
Introduction

Life in the soil environment, as well as land use, is relat-
ed to alternate cycles of humidification and drainage. Soil
reoxidation phenomenon is connected with reversion to
aerated conditions following its flooding. During this
process aeration factors such as Eg, Eh, and ODR change
and these fluctuations have an effect on the metabolism of
microorganisms and their enzymatic activities [1-3].
Recently, in Poland there was a progressive tendency for
flooding or long-lasting periods of drainage. Due to this
fact, it is important to study processes that occur during this
time in the soil environment.

Soil water is not only essential for life processes of
plants and microorganisms, but it also has many interacting

components that, individually or in combination, affect bio-
logical systems and their activities [4-6]. These effects may
arise from the potential energy of the water per se or from
the indirect effects of water potential or water content on
such factors as gas or solute diffusion and soil strength [7].
Thus, water retention is a basic hydrophysical characteris-
tic of soil that can be described by the dependence between
soil water content and soil water potential [8, 9]. Soil water
content as a function of the soil water tension is described
by pF curve [10], which provides information about the
water retention ability by the soil pores at any given water
tension, or conversely, how tightly water is held between
soil aggregates. For more than 50 years the traditional
method of pressure chambers has been mostly used to
obtain the soil retention curve [10-12].

The space of soil pores is reversibly filled by water or
air, depending on soil water potential, which influences soil
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aeration status. This parameter is the most important deter-
minant of soil productivity governed by two processes,
namely: 
(a) transport of oxygen from the atmosphere into the soil

(atmospheric air contains, by volume, 20.5% O2 whilst
soil air is 0-20%), and 

(b) biological consumption of oxygen either by microbial
organisms and plant roots, or by respiration and chemi-
cal reactions [13]. 
A minimum air-filled pore space of 10% by volume is

commonly considered necessary for adequate aeration [9,
10]. It also has been shown experimentally that ODR satis-
factorily reflects the supply of oxygen to the plant roots [4,
7, 14].

The activity of soil enzymes is commonly believed to
be sensitive to pollution and has been proposed as an index
of soil degradation [15-17]. Among all enzymes existing in
the soil environment, DHA are used as an indicator of over-
all microbial activity, because they occur intracellularly in
all living microbial cells and are linked with microbial oxy-
doreduction processes [18-21]. Dehydrogenase (EC
1.1.1.1.) plays a significant role in the biological oxidation
of soil organic matter by transferring protons and electrons
from organic substrates to inorganic acceptors [18, 20-23].
For this reason we impose the hypothesis that DHA might
be used not only as an index of soil pollution, but most of
all as an indicator of oxygen deficiency (hypoxic and anox-
ic soil conditions) during the return of soils to a well aerat-
ed state (reoxidation process).

The aim of this study was to find the response of soil
DHA to variable conditions of pF, Eg and ODR of selected
soils, as a consequence of the reoxidation process.

Experimental Procedures

Description of Soils 

The study was performed on three types of soils (FAO):
Rendzina Leptosols, Eutric Histosol, and Eutric Fluvisol
(Table 1) taken from two different depths (0-20 cm, and 50-
60 cm) provided by the Bank of Polish Soil Samples [24].

The laboratory experiments were performed according
to the diagram presented in Fig. 1. 

Richards’ Method for Determination 
of Soil-Retention Curves

A stainless-steel pressure chamber containing a porous
plate saturated with water at the bottom at atmospheric
pressure was used [25]. Soil samples were transferred on
the plate inside the chamber in order to obtain the hydraulic
contact between a sample and the porous plate. The cham-
ber was closed and the appropriate air pressure P is applied
to it, driving away the soil water retained at pressures below
P, until equilibrium is reached [25]. Therefore, at each equi-
librium state, the pressure applied to the soil sample repre-
sents the value of the matric potential for the respective
water content. 

At the beginning of the experiment soil samples in plas-
tic cylinders (height 4.7 cm, diameter 3.2 cm) were pre-
incubated under flooded conditions (10 days).
Subsequently, soil samples were placed on water-tension
plates, taken from the laboratory set LAB º12 (Soil
Moisture Equipment Company, USA) and the pressure was
applied for the following water potentials (pF): 0, 1.5, 2.2,
2.7, and 3.2, corresponding with the range of available
water, and usefulness for microorganisms and plant roots.
The time needed for soil samples to reach the pF values var-
ied from 19 (pF 0) to 26 (pF 3.2) for Rendzina Leptosols,
from 23 to 30 days for Eutric Histosol and from 17 to 24
days for Eutric Fluvisol.
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Soil type Location
Depth 
[cm]

Granulometric composition [%] C org 
[%]

pH 
[H2O]1-0.02 [mm] 0.02-0.002 [mm] <0.002 [mm]

Rendzina
Leptosols

Bezek 
SE Poland

0-20 59 17 24 0.89 7.95

50-60 67 17 16 0.17 8.06

Eutric
Histosol

Grzybowo
NW Poland

0-20 76 12 9 8.34 6.07

50-60 79 18 6 0.60 6.99

Eutric 
Fluvisol

Wolica 
SE Poland

0-20 60 14 26 8.59 7.04

50-60 32 43 25 8.19 7.41

Table 1. Basic characteristics of the investigated soil materials.

