysis

The chi-squared goodness of fit test was used to test whether the genotype frequencies at a locus were in agreement with the Hardy-Weinberg equilibrium. The maximum likelihood chi-squared test for independence was used to test whether genotypes at separate loci were in linkage equilibrium or not. Due to the very large number of tests, the Bonferroni correction for multiple testing was used, as well as standard p-values.

Results

The following genes showed no variability and hence were not analyzed: *BRCA1* ⁵³⁸²insC, *BRCA1* C⁶¹G, *XPD* Ile¹⁹⁹Met, *NAT2* G⁸⁵⁷A. The frequency of polymorphisms in *XRCC1* Arg¹⁹⁴Trp, *XPA* G⁷⁰⁹A, *XPF* Arg⁴¹⁵Gln, *RAD51* ¹³⁵C, *XRCC2* Arg¹⁸⁸His, *CYP1A1* *2C/*4 (m2/m4) (*2C and *4 polymorphisms were grouped together), *CYP1A1* *2A/*3 (m1/m3) (MspI), *CYP2E1* c1/c2, *GSTT1* (+/-) was below the sensitivity of the goodness of fit test, thus they were not tested for agreement with the Hardy-Weinberg (H-W) equilibrium.

Consequently, the frequency of SNPs in the remaining genes was tested for their agreement with the H-W equilibrium: *XRCC1* Arg³⁹⁹Gln, *XPA* A²³G, *XPC* Lys⁹³⁹Gln, *XPC* C/A (i11), *XPD* Asp³¹²Asn, *XPD* Lys⁷⁵¹Gln, *XPG* Asp¹¹⁰⁴His, *ERCC1* C¹¹⁸T, *ERCC1* C⁸⁰⁹²A, *NBS1* Glu¹⁸⁵Gln, *XRCC3* Thr²⁴¹Met, *NAT2* C⁴⁸¹T, *NAT2* G⁵⁹⁰A, *EPHX* Tyr¹¹³His (exon 3), and His¹³⁹Arg (exon 4) (Table 1).

Two of the polymorphisms tested were found not to fit the H-W equilibrium: more *XPA* $A^{23}G$ heterozygotes and less *EPHX* Tyr¹¹³His (exon 3) heterozygotes were observed than expected at the H-W equilibrium (Table 1).

The maximum likelihood chi-squared test for independence was used to test whether genotypes at separate loci were in linkage equilibrium or not. The following 4 pairs of loci: *XPC* Lys⁹³⁹Gln and *XPC* C/A (i11), *ERCC1* C¹¹⁸T and *ERCC1* C⁸⁰⁹²A, *NAT2* C⁴⁸¹T and *NAT2* G⁵⁹⁰A, *XPD* Asp³¹²Asn and *XPD* Lys⁷⁵¹Gln showed linkage disequilibrium at a significance level of 1%, even when the Bonferroni correction was used (Table 2).

The following 3 pairs of loci exhibited linkage disequilibrium at a significance level of 1%: *CYP1A1* (exon 7) *2C/*4 and *NBS1* Glu¹⁸⁵Gln, *ERCC1* C⁸⁰⁹²A and *XPD* Asp³¹²Asn, *ERCC1* C¹¹⁸T and *XPA* A²³G. However, after using the Bonferroni correction this was not significant. Hence, in these cases we do not have clear evidence of linkage disequilibrium (Table 2).

Twelve pairs of polymorphisms in genes located on different chromosomes exhibited linkage disequilibrium at a significance level of 5%, as follows:

- homozygotes of *XRCC1* Arg³⁹⁹Gln have non-wild type alleles of *RAD51* ¹³⁵C more often than expected under linkage equilibrium (p=0.01168),
- T and G alleles of *NAT2* C⁴⁸¹T and *XPA* A²³G are associated together, analogously C alleles with A alleles (p=0.01270),

