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Abstract

Nowadays, with the depletion of fossil energy and deterioration of environmental quality, solar 
energy is perceived to be a renewable and clean energy. While developing rapidly all over the world, 
solar energy is also faced with many challenges resulting from its inherent properties. In order to reduce 
the impact on the grid and facilitate scheduling, it is a growing problem to build a feasible model to 
forecast PV power with high precision. Therefore, this paper proposes an Elman-based forecaster 
integrated by Adaboost algorithm, namely Adaboost + Elman. Before forecasting, input variables 
containing PM 2.5 values, temperature of the PV module, sunshine hours, and meteorological data 
are made using correlation, clustering, and discriminate analysis to avoid information redundancy and 
improve the generalization ability of the model. To verify the developed model’s application to short-
term PV forecasting in two different time scales, data of Huangsi in 2016 are used for model construction 
and verification. An additional 7 models are introduced to make comparison. Experimental results prove 
that the proposed model is effective and practicable for two different scales of short-term PV power 
prediction.
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Introduction

Nowadays, the world has encountered a series of 
prominent and insurmountable difficulties caused by 
combustion of fossil fuel that have helped give rise to 
climate change. The depletion of fossil energy and 
deterioration of environmental quality do not conform 
to the construction of harmonious society, which 
even seriously threatens the survival and sustainable 
development of mankind. It is unwise to give much 
reliance on non-renewable resources to satisfy the 
energy demand of the world’s expanding population 
and economy, because an increasingly tight and critical 
energy supply may resulted [1, 2]. On the one hand, 
different initiatives commit themselves to reduce the 
emission of greenhouse gases into the atmosphere, for 
example, the Chinese government promised to reduce 
CO2 emissions by 40~45% by 2020 compared with 
2005 [3]. On the other hand, research and development 
in many countries has been initiated to spare no effort 
to green transition as alternate energy sources, such as 
photovoltaic (PV) power generation, hydroelectric power 
generation, nuclear power, and wind power generation.

PV power’s development is perceived to be a fresh 
growth point following wind power generation all over 
the world. In a Chinese government work report of 2017, 
“poverty alleviation” has been explicitly prioritized. 
PV power generation plants and distributed residential 
PV power are the top priority. Additionally, China has 
abundant solar energy resources. The amount in China 
is equivalent to the United States, while it is much better 
than Europe and Japan. Actually, PV has much potential 
in China, and indeed in many countries elsewhere in 
the world, such as the U.S., Brazil, and so on [4-7]. 
Therefore, photovoltaic penetration is overwhelming, 
especially as a distributed PV system.

It cannot be denied that PV penetration is faced 
with multiple and huge challenges in a photovoltaic grid 
connected system. Challenges in form of but not limited 
to: power demand and supply fluctuations, adverse 
impact on the power grid, uncertain meteorological 
conditions, and infrastructure challenges. 

For the sake of addressing or alleviating several 
particular challenges, this research was carried out 
to forecast multi-scale PV power output in the short 
term. Long-term forecasting is easily obtained, which 
doesn’t require high accuracy. However, as for all 
types of photovoltaic applications, short-term PV 
power prediction is closely bound with the safety and 
stabilization of the power system, which could meet the 
requirements of different time scales, such as 15 min 
and 24 h. Forecasts of 15 minutes and intra-hour ahead 
are crucial for supervising and scheduling purposes, 
especially for maximum power point controlling. 
Predictions of 24 h ahead of schedule are vital for 
planning, operating the reserve capacity economically, 
and dispatching the management of the grid. 

As a sort of typical intermittent power supply, PV 
power generation systems are affected by numerous 

uncertain factors seriously, such as irradiance, humidity, 
temperature, and wind speed. Uncertain factors would 
result in high volatility and randomness in a PV power 
generation system, which would have a serious impact 
on the security and stability of the power grid [8]. 
PV power information is supposed to be acquired by 
managers ahead of time to schedule power generation 
and manage the allocation of reserve capacities. 
Therefore, PV power forecasting is significant to the 
reliability and stability of the PV power industry [9, 10]. 

Many recent international research has been 
conducted to forecast the PV power output. Generally, 
different approaches are required based on the different 
time horizons. Few approaches are applied to exactly 
forecast power based on the different time horizons 
simultaneously. The very short-term prediction refers to 
a scale that is 15 min or subter-hour (TF<1 h) primarily 
utilize sky imaging techniques or time series analysis, 
which has limitations. When the horizons increase  
(1 h<TF<6 h), accurate power prediction relies mainly on 
the use of satellites. Longer time scales (TF>6 h) heavily 
depend on advanced numerical weather prediction 
(NWP) [11]. In China, research in regard to short-term 
forecasts based on sky imaging techniques are just at 
the early stage, the results of which are poor in accuracy 
[12]. In addition, total sky imager is considered too 
costly for widespread use. Compared with sky imaging, 
the data of NWP can be available. Time series analysis 
requires historical power data as inputs, which is 
propitious to less climate change.

