
Introduction

Concerns about degradation of natural resources and
the sustainability of agricultural production enhance the
need for environmentally-oriented policy measures and
monitoring programmes. Consequently, increasing demand
from policy-makers and regulators in establishing the cur-
rent status of the soil and monitoring changes require opti-
mal sampling approaches and statistical procedures in order
to collect maximum relevant reliable information with lim-

ited resources in a cost-efficient way. Ecosystem and land
use studies often require specific sampling and statistical
procedures, especially in heterogeneous landscapes under
high anthropogenic pressure. Agricultural land used to uti-
lize swine factory farm slurry is permanently under high,
and usually rather uneven, loads of organic matter, as  well
as pollutants such as heavy metals. Livestock manures
could be a major source of many metals where these mate-
rials are applied [1]. Cu and Zn are the most frequent met-
als in soils experiencing applications of pig slurry [2]. For
soil organic carbon (SOC) inventories such complex soils
need to be adequately categorized to represent soil hetero-
geneity, the different SOC pools, topsoil characteristics and
SOC, and pool and flux data for deeper mineral-soil com-
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Abstract

To investigate both natural variability and anthropogenic inputs, a small lake catchment that collects

water from slurry-irrigated (~300 m3·ha-1 annual application) natural meadows was explored. Analysis of the

distribution of heavy metals suggests that concentrations of Ni, Zn, Pb, and Cu are closely associated with the

geochemical signatures of soil parent material and, to a lesser extent, with soil organic matter. The data set of

selected soil parameters was subjected to factor analysis (FA), which reduced the dataset into two major com-

ponents (Factors 1 and 2) representing the different elemental sources. Geostatistical analysis showed inter-

relationships between heavy metal accumulations and soil genetic properties. Contour mapping of these vari-

ables identified the areas where anthropogenic processes are especially evident. Such visual information

allowed spatial  identification of the optimum number of  ‘tipping points’ for soil monitoring.
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partments [3]. The same also applies to heavy metals.
Currently, there are extensive databases on heavy metals,
especially those listed in the Sewage Sludge Directive of
the European Union (Council Directive 86/278 EEC).

Organic materials improve soil fertility, increase plant
production and change heavy metal availability [4, 5].
Increased total metal concentrations are often partly
reflected in soil solution. Certain edaphic properties relate
in characteristic ways with dissolved organic carbon
(DOC). DOC concentrations in soil solution typically
decrease as soil depth increases [6]. Mobile Pb, Mn, and
Cd concentrations have stronger correlations with SOC
than with total soil metal concentrations, which might be
explained by the fact that mobile metals have more direct
inhibitory effects on micro-organism activity than total
concentrations [7].

SOC chemical stabilization by adsorption is often con-
sidered of particular importance due to increasing evidence
showing strong positive correlations between SOM and
clay content, surface area, and metal oxide contents [8].
SOM adsorption varies considerably depending on the par-
ticle sizes of metal oxides. But the interpretation of SOM
loading on oxides directly based on mass can be incorrect,
because the same total mass with surface area of 1 nm
diameter spheres is 200 times the surface area of 200 nm-
diameter spheres [9, 10].

There is potential to study the spatial distribution of ele-
ments in the context of covariance with other elements [11].
On the European scale, factor analyses (FA) and cluster
analyses (CA) revealed in topsoil one cluster with soil total
organic carbon linked with chalcophilic elements, which
are typical of pollution. The regions with the highest factor
scores in soil samples are situated in central Europe, Great
Britain, Ireland, southern Fennoscandia, and the Baltic
States [12].

