
Introduction

The appearance and growth of rail irregularities has
many negative consequences. First of all, a high level of rail
irregularities threatens the safety of rail traffic through an
increase in the probability of derailment, an increase in the
level of impact forces, and a decrease in the durability of all
the components of the track-vehicle system and their accel-
erated deterioration. Secondly, it decreases ride comfort and
increases the negative influence on the environment by
generating noise heard by passengers of the rail vehicles
and which is also emitted to the environment.

Noise is the audible effect of structural and forced
vibrations [1] resulting from rail roughness, and its reduc-
tion in vehicles is carried out as a product design and opti-
mization activity. On the other hand, noise is a serious envi-
ronmental side effect of rail transport, particularly freight
transport [2-3]. Recently, the subject has increased in
importance. This is due to the undeniable growth in quality
demands in the railway transport sector toward require-
ments to significantly lower the level of emitted noise and
produced vibrations. Railway noise stems from the interac-

tion between rough wheels and tracks. A grinding process
is therefore used to make rails smoother, while rail dampers
are used to absorb rail vibrations. Rail dampers are mass-
spring systems attached to rails that reduce railway noise at
the source. They are applied in residential areas and lower
noise by 3-7 dB(A) in the most important frequency range
for human hearing (0.5-4.5 kHz) at the source [2]. On the
other hand, wheels can be manufactured to be smoother
using brake blocks made of composite materials, rather
than standard cast-iron brake blocks that roughen the wheel
surface. Composite brake blocks are found to reduce noise
by 8-10 dB(A) [2]. 

It is necessary to monitor the development of rail rough-
ness due to environmental regulations aimed at reducing
noise levels [4-5]. Such monitoring is currently being car-
ried out [6-9], but the applied techniques are costly and this
further results in the low frequency of performed measure-
ments. Rail roughness is nowadays measured using special
vehicles equipped with optical or mechanical sensors. The
second group of tools used for measuring rail roughness
consists of hand-driven bogies that test roughness or rail
profile. As already mentioned, these devices are expensive
and, therefore, there are not many of them. Another factor
that limits the frequency of rail roughness inspections is the
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requirement of traffic exclusion on the tested route, which,
especially for tracks with heavy traffic, could be difficult. 

In view of the importance of the issue and the difficul-
ty of its solution, the authors propose to identify rail rough-
ness as a kinematic excitation on the basis of the system
response measured on the unsprung elements of rail vehi-
cles (e.g. axle boxes). Such a response, in the form of vibra-
tion accelerations, is easy to measure, does not require spe-
cial vehicles, and the measuring equipment is relatively
inexpensive. It is possible that the measuring system for the
vibration acceleration measurements could be installed in
selected trains, and data from that system would be used to
identify rail roughness. As stated, such a solution is much
less expensive and easier from an organizational perspec-
tive (no necessity of traffic exclusion on the tested route).
Because of these advantages, rail monitoring could be per-
formed much more frequently.  

Nevertheless, this idea is not a new one and has been
investigated by many researchers [6-9]. The novelty of the
approach considered in this work lies in a parametric
inverse filter that uses a system identification approach. The
filter allows the reconstruction of a time domain signal cor-
responding to rail roughness and, after conversion of the
reconstructed signal into a frequency domain, the evalua-
tion of its amplitude and frequency. According to railway
regulations, both the amplitude and frequency content of
the roughness are taken into account during assessment of
a rail's technical condition. 

Problem Formulation

The identification of rail roughness based on the vibra-
tion accelerations measured on the vehicle is an example of
an inverse problem defined in the following way: the model
of the system is known as well as the response of the sys-
tem. Kinematic excitation in the form of the rail roughness
is to be identified. The graphical presentation of the inverse
problem type can be found in Fig. 1.

As mentioned above, this is a complex problem due to
the fact that it is nonlinear and non-collocated. The problem
has to be solved in the time domain. The method of quality
function minimization was proposed as its solution [10].
This nonparametric method, however, is time consuming

and, for that reason, impractical. Now the authors propose a
parametric method that is suitable for real-time applications.