Fig. 1. Scheme of the laboratory experiment.



ODR Measurement and Eg Calculation

After determination of pF values, ODR was measured
using an ODR-meter manufactured by the Institute of
Agrophysics, Polish Academy of Soil Sciences (Lublin),
using the Lemon and Ericcson method [26]. The ODR tech-
nique consists of the measurement of the electric current
intensity corresponding to the reduction of oxygen on a
platinum cathode placed in the soil and negatively polar-
ized with respect to the reference electrode (calomel). As
oxygen is consumed at the microelectrode, more oxygen
needs to diffuse radially to the electrode in response to the
accumulated gradient. This is analogous to oxygen con-
sumption by respiration of root surface or by microbial res-
piration [26]. Four platinum wire electrodes (0.5×4 mm)
were placed at a depth of 2 cm and polarized to -0.65 V ver-
sus saturated calomel electrode for 4 min. The data were
recorded in three replicates for each sample. 

Eg factor was calculated taking into account water con-
tent, soil density, and solid phase density, according to the
method described by Stępniewski et al. [27].

DHA Measurement

Soil DHA was tested using 2,3,5-triphenyltetrazolium
chloride (TTC), according to the method adopted from
Casida et al. [28]. The soil samples (6 g of soil + 2 mL of dis-
tilled water + 120 mg CaCO3) were left to react with 1 mL of
3% TTC solution at 30ºC for 20h and then they were extract-
ed with ethanol and incubated for 1h in the dark. Absorbance
(λ=485 nm) was measured using UV-VIS U-2001 (Hitachi)
instrument. DHA was expressed as µg TPF g-1 min-1. All
measurements were triplicated and calculated on the basis
of the oven-dry (105ºC) soil mass.

Data Analysis

Statistical analysis was made with Statistica 8.0 soft-
ware (STATSOFT, USA). One-way ANOVA test was used
to investigate significant (P<0.05) effects of aeration fac-
tors (pF, ODR, Eg) on soil DHA.

Results and Discussion

Soil Ability to Retain Water

The relationships between soil water content (%, v/v.)
and water potential (pF) for Rendzina Leptosols, Eutric
Histosol, and Eutric Fluvisol are presented in Figs. 1A, 1B
and 1C, respectively.  

The amount of water bound with different forces in a
unit of soil volume is especially useful, as it defines the pos-
sibility of water uptake by plants from the soil volume cov-
ered by the root system, and permits the definition of water
resource balance in different soil horizons [9]. Water con-
tent in the surface layer (0-20 cm) of Rendzina Leptosols
(Fig. 1A) ranged from 41% at pF 0 to 13% at pF 3.2, where-

as in subsoil (50-60 cm) it reached 24% (pF 0) and 9% (pF
3.2). Similarly, water retention in the surface layer of Eutric
Histosol (Fig. 1B) was estimated at 40% (pF 0) and
decreased during reoxidation to 9% (pF 3.2). Meanwhile, in
the deeper layer of the soil profile water content varied
between 23% and 3% for pF 0 and pF 3.2, respectively. An
equally high capability of Eutric Histosol for water main-
taining (46-5%) was noted by Włodarczyk and Witkowska-
Walczak [7], as well as Walczak et al. [12]. Among of
investigated soils, Eutric Fluvisol had the smallest ability
for water retention (Fig. 1C). Water content in the surface
layer was registered as 27% (pF 0) and 13% (pF 3.2), whilst
in the layer of 50-60 cm it achieved values from 32% to
14% for pF 0 and pF 3.2.
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Fig. 1. The relationship between soil water content (%, v/v) and
water potential (pF) in the Rendzina Leptosols (A), Eutric
Histosol (B), and Eutric Fluvisol (C).

A)

B)

C)



Soil Aeration Factors Influencing DHA

Based on performed measurements, it was found that
pF constitutes a significant factor, determining ODR in the
soil environment, as well as its DHA level (P<0.01). The
reoxidation process, occurring in the direction from pF 0 to
pF 3.2, was the reason for the inhibition of DHA and stim-
ulation of ODR level.

Response of DHA to varied values of soil aeration,
expressed by pF and ODR for Rendzina Leptosols, Eutric
Histosol, and Eutric Fluvisol are presented in Figs. 2A, 2B
and 2C, respectively.