Rawlins et al. [13] analyzed five topsoil indicators in
UK soils (total metal concentrations of copper, nickel, and
zinc, plus soil pH, and SOC content) and found that each
were significantly correlated with parent material, land use
and region. At the landscape, catena or poly-pedon level,
heavy metal accumulation and relations with SOM are
rather complex due to various natural and anthropogenic
drivers. Taking into account widely held, but largely untest-
ed, assumptions that physical habitat heterogeneity exerts

control over ecosystem level processes [14], we can postu-
late that patterns of heavy metal accumulation connected
with anthropogenic factors play important roles in areas
under permanent pig manure loads. As suggested by
Langhans et al. [15] for river-floodplain ecosystems,
knowledge of natural variance should be integrated in
future restoration approaches, which to date have often
been site-specific and therefore do not consider the hetero-
geneous character of such systems.  

The aim of this study is to determine the level of vari-
ability of SOC and relevant heavy metals in the topsoil of
agricultural land under long-term applications of pig slurry
and highlight statistical methods capable of analysing het-
erogeneity and visualizing contamination ‘hot-spots.’ 

Experimental Procedures

Site description: The study site is located in the Middle
Lithuanian lowlands, in the basin of the River Neris. The
site is adjacent to the small Lapoja Lake (latitude
54º49’07”-54º49’31”N, longitude 24º46’33”-24º45’46”E,
elevation 113-123 m above sea-level). This site was chosen
because since 1978 the Lapoja Lake basin has collected
water from a slurry-irrigated natural meadow and repre-
sents a small catena typical of the Lithuanian landscape (the
Neris Lower Course Plateau). The area belongs to the
Nemoral environmental zone with climatic conditions char-
acterized by the vegetation growth season (≥10ºC) lasting
on average 183-191 days per year, and +6.2ºC mean annu-
al air temperature and 661 mm mean annual precipitation. 

The dominant soil types are Luvisols, Podzols and
Gleysols, with small spots of Histosols, developed on a
suite of Pleistocene glacial, proglacial, and Holocene parent
materials  (Fig. 1). Soil pH ranges from 4.7-6.8, C/N ratio
4.5-12.4, soil available P2O5 27-700 mg·kg-1, and K2O
varies between 79-793 mg·kg-1. According to plant taxono-
my, the largest part is comprised of ruderal and semi-ruder-
al plant communities and only negligible parts of plant
communities are characterized as fertile meadows. Braun-
Blanquet cover-abundance varies from 30-100%. 

Average annual application of slurry is ~300 m3·ha-1.
Slurry is sprayed on the land during several short cycles
from April-August (with negligible quantities applied in
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Fig. 1. Schematic cross-section of parent materials.
1 – biogenic sediments, 2 – limnoglacial sediments, 3 – fluvioglacial sediments, 4 – glacial sediments, 5 – peat, 6 – sand, 7 – fine sand,
8 – aleuritic clay, aleurits, and sands layers, 9 – morain loam, sandy loam.



June). Other anthropogenic activities are limited to mowing
and grazing by cows. However, the land subjected to such
management is rather limited and without a clear formal
management plan.  

Field Studies and Sampling

Nutrient-loading and pollution studies are most often
performed in geographically-defined catchments.
Therefore, the agricultural sector of Lapoja Lake basin was
selected for studies and 33 soil sampling sites were chosen,
based on summarized morphological site characteristics. A
Garmin Ique3600 GPS unit was used to identify the loca-
tion of each sampling point (WGS84). At each sampling
site a composite soil sample of ~0.5 kg (using auger at 0-20
cm depth) was collected randomly from a 50-100 m2 area. 

Laboratory Analyses

All soil samples were air-dried and sieved to <2.0 mm
(to analyze SOC) and <1.0 mm (to analyze heavy metals).
Analyses of the soil samples were performed using the fol-
lowing methods: organic C by dry combustion; and total
soil Al, Fe, Ca, Mg, Cu, Ni, Pb, and Zn by atomic emission
spectrography (AES) in <1.0 mm material. A DFS-13 spec-
trograph was used for examining samples. The spectrum
lines were deciphered using a DM-100 microdensitometer. 