Gene/SNP [chromosomal location] biological significance of polymorphism	Genotype/Allele	n	Observed freq (%)	Expected freq ** (%)	р	
1	2	3	4	5	6	
XRCC1 Arg ³⁹⁹ Gln	Arg/Arg	51	34.69	36.66		
(BER)	Arg/Gln	76	51.70	47.78		
[19q31.2]	Gln/Gln	20	13.61	15.57	n.s.	
Lower repair capacity [34, 35]	Arg Gln		<u>60.54</u> <u>39.46</u>			
XPA A ²³ G (non-coding sequence)	G/G A/G	46	31.72	38.53		
(NER)	A/A	88	60.69	47.09		
[9q22.3]		11	7.59	14.39	P<0.001	
Modulation of the protein level in cell [36]	A G		<u>37.93</u> <u>62.07</u>			
XPC Lys ⁹³⁹ Gln	Lys/Lys	49	34.03	33.22		
(NER)	Lys/Gln	68	47.22	48.83		
[3p25]	Gln/Gln	27	18.75	17.94	n.s.	
Important in bladder cancer [27]	Lys Gln		<u>57.64</u> <u>42.36</u>			
XPC C/A intron 11	C/C	41	29.50	28.73		
(NER)	C/A	67	48.20	49.74		
[3p25]	A/A	31	22.30	21.53	n.s.	
Important in lung cancer [28]	C A		<u>53.60</u> <u>46.40</u>			
XPD Asp ³¹² Asn	Asp/Asp	65	49.24	47.01		
(NER)	Asp/Asn	51	38.64	43.11		
[19q13.3]	Asn/Asn	16	12.12	9.88	n.s.	
-	Asp	10	<u>68.56</u>	9.00	1101	
Important in lung cancer [12]	Asn		31.44			
XPD Lys751Gln	Lys/Lys	61	41.78	42.79		
(NER)	Lys/Gln	69	47.26	45.25		
[19q13.3]	Gln/Gln	16	10.96	11.96	n.s.	
Important in BCC, lung cancer [12,37]	Lys Gln		<u>65.41</u> <u>34.59</u>			
XPG Asp ¹¹⁰⁴ His	Asp/Asp	91	62.33	62.58		
(NER)	Asp/His	49	33.56	33.05		
[13q22]	His/His	6	4.11	4.36	n.s	
Important in lung cancer [38]	Asp His		<u>79.11</u> <u>20.89</u>			
ERCC1 C ¹¹⁸ T (silent)	C/C	69	47.92	45.84		
(NER)	C/T	57	39.58	43.73		
[19q13.2-q13.3]	T/T	18	12.50	10.43	n.s.	
fodulation of transcript level, important in lung can- cer and gliomas [39,40]	C T		<u>61.71</u> <u>32.29</u>			

Table 1. Distribution of genotypes and allele frequencies in the study group.

Table 1. continued

1	2	3	4	5	6	
<i>ERCC1</i> C ⁸⁰⁹² A (non coding sequence)	C/C	92	64.34	64.67		
(NER)	C/A	46	32.17	31.49		
[19q13.2-q13.3]	A/A	5	3.50	3.83	n.s.	
Modulation of transcript level, important in lung can-	С		<u>80.42</u>			
cer and gliomas [39, 40]	Α		<u>19.58</u>			
NBS1 Glu ¹⁸⁵ Gln	Glu/Glu	49	37.93	37.11		
(HR)	Glu/Gln	75	51.03	47.62		
[8q21-q24]	Gln/Gln	18	12.68	15.28	n.s.	
Important in bladder cancer [41]	Glu		<u>60.92</u>			
Important in bladder cancer [41]	Gln		<u>39.08</u>			
XRCC3 Thr ²⁴¹ Met	Thr/Thr	55	37.93	40.26		
(HR)	Thr/Met	74	51.03	46.38		
[14q32.3]	Met/Met	16	11.03	13.36	n.s.	
important in colon cancer, melanoma, bladder cancer	Thr		<u>63.45</u>			
[42, 43]	Met		<u>36.55</u>			
NAT2 C ⁴⁸¹ T (silent)	C/C	42	29.37	31.30		
(XME – Phase II)	C/T	76	53.15	49.29		
[8p23.1-p21.3]	T/T	25	17.48	19.41	n.s.	
Important for protein activity [44]	С		<u>55.94</u>			
important for protein activity [44]	Т		<u>44.06</u>			
NAT2 G ⁵⁹⁰ A (Arg ¹⁹⁷ Gln)	G/G	58	40.56	41.84		
(XME – Phase II)	G/A	69	48.25	45.69		
[8p23.1-p21.3]	A/A	16	11.19	12.47	n.s.	
Important for protein activity [44]	G		<u>64.69</u>			
important for protein activity [44]	Α		<u>35.31</u>			
ЕРНХ	Tyr/Tyr	71	49.31	42.61		
Tyr ¹¹³ His (exon 3)	Tyr/His	46	31.94	45.33		
(XME – Phase II)	His/His	27	18.75	12.06	P<0.001	
[1q42.1]					1 <0.001	
Important for protein activity [33]	Tyr		<u>65.28</u>			
important for protein activity [55]	His		<u>34.72</u>			
ЕРНХ	His/His	85	58.62	58.60		
His ¹³⁹ Arg (exon 4)	His/Arg	52	35.86	35.90	1	
(XME – Phase II)	Arg/Arg	8	5.52	5.50		
[1q42.1]					n.s.	
Important for protein activity [22]	His		<u>76.55</u>			
Important for protein activity [33]	Arg		<u>23.45</u>			