Oxygen availability in relation to the soil water poten-
tial and DHA indicates that ODR values at the surface layer
(Fig. 2A) fluctuated from 8.45 to 84.3 µg O2 m-2 s-1 at pF 0
and 3.2, respectively. At a deeper layer of Rendzina
Leptosols profile (50-60 cm), ODR reached much higher
levels from 13 till to 110.92 (µg O2 m-2 s-1), as follows for
pF 0 and 3.2. Stępniewska and Wolińska [8] found a simi-
lar tendency for higher oxygen availability in the deeper
layers, rather than in surface of the Eutric Cambisol soils,
whereas Walczak et al. [12] observed an analogous trend in
the Mollic Gleysol. Several explanations have been offered
for this enigma. It may be caused by methodical limitations,
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Fig. 2. The response of soil DHA to varied aeration factors (pF and ODR), at different depths of Rendzina Leptosols (A), Eutric
Histosol (B) and Eutric Fluvisol (C) during the reoxidation process. Averaged values of three replicates with standard deviations are
presented.
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as the water barriers or water films present on the surface of
the electrode could be broken off. Quite likely, the explana-
tion involves the differences in granulometric composition
of analyzed soil samples (Table 1), as the fact that large
granulation favorable for forming of aeration pores was
noted in the subsoil layers.

Soil DHA calculated in Rendzina Leptosols reached its
maximum of 105·10-6 µg TPF g-1 min-1 at total water capac-
ity (pF 0, Fig. 2A). A significant linear decrease of DHA,
accompanied by water potential increase, was observed
(P<0.05). Soil DHA at pF 3.2 was lower by 60.86% in com-
parison to the activity estimated at pF 0. In the case of
Rendzina Leptosols subsoil (50-60 cm), much lower values
of DHA were registered (Fig. 2A). At pF 0, DHA equaled
26.6·10-6 µg TPF g-1 min-1, and this value was decreased by
74.6% in relation to the same soil humidity at surface layer
(0-20 cm). At different levels of pF, DHA varied as follows:
16.4, 15.1, and 16.3•10-6 µg TPF g-1 min-1 for pF 2.2, 2.7, and
3.2, respectively (Fig. 2A). 

DHA of the Eutric Histosol at varied soil water poten-
tial, as well as oxygen availability, is presented in Fig. 2B.
Soil DHA in surface layer samples reached the level of
36.3·10-6 µg TPF g-1 min-1 at pF 0, and dropped to the value
of 11.4·10-6 µg TPF g-1 min-1 at pF 3.2. In comparison with
highly enzymatic active Rendzina Leptosols, Eutric
Histosol soil seemed to be 65% and 89% less active in
DHA, for pF 0 and 3.2, respectively. Subsoil of Eutric
Histosol, characterized by low DHA, varied from 7.25 to
2.86·10-6 µg TPF g-1min-1 for pF 0 and pF 3.2.

Among tested soils, Eutric Fluvisol displayed the lowest
values of soil DHA (Fig. 2C). Full water-saturated soil (pF 0)
resulted in DHA at surface layer at the level of 23.4·10-6 µg
TPF g-1 min-1, then a drop in enzyme activity until 10.5·10-6

µg TPF g-1 min-1 at pF 3.2 was registered. Much lower values
of DHA, with its maximum at pF 1.5, equaled 9.78·10-6 µg
TPF g-1 min-1, at the layer of 50-60 cm were noted (Fig. 2C).
The highest level of ODR at the surface layer of Eutric
Fluvisol, at water potential pF 3.2-121.97 µg O2 m-2 s-1, was
stated, whereas the lowest values of 2.88 µgO2 m-2 s-1 of
ODR at pF 0 were found. A similar tendency at the deeper
layer of Eutric Fluvisol was observed, where ODR values
varied between 4.16 and 96.47 µg O2 m-2 s-1 for pF 0 and pF
3.2, respectively. Much lower values of DHA in Eutric
Fluvisol, in comparison to other investigated soils, might be
caused by the small ability of this kind of soil for water
retention capacity (Fig. 1C). The wide range of water con-
tent (3-41% v/v) was a strong physical determinant of
DHA. Brzezińska et al. [18] found that DHA increased with
water supply, which is comparable with results presented in
the current study. An increase of DHA at flooded soils was
signaled as well by Stępniewski et al. [4], Brzezińska et al.
[18], Lee et al. [29], and by Hinojosa et al. [30]. The decline
of DHA with an increase of pF value from 0 to 3.2 could be
explained by the fact that flooding of soil with water signif-
icantly increased the electron transport system (ETS).
Dehydrogenases, however, are responsible for electron
transport and carry out a broad range of activities that are
reliable for oxidation, i.e. dehydrogenation of organic mat-

ter [31]. Under different soil moisture contents aerobic and
anaerobic, microbial activity must be expected. The main
source of soil dehydrogenase is anaerobe, which propagates
rapidly under conditions of higher soil moisture content [4,
18, 32], which significantly alters the microbial population
activity [33]. Thus, the high DHA with increasing soil
moisture may be caused by increased enzymes released into
the soil because of faster turnover of the microbial biomass
when more water is available [32]. In the case of low soil
moisture content (i.e. pF 3.2), the decrease of DHA may be
due to extreme dryness, which becomes unfavorable for
most microbial communities; few could survive in the soil
[33]. 