Datasets

Data of chemical analyses were stored in a dataset
according to its geographical co-ordinates. Datasets con-
tained concentrations of heavy metals reported  to be present
in the highest mean concentrations in Lithuanian pig
manures  (Cu, Ni, Pb, and Zn), elements important for pedo-
genic implications (Al, Fe, Ca, and Mg); and the main soil
quality parameter (SOC). The derived parameters (Al+Fe:
sorption pool and Ca+Mg: total alkalinity) were calculated
from the primary measurements of these elements. Selection
was based on the assumptions that soil sorption properties are
reflected in Al and Fe concentrations, and Ca and Mg indi-
cate the amount of carbonates in the soil matrix and influence
soil fertility, erodibility and available water capacity.

Data Analysis

Descriptive statistics, factor analysis (FA), and geosta-
tistical interpolation using Kriging methods were used to
analyze the soil data. Descriptive statistics (mean, median,
minimum, maximum, standard deviation, kurtosis, and
skewness) were performed using routine methods [16]. In
order to detect the relationship between the studied para-
meters, Pearson’s correlation coefficients (p<0.01 and
p<0.05) were calculated. 

The factors were extracted using principal component
analysis (PCA) and eigenvalues >1 were retained. To
increase the interpretability of the results, the variance max-
imizing (Varimax) normalized factor rotation was applied.

Maximum iterations for convergence was set to 25. FA was
performed using Statistica 6.0 (StatSoft, Inc) for Windows. 

Geostatistical interpolation was accomplished using
Kriging methods with a linear variogram to show the spa-
tial variation of variables and to produce contour maps. For
geostatistical calculations and modelling of the datasets,
‘Surfer 8’ software was used. 

Results 

Descriptive Statistics 

Results of descriptive statistical analysis demonstrated
substantial variability in topsoil metal and SOC concentra-
tions (Table 1). Variability of SOC, soil total Fe, Ca, Mg,
Cu, Ni, and Pb was moderate and characterized by coeffi-
cients of variation (CV) from 25.5-57.7%. Only Al demon-
strated low spatial variability in the soil, with CV 16.4%.
(Value of CV <25% is classified as low variability, 25-75%
moderate variability, and >75% high variability). It is prob-
able that spatial variability of SOC and Al, Fe, Ca, and Mg
concentrations mainly reflect pedological or site character-
istics. However, it is probable that the long history of arable
land use and especially slurry applications (which has last-
ed for several decades), will have strongly influenced accu-
mulation processes and contributed to increased variability
of heavy metal concentrations in topsoil.

Distribution patterns of the datasets were evaluated by
assessing skewness and kurtosis. Skewness values show that
the distribution of Cu, Al, and Al+Fe is particularly influ-
enced by the higher values. The remaining parameters have
skewness values >0 and their distribution is influenced more
by lower values (Table 1). According to kurtosis values,
most investigated parameters (Cu, Ni, Zn, Al, Ca, Fe, Al+Fe,
Ca+Mg) have relatively high variability. Kurtosis values for
Pb and Mg were >0 and showed lower variability. Higher
kurtosis values for SOC suggests low variability. However,
CV for SOC is high (57.7%) (Table 1).

Factor Analysis (FA)

FA was used to investigate interrelationship among test-
ed parameters. FA is a technique that helps reduce multidi-
mensional datasets to interpretable sizes [17, 18] by identi-
fying factors that contain most of the variance of the asso-
ciated variables [19].

Soil metals and SOC relationships were analyzed using
a correlation matrix (CM) (Table 2). Strong correlations
among the concentration of metals in the soil, especially
among Cu, Ni, Pb, Zn, Ca, Fe, and Mg and, conversely,
weak correlations among metals and SOC were found
(r=0.01-0.42). Specifically, soil organic carbon seems to
play some role in Cu (r=0.42) and Ca (r=0.35) mobility.
The observation that SOM is a secondary variable affecting
the spatial distribution of heavy metals contradicts numer-
ous findings, especially that humic substances form geo-
chemical barriers and are an active regulator of heavy metal
mobility in ecosystems [20].
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To identify the statistical factors that capture most of
the variance and explains the distribution of elements in
the manure-treated soil, two factors (FAC1 and FAC2)
were derived based on the eigenvalues >1 (Table 3). This
shows that almost all variables load positively on the
first component, except SOC. Furthermore, most vari-
ables load positively on the second component, except
Al.