*n.s. - non significant

**expected frequency - calculated according to Hardy-Weinberg equilibrium.

Pair of loci [chromosomal location]	Р	Comment
XPC Lys ⁹³⁹ Gln and XPC C/A (i11) [3p25]	p=0.00000	A alleles at <i>XPC</i> Lys ⁹³⁹ Gln linked with C alleles at <i>XPC</i> C/A (i11) [C alleles at <i>XPC</i> Lys ⁹³⁹ Gln with C alleles at <i>XPC</i> C/A (i11)]
<i>ERCC1</i> C ¹¹⁸ T and <i>ERCC1</i> C ⁸⁰⁹² A [19q13.2-q13.3]	p=0.00000	C alleles at <i>ERCC1</i> C ¹¹⁸ T linked with C alleles at <i>ERCC1</i> C ⁸⁰⁹² A [T alleles at <i>ERCC1</i> C ¹¹⁸ T with A alleles at <i>ERCC1</i> C ⁸⁰⁹² A]
NAT2 C481T and NAT2 G590A [8p21.3-p23.1]	p=0.00000	C alleles at <i>NAT2</i> C ⁴⁸¹ T linked with A alleles at <i>NAT2</i> G ⁵⁹⁰ A [T alleles at <i>NAT2</i> C ⁴⁸¹ T with G alleles at <i>NAT2</i> G ⁵⁹⁰ A]
XPD Asp ³¹² Asn and XPD Lys ⁷⁵¹ Gln [19q13.3]	p=0.00001	D alleles at XPD Asp ³¹² Asn linked with A alleles at XPD Lys ⁷⁵¹ Gln [N alleles at XPD Asp ³¹² Asn with C alleles at XPD Lys ⁷⁵¹ Gln]
<i>CYP1A1</i> *2C/*4 [15q22-q34] and <i>NBS1</i> Glu ¹⁸⁵ Gln [8q21-q24]	p=0.00211*	Wild type alleles at <i>CYP1A1</i> *2C/*4 linked with G alleles at <i>NBS1</i> Glu ¹⁸⁵ Gln [Non-wild type alleles at <i>CYP1A1</i> *2C/*4 with C alleles at <i>NBS1</i> Glu ¹⁸⁵ Gln
<i>ERCC1</i> C ⁸⁰⁹² A [19q13.2-q13.3] and <i>XPD</i> Asp ³¹² Asn [19q13.3]	p=0.00456*	C alleles at <i>ERCC1</i> C ⁸⁰⁹² A linked with D alleles at <i>XPD</i> Asp ³¹² Asn [A alleles at <i>ERCC1</i> C ⁸⁰⁹² A with N alleles at <i>XPD</i> Asp ³¹² Asn]
<i>ERCC1</i> C ¹¹⁸ T [19q13.2-q13.3] and <i>XPA</i> A ²³ G [9q22.3]	p=0.00637*	A larger number of C/C, A/A double homozygotes than expected under a lack of linkage disequilibrium.

Table 2. Alleles exhibiting linkage disequilibrium at a significance level of 1% (chi-squared test for independence).