Correlations between DHA and pF, ODR, Eg

DHA was negatively correlated with tested aeration
parameters (pF, ODR, Eg). Air porosity (Eg) for Rendzina
Leptosols, Eutric Histosol, and Eutric Fluvisol ranged as
follows: 0.072-0.43; 0.11-0.23; 0.071-0.29 m3 m-3. During
the reoxidation process from pF 0 to pF 3.2, growth of Eg
was noted. Statistical relationships between DHA and mea-
sured aeration factors are presented in Table 2.

The significant influence (P<0.05) of tested soil aera-
tion factors on DHA was stronger in the surface layers than
in subsoils. Higher values of DHA were noted with lower
Eg and ODR levels, therefore negative correlations were
stated. Insignificant differences were found only in the sub-
soils of Eutric Histosol and Eutric Fluvisol in the case of pF
and ODR, respectively. Low oxygen availability (2.8-25 µg
O2 m-2 s-1) ranged below its critical values (35 µg O2 m-2 s-1),
was favorable and optimal for DHA. Our results are in
agreement with the work of Stępniewski et al. [4],
Brzezińska et al. [18], and Yang et al. [34].

DHA of the investigated soil samples originating from
the surface layers, was significantly higher than those noted
in the subsoils (P<0.001). This enzymatic activity was
reduced even by 83% at a depth of 50-60 cm, in compari-
son to the surface part of the profiles. Brzezińska [35] stat-
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DHA
response

depth 
[cm]

pF ODR Eg

Rendzina
Leptosols

0-20 -0.98*** -0.90** -0.96**

50-60 -0.95** -0.84* -0.70**

Eutric
Histosol

0-20 -0.95*** -0.41* -0.34*

50-60 0.65 n.s. -0.43* -0.39*

Eutric
Fluvisol

0-20 -0.97*** -0.96** -0.97**

50-60 -0.22 n.s. -0.16 n.s. -0.43*

Table 2. Statistical significance of differences between DHA
and tested parameters described by correlation coefficient (R)
(95% LSD method, n=15).

*, **, *** - indicate significance at the 5, 1 and 0.1% level,
respectively,
n.s. – not significant differences.



ed 25-fold of DHA in the soil material taken from surface
layers rather than in the subsoils. Similar observations were
published by Stępniewski et al. [4], Yang et al. [31] and
Skawryło-Bednarz [36].

Conclusions

It has been demonstrated that soil water potential (pF),
oxygen availability (ODR), and air porosity (Eg) influence
soil dehydrogenase activity (DHA). This can be explained
by their indirect effect on the soil oxidation status.

Water potential (pF) values ranged from 41% (pF 0) to
13% (pF 3.2), 40-9%, and 46-5%, in the surface layers of
Rendzina Leptosols, Eutric Fluvisol and Eutric Histosol,
respectively. The trend of capability of retaining water,
among investigated soils, was arranged as follows: Orthic
Rendzina > Eutric Histosol > Eutric Fluvisol. Increase of
pF value, in the view of progressing reoxidation process,
was strongly correlated with a decrease in DHA (negative
relationship, P<0.01).

ODR at soil surface layers (0-20 cm) fluctuated from
8.45 to 84.3 (µg O2 m-2 s-1) at pF 0 and pF 3.2, respective-
ly, and exhibited a negative correlation (P<0.05) with
DHA. 

Air porosity (Eg) varied widely for the studied soils in
the range from 0.071 m3 m-3 (pF 0) to 0.43 m3 m-3 (pF 3.2),
and was also negatively correlated (P<0.05) with DHA at
each of investigated soil types and depths. 

The consequence of the inverse relationship of DHA
with the aeration parameters could be the inhibition of
enzymatic activity with an increase of water potential with-
in the intervals from 105 to 10.5·10-6 (µg TPF g-1 min-1) at
pF 0 and 3.2, respectively. The negative relationships
(P<0.05) were found between DHA and each of investigat-
ing soil aeration factors (pF, ODR, Eg). Insignificant corre-
lations (DHA-pF; DHA-ODR) were stated only in Eutric
Histosol and Eutric Fluvisol subsoil. 
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