Theory Underlying Model Inversion

Reconstruction of the input of the system by inverting
the system’s model is important in multiple applications.
Input reconstruction is a technique frequently used in the
Internal Model Control (IMC) strategies [11] to invert data-
driven parametric models and compensate the dynamics of
the tracking process [12], or for metrological purposes [13].
The literature, however, rarely addresses the problem of
dynamic inversion [14] based on data-driven parametric
models of mechanical structures and systems. Nonetheless,
the technique (model inversion) is applicable to the prob-
lems of load reconstruction in mechanical systems in order
to modify the dynamics of a structure or a system and to
achieve better performance, e.g. to lower the level of load-
ing forces [15]. Load prediction in systems for which the
force signal cannot be directly measured due to construc-
tional constraints, as in the case of forces being exchanged
by a wheel and the road or rail, is considered to be one of the
most practical applications of the inverse approach [16-17]. 

A model and its inverse can have either a parametric or
a non-parametric representation in time or in the frequency
domain. A non-parametric representation uses a frequency
response function (FRF), called the spectral transfer func-
tion, or an impulse response function, while parametric rep-
resentation uses a transfer function or state-space equations.
Examples of applications of the frequency response func-
tion method are discussed in [18], while an impulse
response function method is presented in [19]. The accura-
cy of inverse non-parametric models depends on the time or
frequency resolution, i.e. the number of samples available
in a given signal realization. Non-parametric methods are
not capable of handling systems with closed-loop feedback
[20], or those which are unstable or generate drift caused by
the presence of physical or geometrical nonlinearities, like
nonlinear stiffness characteristics. Moreover, the window-
ing technique used in minimizing the frequency leakage
causes inevitable distortions of the signals. 

An example illustrating the application of this approach
to railway tracks, described in [16], reveals some of its
shortcomings, i.e. questionable validity at high frequencies
and ill-conditioning in multiple input-output inverse mod-
els. Parametric methods overcome these shortcomings by
providing better robustness in the case of short signal real-
izations and lower variance of estimated parameters for
systems with closed-loop configurations [20]. Moreover,
the parametric approach provides a significant advantage in
reconstructing an input in time-varying systems represent-
ed by a linear model of variable parameters, which are
recursively adjusted based on real-time data [21]. For
example, the inverse problem of load reconstruction of
vehicles moving on a bridge requires time-varying models
to properly reconstruct the load [22, 23]. This approach is
supported by recursive techniques well-known in system
identification theory, e.g. the recursive least square (RLS)
or the Kalman-filter approach. This paper considers a trans-
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Fig. 1. Inverse problem presentation.
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fer function approach adequate for tracking load changes in
the frequency domain. The advantage of such an approach
is the immediate possibility of its application as a hardware
pole-zero filter. The drawback of the parametric approach,
compared to the non-parametric one, is the requirement to
define a model structure. The model structure has to be
parameterized to reflect the dynamics of the system under
consideration. This is a challenge in advanced model struc-
tures where a priori knowledge concerning disturbances
affecting the systems is additionally required. If a priori
knowledge is not available, a blind search procedure for the
best structure can be applied using key measures of the
model quality, e.g. best fit, AIC. To conclude, the paramet-
ric approach is recommended when first-principle knowl-
edge of the system under investigation exists and the sys-
tem is stationary, in the sense that its mass, damping, and
stiffness properties do not vary significantly. If the station-
arity conditions can not be fulfilled, an adaptive system
identification approach has to be applied to obtain an
inverse adaptive model as presented in [23].

A block diagram of the procedure of inverting a linear
model is presented in Fig. 2. 

The process of selecting an adequate model structure
and an algorithm for estimating model parameters is the ini-
tial step. The model structure is selected using the quality
indicators of the direct and inverse models' fit to the data in
the time and frequency domain, respectively. The selection
process is supported by model quality measures and visual
inspection as proposed in Table 1.