*Using the Bonferroni correction these results were shown to be insignificant

- variant alleles of XPD Asp³¹²Asn and ERCC1 C¹¹⁸T (p=0.01389) display a positive correlation,
- 4) *ERCC1* C⁸⁰⁹²A and *XRCC1* Arg³⁹⁹Gln (low frequency of double heterozygotes, p=0.02066),
- 5,6,7) *CYP1A1* *2A/ *3 (MspI) and *CYP1A1* *2C/ *4 (exon 7), *NBS1* Glu¹⁸⁵Gln and *CYP1A1* *2A/*3 (MspI), *XPD* Lys⁷⁵¹Gln and *ERCC1* C⁸⁰⁹²A (p=0.02233, p=0.0251, and p=0.04157, respectively) show a positive association,
- 8,9) RAD51 ¹³⁵C and CYP2E1 c1/c2 (p=0.0377), XPF Arg⁴¹⁵Gln and XRCC1 Arg¹⁹⁴Trp (p=0.03846) (a slight negative association between the appearance of non-wild type alleles at these loci),
- 10) XPC Lys⁹³⁹Gln and XPA A²³G (high frequency of the G/G and A/A genotype pairs, p=0.04382),
- CYP1A1 *2C/*4 (exon 7) and XRCC1 Arg³⁹⁹Gln (p=0.04768) (low frequency of Arg/Arg and variant genotype),
- 12) association of G/G *NAT2* G⁵⁹⁰A and *GSTT1* null genotype (p=0.04897).

However, after using the Bonferroni correction these results were not significant. Hence, in these cases we definitely do not have any clear evidence of linkage disequilibrium (Table 3).

Discussion of Results

Our advancing knowledge about the etiology of environment-related diseases (including cancers) has revealed how important polymorphisms in genes involved in DNArepair and xenobiotic metabolism are for an individual's susceptibility to environmental mutagens [1, 2, 10]. Despite the huge number of papers that have been published presenting data on the frequency and distribution of SNPs in a variety of genes and their associations with both mutagen susceptibility and risk of cancer, most of these studies come to conflicting conclusions. This probably results, to a large extent, from the insufficient attention paid to characterizing the genetic variation in controls [9]. Therefore, there is a strong need to precisely define the pattern of the distribution of SNPs in appropriately defined populations, which could be used as a golden standard. In our study, a group of 146 students, homogeneous with respect to ethnic background, age, smoking habits, and without a history of cancer in the family, were analyzed with regard to the frequency of SNPs and the associations between them. In the group tested, no variant alleles of BRCA1 5382insC, C61G, XPD Ile199Met, or NAT2 G857A were found. This observation is consistent with the data of other authors [12-15] and results from the relatively small size of the group tested. Also, the very low frequency of the XPA G709A allele is in agreement with other studies on healthy individuals in the Polish population [12]. However, the frequencies of the XRCC2 ¹⁸⁸His variant and Arg188His polymorphism revealed in our study (0.003) are much lower than those reported by other authors (typically 0.06–0.07) [16, 17]. Also, the frequency of the CYP2E1 c2 allele (c1/c2, RsaI) noted by us differs from data obtained by other authors. In our study no homozygous c2/c2 genotype was observed, while the c2 allele was present with a frequency of 0.08. Cichoz-Lach et al. found the CYP2E1 c2 allele (frequency of 0.015) in a Polish study; however, in a heterozygous state and only among male alcohol abusers [18]. Other studies have indicated that the frequency of the c2 allele in Caucasians is 0.024-0.038 [1, 19, 20]. The discrepancy between our results and the results of other authors probably results from the size of the groups tested. It may be due to the variability in the frequency of SNPs in different groups. In Asian populations the c2 frequency is about 0.2-0.8 [1, 21, 22]. The frequency of the variant alleles in the other genes examined coincides with other data for Caucasians: RAD51 135C [23], XRCC3