With the increasing penetration of solar power in 
China, it is vital to improve the precision of forecasting 
PV power production. Many momentous works pertinent 
to PV power forecasting have been published by 
excellent scholars. Their methods could be divided into 
the following categories: physical modeling methods, 
statistical models, hybrid methods, and ensemble 
learning methods. Statistical models include time series 
models, the single nonlinear prediction model, and 
hybrid methods.

The physical method is based on the geographical 
information of the photovoltaic power station, detailed 
meteorological data, and the operation equation of the 
PV module [13]. Saint-Drenan et al. [14] developed a 
physical method that can employ historical PV power 
data to found the parameters equation of a physical 
model for power output. On the one hand, the modeling 
process is relatively complex. On the other, it is difficult 
to simulate some extremely abnormal weather conditions 
and the slow change of PV modules’ parameters over 
time. In addition, the model has poor anti-interference 
ability and robustness. Due to the significant superiority 
of the statistical methods to physical methods, it is 
feasible to acquire the power production of a plant 
before construction in the absence of historical data. 
Wolff et al. [15] compared SVR for solar power with 
physical approaches, and the SVR showed obviously 
promising results, which further validated the previous 
research conclusions.
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The statistical model, as a data-driven approach, 
is able to abstract a relationship between the past 
data to predict the future situation of the plant, which 
requires abundant historical data modeling. Statistical 
models include linear prediction methods and 
nonlinear prediction models. Considering the nonlinear 
relationship, artificial intelligence (AI) techniques – 
including artificial neural networks (ANNs), radial 
basic function neutral networks (RBF) [16], support 
vector machines (SVM), k-nearest neighbors (k-NN), 
random forests (RF), and others – have been employed 
in the research subject by a substantial amount of 
scholars aiming to improve the accuracy of prediction, 
and comparatively satisfied results have been obtained. 
Among these techniques, the ANNs have the most 
extensive application in solar power forecasting. 
Monterio et al. [17] employed ANNs, SVM, and 
Kalman filter (KF) to estimate PV power generation 
and analyzed the performance of these three models. 
The results indicated that the ANN model distinctly 
outperformed the SVM-based model, and the ANN 
model and the SVM-based model were obviously 
superior to Kalman filter. 

Hybrid algorithms have the most widespread use. 
Despite the simplicity, the single models would omit 
some information inevitably when employed alone. 
To overcome this limitation, a growing number of 
scholars have combined algorithms to foster the models’ 
strengths to improve the precision of prediction, which 
was defined as hybrid models. Hybrid methods applied 
to solar power forecasting are either combining a 
statistical technique with a PV performance model 
(hybrid-physical), or combining two or more statistical 
techniques (hybrid-statistical). The former approach 
was introduced in several works [18]. Dolara et al. [19] 
proposed the physical hybrid artificial neural network 
(PHANN) method successively. The latter approach, 
namely hybrid-statistical, could be classified into several 
groups. The first group is that nonlinear prediction 
models were combined with decomposition algorithms 
[20]. The second group is that optimization algorithms 
were integrated with the neural network model [21]. 
The third group refers to decomposition algorithms 
being used to decompose the PV output series, then 
an artificial bee colony [22] and other optimization 
algorithms were proposed to optimize the artificial 
neural network.

Ensemble learning has its irreplaceable advantages, 
such as increasing accuracy, improving stability, 
improving the selection of algorithm parameters, and 
boosting efficiency of learning, which has been put 
forward and used to improve the efficiency of PV 
prediction [23]. Marco Pierro et al. [24] built a model of 
multi-model ensemble (MME) rooting in the averaging 
of the best data-driven forecasts, which improved the 
accuracy of the results of forecasting and raised the skill 
score from 42% to 46%.

On the basis of the aforementioned analysis, 
the Elman neutral network integrated by Adaboost 

is proposed in this paper. In addition, the data is 
conducted with correlation analysis, cluster analysis, 
and discriminant analysis, which could avoid 
information redundancy, improve the generalization 
ability, and raise the prediction accuracy of the model 
proposed. Then the applicability of the proposed  
method to different scales of photovoltaic power 
prediction in the short term is investigated.  
The different short-term scales incorporating 15 min  
and 24 h are within the scope of this research. 
Consequently, this research is distinguished from 
previous studies on single-scale prediction. It is 
hoped that this study could contribute to making up 
the insufficiency in previous research and providing 
inspiration for future research to some extent.

Material and Methods

This section focuses on the specific process of  
the proposed method, which is presented in Fig. 1. 
The specific process consists of 3 parts: data process, 
optimized basic model, and ensemble learner algorithm. 
Specific discussion and elaboration of the proposed 
model are in the following.

Data Processing

Data processing means the inclusion of the selection 
of indicators, normalization, correlation analysis, cluster 
analysis, and discriminant analysis.