FA extracted two factors that explained ~79% of total
variance. Factor 1 (FAC1) included seven variables, had an
eigenvalue of 7.39 and accounted for 67.19% of variance.
Factor 2 (FAC2) included one variable, had an eigenvalue
of 1.30 and accounted for only 11.82% of variance. The
remaining factors accounted for the remaining 20% of vari-
ance. Pictorial representation of results from cluster analy-
sis (CA) is provided in Fig. 2. 
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Table 1. Descriptive statistics of element concentrations in soil (mg·kg-1 or %), n=33 samples.

Parameter Mean Median Minimum Maximum Std. Dev. Skewness Kurtosis CV, %

Cu

mg·kg-1

9.64 11.0 3.00 17.0 3.94 -0.162 -0.990 40.9

Ni 11.9 11.5 5.00 22.0 4.28 0.328 -0.269 36.0

Pb 10.5 10.0 6.60 18.0 2.68 0.788 0.419 25.5

Zn 34.3 33 10.0 64.0 12.9 0.157 -0.343 37.6

Al

%

3.83 3.80 2.40 4.80 0.628 -0.753 -0.044 16.4

Ca 0.571 0.580 0.210 1.10 0.239 0.464 -0.060 41.9

Fe 1.61 1.60 0.700 2.90 0.588 0.023 -0.685 36.5

Mg 0.157 0.160 0.020 0.350 0.0796 0.507 0.190 50.7

Al+Fe 5.44 5.60 3.10 7.10 0.993 -0.491 -0.400 18.3

Ca+Mg 0.728 0.720 0.260 1.44 0.305 0.324 -0.108 41.9

SOC 2.22 1.89 0.654 6.84 1.28 1.55 3.954 57.7

Table 2. Correlation matrix (CM) of elements analyzed in soil. 

SOC Cu Ni Pb Zn Al Ca Fe Mg Al+Fe

Cu 0.42*

Ni 0.18 0.63**

Pb 0.29 0.68** 0.61**

Zn 0.22 0.65** 0.87** 0.72**

Al 0.01 0.30 0.72** 0.46** 0.61**

Ca 0.35* 0.73** 0.76** 0.68** 0.71** 0.70**

Fe 0.32 0.63** 0.71** 0.53** 0.65** 0.33 0.52**

Mg 0.13 0.51** 0.90** 0.55** 0.80** 0.78** 0.77** 0.64**

Al+Fe 0.19 0.56** 0.88** 0.61** 0.77** 0.83** 0.75** 0.80** 0.87**

Ca+Mg 0.31 0.70** 0.83** 0.68** 0.77** 0.75** 0.99** 0.57** 0.87** 0.82**

*p<0.05; **p<0.01; n=33

Extraction method: principal component analysis; bold characters are similar sources in factors.

Table 3. Component matrix of factor analysis with eigenvalues – two components extracted.

Components
Factor loading of each variable

Egenvalues
SOC Cu Ni Pb Zn Al Ca Fe Mg Al+Fe Ca+Mg

1 -0.073 0.457 0.894 0.57 0.795 0.901 0.772 0.57 0.928 0.908 0.848 7.39

2 0.839 0.755 0.292 0.553 0.391 -0.09 0.466 0.527 0.169 0.254 0.41 1.3



The following general distribution patterns of soil ele-
ments were revealed by FA, which identified four factor
groups. The first factor group is composed of SOC; the sec-
ond of Cu, Pb and Fe; the third of Ca, Zn, Ca+Mg, Ni,
Al+Fe and Mg, and the fourth Al. 

Group 1: SOC content is high in soils receiving pig slur-
ry. SOC is also the most dominant measured soil attribute
[21].