No.	Pairs of loci	р	comment	
1	XRCC1 Arg ³³⁹ Gln and RAD51 ¹³⁵ C	p=0.01168	an association between the homozygotes of $XRCC1$ Arg ³³⁹ Gln an variant allele of the $RAD51$ ¹³⁵ C	
2	NAT2 C ⁴⁸¹ T and XPA A ²³ G	p=0.01270	T associated with G and C with A.	
3	XPD Asp ³¹² Asn and ERCC1 C ¹¹⁸ T	p=0.01389	a positive association between the number of variant alleles at ea locus	
4	ERCC1 C ⁸⁰⁹² A and XRCC1 Arg ³³⁹ Gln	p=0.02066	low frequency of double heterozygotes,	
5	<i>CYP1A1</i> *2A/*3 (MspI) and <i>CYP1A1</i> *2C/*4 (exon 7),	p=0.02233,	a positive association between variant genotypes	
6	NBS1 Glu ¹⁸⁵ Gln and CYP1A1 *2A/*3 (MspI),	p=0.0251	a positive association between variant genotypes	
7	XPD Lys ⁷⁵¹ Gln and ERCC1 C ⁸⁰⁹² A	p=0.04157	a positive association between variant genotypes	
8	RAD51 ¹³⁵ C and CYP2E1 c1/c2	p=0.0377	a slight negative association	
9	XPF Arg ⁴¹⁵ Gln and XRCC1 Arg ¹⁹⁴ Trp	p=0.03846	a slight negative association	
10	XPC Lys ⁹³⁹ Gln and XPA A ²³ G	p=0.04382	high frequency of the G/G and A/A genotype pairs,	
11	CYP1A1 *2C/*4 (exon 7) and XRCC1 Arg ³³⁹ Gln	p=0.04768	Low frequency of Arg/Arg and variant pair of genotypes.	
12	NAT2 G ⁵⁹⁰ A and GSTT1 (+/-)	p=0.04897	G/G NAT2 G ⁵⁹⁰ A is associated with GSTT1 null genotype	

Table 3. Alleles exhibiting linkage disequilibrium at a significance level of 5%.

Thr²⁴¹Met [16, 24, 25], *NBS1* Glu¹⁸⁵Gln [26, 27], *XPD* Asp³¹²Asn, Lys⁷⁵¹Gln [12, 25], *XPA* A²³G [7], *XPC* Lys⁹³⁹Gln and *XPC* C/A (intron 11) [27-29], *XPG* Asp¹¹⁰⁴His [27], *XRCC1* Arg¹⁹⁴Trp, Arg³⁹⁹Gln [24, 25], *XPF* Arg⁴¹⁵Gln [24], *ERCC1* C¹¹⁸T, C⁸⁰⁹²A [30], *CYP1A1* [31, 32], *NAT2* [14], and *EPHX* [33].

Two of the genes tested in our study do not fit the H-W equilibrium: more *XPA* A²³G heterozygotes and fewer *EPHX*Tyr¹¹³His (exon 3) heterozygotes were observed than expected at the H-W equilibrium (Table 1). Even after using the Bonferroni correction for multiple testing to account for the likelihood of false positives, these results were still found to be significant at a level of 1%. Thus, we have strong evidence that these two genes do not fit the H-W equilibrium frequencies.

When analyzing the associations between the allele variants in each pair of the genes tested, 4 pairs of alleles, respectively:

- 1) XPC Lys939Gln and XPC i11 C/A,
- 2) ERCC1 C¹¹⁸T and ERCC1 C⁸⁰⁹²A,
- 3) NAT2 C⁴⁸¹T and NAT2 G⁵⁹⁰A,
- 4) XPD Asp³¹²Asn and XPD Lys⁷⁵¹Gln

...showed very clear evidence of linkage disequilibrium (at a significance level of 1%, even when the Bonferroni correction was used). In each of these cases, both associated genes lie on the same chromosome. Alleles of genes located on different chromosomes exhibited linkage disequilibrium at a significance level of either 1% or 5%. However, using the Bonferroni correction these results were shown to be insignificant. Hence, in these cases we do not find clear evidence of linkage disequilibrium.

Conclusion

Therefore, even if a population of 146 individuals may not suffice to assess the allelic frequencies of some rare variants e.g. *BRCA1* ⁵³⁸²insC, *C61G*, *XPD* Ile¹⁹⁹Met or *NAT2* G⁸⁵⁷A, our results clearly revealed that the distribution of SNPs in the control population shows distinct patterns. These facts underline the necessity to choose a well-conceived control population.