The next step, estimation of the parameters of the
selected model, is performed using the available input-out-
put data, and a one-step-forward prediction of a direct
model output is computed. The adequacy of model struc-
tures is then evaluated by means of two measures, referred
to in the literature as the final prediction error (FPE) and the
Akaike information criterion (AIC). The more accurate the
model is, the smaller the values of the FPE and the AIC
measures are. Additionally, in order to detect the presence
of abnormalities in the frequency domain, a visual inspec-
tion of the Bode plot of the input-to-output transfer path and
the spectra of model residuals (the disturbance-to-output
transfer path) was performed for each identified model
structure. Analysis of the extensive quantity of such visual
indicators (not presented here due to a lack of space) indi-
cates the presence of no abnormalities. Visual evaluation of
model quality might also be supported by pole-stability dia-
grams, plotted as a function of the orders of selected poly-
nomials. The major criterion for model order selection is,
however, comparison of fit quality of the reconstructed
inputs. The purpose of selection is to obtain a suitable
inverse linear filter capable of providing the best possible
reconstruction of the input signals with respect to the opti-
mality criteria listed in Table 1. The strategy implemented
for optimizing selection of the model structure is the sys-
tematic search for a set of model structures that would sat-
isfy the criteria listed in Table 1. 

The inverse linear model is unstable if at least one of the
zeros of the direct transfer function is located outside the
unit circle or inside the unit circle, for z -1 or z operators
respectively. These zeros create a non-minimum phase
transfer function, and hereafter are referred to as non-mini-
mum phase zeros. The inverse transfer function can be sta-
bilized, however, by factorization of the numerator B(z), as
discussed in [20]. The advantage of such a stabilization
method is the lack of phase error and delay, while the only
disadvantage is a small gain error that is, moreover, negli-
gible if the output signal consists of low frequency compo-
nents [20]. This stabilization technique was applied to load
reconstruction by [16, 17].

The procedure of inverting a model does not correspond
to any physical phenomenon and, therefore, inverse models
always have a tendency to be unphysical. As all physical
systems have a time delay as well as limited bandwidth, an
exact inverse advances the signal as a result of the delay and
amplifies high frequency noise without any bound, if the
bandwidth is not restricted to the upper frequency band of
the inversing load. This phenomenon is the so-called ill-
posedness of the inversion and requires regularization tech-
niques to be used to correctly estimate the load up to a cer-
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Table 1. Criteria of model structure optimization.

Criterion Measure Values

Fit in the frequency domain Fit measure Reconstructed input (output of the inverse model)

Fit in the time domain Fit measure Output of the direct model

Statistical properties of model residuals FPE and AIC Residuals of the direct model

Fig. 2. Block diagram of the inversion procedure of a linear
model.



tain bandwidth, typically given by the frequency at which
amplitudes of the signal and the noise are equal. A standard
solution of the regularization problem is to use low-pass
‘noise’ filters that lead to a model and its realized approxi-
mation to the prototype of inversion that are both strictly
proper. This fact suggests that the sampling rate of input
and output signals has to be adapted to the maximum fre-
quency of the reconstructed signal, although a very low
sampling rate can result in severe aliasing. On the other
hand, the sampling rate should allow the most important
dynamics represented by vibration modes of the structure to
be captured correctly. The significance of identified modes
can be classified according to their energy levels while the
structure is operating, which allows the most powerful ones
to be selected and the sampling rate to be defined.

System Identification

A linear time-invariant (LTI) system, mapping a single
input onto a single output (SISO) and in discrete time-steps,
is represented by difference equations [20]. These equa-
tions take the form of (1), where G(z -1) and H(z -1) are dis-
crete-time transfer functions containing adjustable coeffi-
cients and represent the input-to-output dynamics and the
disturbance-to-output dynamics, respectively. The transfer
functions G(z -1) and H(z -1) are rational functions of the
operator z -1 that take the form shown on the right-hand-side
of the equation [20]. 