Group 2: Cu and Pb are well-known pollutants in urban
soils, their concentration in natural soil tends to be relative-
ly low. Together with Fe these elements demonstrate simi-
lar features. An explanation could be that the co-precipitates
of Cu and Pb with Fe oxides occur in contaminated soils
[22]. 

Group 3: Ca, Zn, Ca+Mg, Ni, Al+Fe, and Mg; variabil-
ity of these elements was less affected by slurry treatment
than those of Groups 1 and 2. Ni and Zn are known to have
an affinity in fixation from fertilizers [23] and are sorbed by
the clay fraction (<2 μm) [24]. Marcato et al. [25] found
that Ca and Mg are present on 3-25 μm slurry particles.
This suggests that Group 3 describes elements that have
strong sorption properties.

Group 4 consists of only Al, which occurs naturally in
soil. Therefore, its distribution was less affected by soil
treatment with slurry. Similar trends were exhibited by the
lowest value of Al coefficient of variation (Table 1).

Geostatical Interpolation

Spatial variability assessment provides a valuable base
against which subsequent and future measurements can be
evaluated. Moreover, it has potential for more rapid and
efficient detection of SOC differences, particularly in large
areas of cultivated soil [26].

Variography and interpolation techniques have been
applied to quantify the spatial variability of obtained Factor
1 and Factor 2. FAC1 and FAC2 were geostatistically inter-
polated using Kriging methods (point kriging type) with a
linear semi-variogram model for prediction of spatially-
dependent properties and visualization of the spatial varia-
tion of variables (Figs. 2 and 3). Calculated distances
between data points were: 

NN mean distance = 49.7, 
NN minimum distance = 18.3, 
NN maximum distance = 99.9, 
NN gamma Z = 0.31. 

These distances can be used to determine new sampling
locations and quantification where higher sampling density
may be desired to improve map accuracy. The model for
our experimental variogram appears to intersect the vertical
axis at 0, so we did not apply a nugget effect (FAC1 slope
= 0.00456, FAC2 slope = 0.004). 

Figs. 3 and 4 show patterns of the two Factors, with
FAC1 representing the most common variance in soil
(67.19%) and FAC2 representing successively less variance
(11.82%). The accuracy of FAC contour maps depends on
complex variability of topsoil indicators: SOC and some
mineral components (total soil Al, Fe, Ca, Mg, Cu, Ni, Pb,
and Zn). 

Visual inspection of these contour maps shows that
FAC1 contours are spatially more dynamic than FAC2. The
continuous high zones (black colour) and continuous low
zones (white colour) are usually smaller for FAC2 contours
than for FAC1. Such differences can have significant
impacts on sample design, site characterization, and spatial
prediction.

By changing the number of contours (i.e. by reducing or
increasing the contour interval) we can observe the effect of
sampling density used to derive contours. It is obvious that
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Factor Loadings, Factor 1 vs. Factor 2
Rotation: Varimax normalized

Extraction: Principal components
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Fig. 2. Relation between FAC1 and FAC2.
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Fig. 3. Contour plot of FAC1* (10 and 5 contour intervals).
FAC1*explaining 79% of total (SOC,  Cu, Ni, Pb, Zn, Al, Ca,
Fe, Mg, Al+Fe, Ca+Mg) variance.



reducing contours (from 10 to 5) for more rapid changing
FAC1 (Fig. 3) leads to spot (x500; y50) disappearance.
FAC2 continues to display similar patterns (Fig. 4).  

A comparison between FAC1 and FAC2 contours
shows that the number of intervals can be a critical source
of identifying monitored area “tipping-points”. However,
the great variability of SOC distributions in soils, in con-
junction with sparse sampling, can mask the spatial depen-
dence if the number of intervals is reduced. 