References

1. GARTE S., GASPARI L., ALEXANDRIE A.K., AMBROSONE C., AUTRUP H., AUTRUP J.L., BARA-NOVA H., BATHUM L., BENHAMOU S., BOFFETTA P., BOUCHARDY C., BRESKVAR K., BROCKMOLLER J., CASCORBI I., CLAPPER M.L., COUTELLE C., DALY A., DELL'OMO M., DOLZAN V., DRESLER C.M., FRYER A., HAUGEN A., HEIN D.W., HILDESHEIM A., HIRVONEN A., HSIEH L., INGELMAN-SUNDBERG M., KALINA I., KANG D., KIHARA M., KIYOHARA C., KREMERS P., LAZARUS P., LE MARCHAND L., LECH-NER M.C., VAN LIESHOUT E.M.M., LONDON S., MANNI J.J., MAUGARD C.M., MORITA S., NAZAR-STEWART V., NODA K., ODA Y., PARL F.F., PAS-TORELLI R., PERSSON I., PETERS W.H.M., RANNUG A., REBBECK T., RISCH A., ROELANDT L., ROMKES M., RYBERG D., SALAGOVIC J., SCHOKET B., SEIDE-GARD J., SHIELDS P.G., SIM E., SINNET D., STRANGE R.C., STÜCKER I., SUGIMURA H., TO-FIGUERAS J., VINEIS P., YU M.C. TAIOLI E. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev. 10 (12),1239, 2001.

- GOODE E.L., ULRICH C.M., POTTER J.D. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev. 11, 1513, 2002.
- NORPPA H. Cytogenetic biomarkers and genetic polymorphisms. Toxicol Lett. 149, 309, 2004.
- VODICKA P., KUMAR R., STETINA R., SANYAL S., SOUCEK P., HAUFROID V., DUSINSKA M., KURICOVA M., ZAMECNIKOVA M., MUSAK L., BUCHANCOVA J., NORPPA1 H., HIRVONEN A., VODICKOVA L., NAC-CARATI A., MATOUSU Z. HEMMINKI K. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and singlestrand breaks in DNA. Carcinogenesis. 25, 757, 2004.
- CALDECOTT K.W., AOUFOUCHI S., JOHNSON P., SHALL S. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nucleic Acids Res. 24 (22), 4387, 1996.
- DIVINE K.K., GILLILAND M.D., CROWELL R.E., STI-DLEY C.A., BOCKLAGE T.J., COOK D.L., BELINSKY S.A. The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung. Mutat Res. 461 (4), 273, 2001.
- MILLER K.L., KARAGAS M.R., KRAFT P., HUNTER D. J., CATALANO P.J., BYLEN S.H., NELSON H.H. XPA, haplotypes, and risk of basal and squamous cell carcinoma Carcinogenesis 27(8), 1670, 2006.
- WU X., GU J., GROSSMAN H.B., AMOS C.I. ETZEL C., HUANG M., ZHANG Q. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet. 78 (3), 464, 2006.
- TAIOLI E., OPEDOTTI P., GARTE S. Importance of allele frequency estimates in epiodemiological studies. Mut Res. 567, 63, 2004.
- TUIMALA J., SZEKELY G., GUNDY S, HIRVONEN A., NORPPA H. Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes: role in mutagen sensitivity. Carcinogenesis 23, 1003, 2002.
- LACZMANSKA I., GIL J., KARPINSKI P., STEMBALS-KA A., KOZLOWSKA J., BUSZA H., TRUSEWICZ A., PESZ K.A., RAMSEY D., SCHLADE-BARTUSIAK K., BLIN N., SASIADEK M. M. Influence of polymorphisms in xenobiotic-metabolizing genes and DNA-repair genes on diepoxybutane-induced SCE frequency. Environ. Mol. Mutagen 47 (9), 666, 2006.
- BUTKIEWICZ D., RUSIN M., ENEWOLD L., SHIELDS P.G., CHORAZY M., HARRIS C.C. Genetic polymorphisms in DNA repair genes and risk of lung cancer. Carcinogenesis 22 (4), 593, 2001.
- LUNN R.M., HELZLSOUER K.J., PARSHAD R., UMBACH D.M., HARRIS E.L., SANFORD K.K., BELL D.A. XPD polymorphism: effects on DNA repair proficiency. Carcinogenesis 21 (4), 551, 2000.
- MROZIKIEWICZ P.M., CASCORBI I., BROCKMOLLER J., ROOTS I. Determination and allelic allocation of seven nucleotide transitions within the arylamine N-acetyltransferase gene in the Polish population. Clin PHARMACOL THER. 59 (4), 376, 1996.
- ZHOU W., LIU G., THURSTON S.W., XU L.L., MILLER D.P., WAIN J.C., LYNCH T.J., SU L. CHRISTIANI D.C.. Genetic polymorphisms in N-acetyltransferase-2 and microsomal epoxide hydrolase, cumulative cigarette smoking, and lung cancer. Cancer Epidemiol Biomarkers Prev. 11 (1), 15, 2002.
- 16. KUSCHEL B., AURANEN A., MCBRIDE S., NOVIK K.L., ANTONIOU A., LIPSCOMBE J.M., DAY N.E., EASTON

D.F., PONDER B.A.J., PHAROAH P.D.P., DUNNING A. Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet. **11**, 1399, **2002**.