(1)

The polynomials A(z -1), B(z -1), C(z -1), Dz -1), and F(z -1)
are used for model parametrization. Special cases of the LTI
SISO general model structure (2) are listed below as prede-
fined model structures using the function notation to state
their characteristic structural numbers [20];

(2)

...where nA, nB, nC, nD, and nF are polynomial orders and
k is the input-to-output delay [20].

Experimental Verification

Kinematic excitation in the form of rail roughness is
directly interconnected with rail-wheel contact force. The
measurements were taken on a self-dumping cargo vehicle
of the Fals series, type 665 4 011-4. The authors are aware

of the fact that this type of car is not the best choice for the
rail roughness assessment due to it braking system, which
can cause some wheel irregularities. However, that was the
only possibility to measure the experimental data. The mea-
surements were performed excluding the braking phase of
the cargo vehicle as this can affect the measurements due to
additional forces generated by braking systems in the form
of friction between the wheels and braking blocks. The
cargo vehicle was empty during tests. In Fig. 3, the place-
ment of accelerometers on the axle-boxes is shown.

During the test rides, the time histories of two forces
were recorded: vertical and horizontal, both acting in the
rail-wheel contact point in the first wheel set on the right-
hand side. Together with the forces, 6 vibration accelera-
tions measured on the axle boxes and the frame of the vehi-
cle were stored. Additionally, information regarding vehicle
velocity, and its gyroscopic moments, was collected for the
ride profile recognition. Forces were measured in an indi-
rect form during the tests. Displacements of the vehicle
axles were the measured quantity. They were measured
using the strain gauges set and further recalculated to obtain
the bending moments of the axles. These moments were
next transformed into the rail-wheel contact forces. The val-
ues obtained in the presented method were compared with
the identified ones. Eight data sets, which corresponded to
the eight rides of the vehicle with different velocities, were
collected on the rail with varying quality. Each test ride
took less than 20 s. Sampling frequency was set to 150 Hz. 

Inversion of the model was conducted according to the
scenario shown in Fig. 2. The measured random force is
required at the input of a direct model and measured accel-
eration is required at its output. The orders of particular
polynomials of a linear model were selected using the qual-
ity indicator of the direct model's fit to the data in the time
domain as proposed in Table 1. 

To compare the results of direct measurements and
those obtained with the procedure of model inversion, the
correlation coefficients were computed for both the lateral
and vertical forces. The results of this comparison of mea-
sured and reconstructed rail-wheel contact force are pre-
sented in Table 2. 
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Fig. 3. Measurements of acceleration vibrations on the vehicle
axle box.



Besides Table 2, the exemplary results of load recon-
struction are presented graphically in Fig. 4 in the frequen-
cy domain.

Conclusions and Final Remarks

Our paper addresses questions concerning the feasibili-
ty of reconstructing the excitation of the mechanical sys-
tems, which is difficult to measure directly. The purpose of
this work is to advocate model inversion based on a para-
metric linear model as an alternative method for applying
this class of problem to non-parametric models [8, 9, 15].
The paper summarizes the theory and discusses case stud-
ies of inverting data-driven models of mechanical systems.
Experimental validation tests confirm that the methodology
proposed herein, i.e. parametric system identification and
model inversion, is valid for operational data. Nevertheless,
the validation process can be improved using a vehicle
where the braking system does not affect wheel roughness.
This approach requires, however, another vehicle to be
selected and the proposed constructional modifications to
be implemented in the suspension system of the vehicle.

Results provided by data-driven parametric model struc-
tures are sufficient to constitute foundations for implement-
ing them as inverse models in the form of fixed-point filters
on a DSP platform. The model implemented in such a form
is capable of filtering the responses of a mechanical system
into a reconstructed input, which is further converted into
the frequency domain by a standard DFFT algorithm.

Nomenclature

i – discrete time
A, B, C, D, E, F – polynomials used for the representation

of the transfer function
nA, nB, nC, nE, nF – order of polynomials used for the rep-

resentation of the transfer function
z – operator of the Z transformation
e – disturbance variables in the model
u – input variables in the model
u0 – inverse input
y – output variables in the model
G(z), G(z -1) – transfer function
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