Discussion

Our study was on a grassland area, which forms part of
a heterogeneous landscape with semi-natural pasture, forest
and lakes as major components. Human-dominated envi-
ronments and roads are several kilometres from the site, so
that pig slurry can be treated as the only significant source
of permanent pollution with heavy metals. Zn, Cu, Ni, and
Pb were reported as heavy metals having the highest mean
concentrations in Lithuanian pig manures [27]. However, in
our study the mean topsoil concentrations of these metals
showed moderate variability and were close to the back-
ground levels typical of regional soils. Although measured
maximum concentrations of these elements substantially
exceed background levels, they are well below maximum

permitted values for the soil defined by current Lithuanian
legislation. As a result, we can assume that the study area is
sufficiently homogeneous in terms of relevant heavy metal
contents and the area can be monitored and managed as a
uniform one. However, such an approach seems to be too
straightforward if complexity and heterogeneity of land-
scape processes are considered. Due to inherent natural
multi-scale space-time heterogeneity and anthropogenic
factors, even small catena areas can be diverse and require
specific monitoring and management targeted at risk spots,
where processes of land degradation are obvious. In our
study, to extract additional information on ecologically-rel-
evant soil heterogeneity, we employed different statistical
methods. Statistical assessment of heavy metal distribution
suggests that concentrations of Ni, Zn, Pb, and Cu are prob-
ably more associated with soil parent material and, to a less-
er extent, with SOC. Cluster analysis also suggests that the
concentrations of Ni and Zn are more dependent on alka-
linity (with significant positive correlations with Ca and Mg
concentrations), and these findings accord with well-estab-
lished patterns [28]. As in similar studies where different
multivariate statistical methods were employed to identify
sources of heavy metals in agricultural land [29, 30], the
findings of our study provided relevant information regard-
ing the variation of concentrations as well as indications of
the major drivers of  heavy metal accumulation in topsoil.
However, such an approach in the case of heterogeneous
terrain can mask a possible steady accumulation of heavy
metals in limited plots, especially when such processes are
rather uneven and slow. In order to highlight the effect of
slurry application and to predict the input of heavy metals,
more sophisticated studies are needed, especially those
designed to estimate heavy metal mass balances and exam-
ine a complete slurry production chain, including heavy
metal contents in feedstuff and additives. 

Focusing monitoring efforts on the plots with the high-
est concentrations of anthropogenic metals seems to be
expedient, even if the soil in these plots is not very polluted
from the viewpoint of maximum permissible levels, and
sources of pollution are not clearly proven. Polluted soil
monitoring networks can provide vital information for sus-
tainable management of soil resources. FA results in the
form of readily-defined contour maps, which can be poten-
tially powerful instruments in the hands of specialists work-
ing in pollution control. In our study, comparison of the
FAC1 and FAC2 contours also showed that there is a criti-
cal source for targeting monitoring areas. Proper application
and combination of various statistical methods could be a
valuable approach for explaining the variability of soil data
sets (SOC and soil macro-elements and heavy metals result-
ing from regular applications of slurries) and identifying
compact and optimal number or areas of “tipping points”
for soil monitoring. 

Conclusions

This study revealed relatively moderate variations in
heavy metals contents. However, zones of environmental
concern were identified within the small lake basin. These
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zones were identified on the basis of topsoil indicators:
SOC and some mineral components (total soil Al, Fe, Ca,
Mg, Cu, Ni, Pb, and Zn) under long-term applications of
pig slurry. Analysis of the distribution of heavy metals sug-
gests that concentrations of Ni, Zn, Pb, and Cu are closely
associated with the geochemical signatures of soil parent
material and, to a lesser extent, with soil organic matter.
Principal Component Analysis reduced the dataset into two
major components (Factors 1 and 2) representing the dif-
ferent sources of the elements. Mapping these variables
showed the areas where anthropogenic processes are evi-
dent to some degree. Combining statistical multivariate
analyses with geostatistical interpolation, and especially
contour maps, seems a useful tool for highlighting and visu-
alizing areas of environmental concern in heterogenous ter-
rain. 
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