- RAFII S., O'REGAN P., XINARIANOS G., AZMY I., STEPHENSON T., REED M., MEUTH M., THACKER J. AND COX A. A potential role for the XRCC2 R188H polymorphic site in DNA-damage repair and breast cancer. Hum Mol Genet. 11, 1433, 2002.
- CICHOZ-LACH H., PARTYCKA J., NESINA I., WOJCIEROWSKI J., SLOMKA M., CELINSKI K. Genetic polymorphism of *CYP2E1* and digestive tract alcohol damage among Polish individuals. Alcohol Clin Exp Res. **30** (5), 878, **2006**.
- PIRMOHAMED M., KITTERINGHSM N.R., QUEST L.J., ALLOTT R.L., GREEN V.J., GILMORE I.T., PARK B.K. Genetic polymorphism of cytochrome P4502E1 and risk of alcoholic liver disease in Caucasians. Pharmacogenetics 5 (6), 351, 1995.
- MONZONI A., MASUTTI F., SACCOCCIO G., BELLEN-TANI S., TIRIBELLI C., GIACCA M. Genetic determinants of ethanol-induced liver damage. Mol Med. 7 (4), 255, 2001.
- NISHIMOTO I.N., HANAOKA T., SUGIMURA H., NAGURA K., IHARA M., LI X.J., ARAI T., HAMADA G.S., KOWALSKI L.P., TSUGANE S. CYTOCHROME P450 2E1 polymorphism in gastric cancer in Brazil: casecontrol studies of Japanese Brazilians and non-Japanese Brazilians. Cancer Epidemiol Biomarkers Prev. 9 (7), 675, 2000.
- SUN F., TSURITANI I., YAMADA Y. Contribution of genetic polymorphisms in ethanol-metabolizing enzymes to problem drinking behavior in middle-aged Japanese men. Behav Genet. 32 (4), 229, 2002.
- LEVY-LAHAD E., LAHAD A., EISENBERG S., DAGAN E., PAPERNA T., KASINETZ L., CATANE R., KAUF-MAN B., BELLER U., RENBAUM P., GERSHONI-BARUCH R. A single nucleotide polymorphism in the *RAD51* gene modifies cancer risk in *BRCA2* but not *BRCA1* carriers. Pro Natl Acad Sci U S A. 98 (6), 3232, 2001.
- SMITH T.R., LEVINE E.A., PERRIER N.D., MILLER M.S., FREIMANIS R.I., LOHMAN K., CASE L.D., XU J., MOHRENWEISER H.W., HU J.J. DNA-repair genetic polymorphism and breast cancer risk. Cancer Epid Biom Prev. 12, 1200, 2003.
- 25. WINSEY S.L., HALDAR N.A., MARSH H.P., BUNCE M., MARSHALL S.E., HARRIS A.L., WOJNAROWSKA F., WELSH K.I. A variant within the DNA repair gene *XRCC3* is associated with the development of melanoma skin cancer. Cancer Res. **60** (20), 5612, **2000**.
- FORSTI A., ANGELINI S., FESTA F., SANYAL S., ZHANG Z., GRZYBOWSKA E., PAMULA J., PEKALA W., ZIENTEK H., HEMMINKI K., KUMAR R. Single nucleotide polymorphisms in breast cancer. Oncol Rep. 11 (4), 917, 2004.
- SANYAL S., FESTA F., SAKANO S., ZHANG Z., STEI-NECK G., NORMING U., WIJKSTRÖM H., LARSSON P., KUMAR R., HEMMINKI K. Polymorphism in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25 (5), 729, 2004.
- MARIN M.S., LOPEZ-CIMA M.F., GARCIA-CASTRO L., PASCUAL T., MARRON M., TARDON A. Poly (AT) polymorphism in intron 11 of the *XPC* DNA repair gene enhances the risk of lung cancer. Cancer Epid. Biom Prev. 13 (11), 1788, 2004.
- 29. KHAN S.G., METTER E.J., TARONE R.E., BOHR V.A., GROSSMAN L., HEDAYATI M., BALE S.J., EMMERT

S., KRAEMER K.H. A new xeroderma pigmentosum group C poly(AT) insertion/deletion polymorphism. Carcinogenesis **21** (10), 1821, **2000**.

- SHEN M.R., JONES I.M., MOHRENWEISER H. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res. 58 (4), 604, 1998.
- BAILEY L.R., ROODI N., VERRIER C.S., YEE C.J., DUPONT W.D., PARL F.F. Breast cancer and CYP1A1, GSTM1, and GSTT1 polymorphisms: evidence of lack of association in Caucasians and African Americans. Cancer Res. 58, 65, 1998.
- JACQUET M., LAMBERT V., BAUDOUX E., MULLER M., KREMERS P., GIELEN J. Correlation between P450 CYP1A1 inducibility, MspI genotype and lung cancer incidence. Eur J Cancer 32A (10), 1701, 1996.
- HASSET C., AICHER L., SIDHU J.S., OMIECINSKI C.J. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 3, 421, 1994.
- DUELL E.J., WIENCKE J.K., CHENG T.J., VARKONYI A., ZUO Z.F., ASHOK T.D., MARK E.J., WAIN J.C., CHRISTIANI D.C., KELSEY K.T. Polymorphisms in the DNA repair genes *XRCC1* and *ERCC2* and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis. 21(5), 965, 2000.
- LUNN R.M., LANGLOIS R.G., HSIEH L.L., THOMP-SON C.L., BELL D.A. *XRCC1* polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res. 59(11), 2557, 1999.
- BUTKIEWICZ D., RUSIN M., HARRIS C.C., CHORAZY M. Identification of four single nucleotide polymorphisms in DNA repair genes: *XPA* and *XPB* (*ERCC3*) in Polish population. Hum Mutat. 15(6), 577, 2000.
- DYBDAHL M., VOGEL U., FRENCZ G., TALLIN H., NEXO B. Polymorphism In the DNA repair gene XPD: cor-

relations with risk and age at onset of basal cell carcinoma. Cancer Epidemiol Biomarkers Prev. 8(1), 77, **1999**.

- JEON H.S., KIM K.M., PARK S.H., LEE S.Y., CHOI J.E., LEE G.Y., KAM S., PARK R.W., KIM I.S., KIM C.H., JUNG T.H., PARK J.Y. Relationship between *XPG* codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis. 24(10), 1677, 2003.
- CHEN P., WIENCKE J., ALDAPE K., KESLER-DIAZ A., MIIKE R., KELSEY K., LEE M., LIU J., WRENSCH M. Association of an ERCC1 polymorphism with adult-onset glioma. Cancer Epidemiol Biomarkers Prev. 9(8), 843, 2000.
- PARK J.Y., LEE S.Y., JEON H.S., BAE N.C., CHAE S.C., JOO S., KIM C.H., PARK J.H., KAM S., KIM I.S., JUNG T.H. Polymorphism of the DNA repair gene *XRCC1* and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev. 11(1), 23, 2002.
- ZIENOLDDINY S., CAMPA D., LIND H., RYBERG D., SKAUG V., STANGELAND L., PHILLIPS D.H., CANZ-IAN F., HAUGEN A. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 27(3), 560, 2006.
- 42. SHEN M, HUNG RJ, BRENNAN P, MALAVEILLE C, DONATO F, PLACIDI D, CARTA A, HAUTEFEUILLE A, BOFFETTA P, PORRU S. Polymorphisms of the DNA repair genes *XRCC1*, *XRCC3*, *XPD*, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy. Cancer Epidemiol Biomarkers Prev. 12, 1234, 2003.
- 43. KUSCHEL B., AURANEN A., MCBRIDE S., NOVIK K.L., ANTONIOU A., LIPSCOMBE J.M., DAY N.E., EAS-TON D.F., PONDER B.A., PHAROAH P.D., DUNNING A. Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum. Mol. Genet. 11, 1399, 2002.
- BROCKTON N., LITTLE J., SHARP L., COTTON S.C. Nacetyltransferase polymorphisms and colorectal cancer: a HuGE review. Am J Epidemiol. 151(9), 846, 2000.