Selection of Indicators

Meteorological data, PM 2.5 values, power data, 
hours of sunshine, and temperature of photovoltaic 
modules (T2) are introduced in the methods proposed 
in order to make a prediction. The hours of sunshine 
refers to the length of time each day when the intensity 
of radiation exceeds or equals 120 W/m2 on the plane 
perpendicular to the sun’s rays [25]. Meteorological 
data includes pressure, humidity, temperature of 
atmosphere (T1), and irradiance. What is different 
from other studies is that the hours of sunshine, the 
temperature of photovoltaic modules (T2), and PM 2.5 
values are contained in the input variables. Similar 
studies are relatively few. There are three reasons why 
these indicators are selected. First of all, these factors 
affect the PV power generation to a great extent, 
respectively. Secondly, with the deterioration of air 
quality, the influence of PM 2.5 on air visibility and 
irradiance is increasingly prominent. The temperature of 
photovoltaic modules (T2) directly affects the output of 
the photovoltaic power [26]. Thirdly, the quantification 
and availability of input variables should be taken into 
consideration. While the speed of wind and clouds also 
have impact on PV power, randomness and uncertainty 
are so difficult to be quantitative. The ground-based 
cloud image has been introduced to make more precise 
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predictions, while the cost of the equipment is so high 
and the accuracy is low. The wind has high randomness, 
uncertainty, and fast changes. So the amount of cloud 
and wind speed are not quantified as input variables.

More specifically, the temperature of photovoltaic 
modules (T2), PM 2.5 values, pressure, humidity, 
temperature (T1), and irradiance can be available as 
input variables 15 min ahead forecasting. And sunshine 
hours, average irradiance, average temperature of 
atmosphere (average T1), and PM 2.5 values are included 
in the independent variables in 24-h forecasting.

Normalization

In the interest of eliminating the influence of 
dimension and improving the training speed and 
regression effect, the data is normalized to the interval 
[0, 1] according to Formula (1), where xi is original 
data,  x'i is normalized data, xmax is the maximum value 
of original data, and  is the minimum value of initial 
data:

                      (1)

Correlation Analysis

If variables of high correlation coefficients are placed 
in the same sample set, great redundancy of information 
would be caused and the contribution of certain 
input information would be ignored [27]. To prevent 
this condition from happening, it is crucial to make 
correlation analysis. So far, only a few studies have 
taken into account the correlation between variables.

The correlation coefficients of characteristic 
attributes are determined as follows: the inputs  
of training samples are X = {x1, x2,..., xn}, xk ∈ Rm, 
k = 1,2,...n, xk = {xk1, xk2,..., xkm} and the correlation 
coefficient between i dimension attribute and the j 
dimension attribute is defined as Formula (2):

    (2)

The correlation coefficients are presented in Tables 1 
and 2, from which correlation coefficients between any 

Fig. 1. Flowchart of the proposed model.
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two variables are less than 0.9. Thus it does not matter 
that all feature variables are placed in the same sample 
set.

Cluster Analysis

Due to the training samples’ similarity exerting a 
tremendous influence on prediction accuracy, it could 
effectively improve the generalization ability and 
prediction accuracy to select data of high similarity. 
Thus it is obviously crucial for conducting the clustering 
and discriminatory analysis of input variables and 
selection of samples. The algorithm of K-means 
clustering is introduced to divide data into k categories.

1) For the n samples xi, i = 1,2,...n in a given dataset, 
determine k centroids primarily: x1

(1), x2
(1),..., xk

(1), 
among which the observations of the st centroid is  
(xj1

(1), xj2
(1),..., xjp

(1)). And k centroids should be craftily 
located as different positions lead to disparate outputs.

2) For every point xi, calculate distance between 
xi and every centroid according to the following 
calculated Formula (3). If dij is minimum value among 
(di1, di2,..., dik), xi should be connected with the centroid 
j. When no point is left, preliminary grouping is 
accomplished.

              (3)

Then k new centroids x1
(2), x2

(2),..., xk
(2) must be 

recalculated. Repeat the above steps until the criterion 
function converges. That is, this iteration continues 
until no more alteration of centroids’ locations appear 
and centroids do not move any further. In general, 

the square error criterion is used, which is defined as 
follows: For a given set of observations (x1, x2,..., xn), 
where each observation is a p-dimensional real vector. 
The ideal situation in k-means clustering is to divide 
the n observations into k (k≤n) sets S = {S1, S2,..., Sk), in 
which the within-cluster sum of squares is minimized. 
As shown in Formula (4), where µi is the mean of points 
of Si [28]:

                  (4)

Discriminant Analysis

Discriminant analysis is a statistical analysis method 
used to judge the category of sample data. Fisher 
discriminant model is applied in this paper to determine 
which category the data belongs to. Suppose there are 
k categories of m-dimensional space, G1, G2,..., Gk, 
the mean vectors are µ1, µ2,..., µk and covariance 
matrices are Σ1, Σ2,..., Σk (Σi〉0) For the sake of obtaining 
Fisher linear discriminant function u(y) = u*Ty, it 
is necessary to compute the eigenvectors u* 
corresponding to eigenvalue λ* of E–1B computed by 
formulas (5-7). The distance between sample x and 
categories Gi is calculated according to Formula (8). If 

, .

                          (5)

                (6)

Sunshine hours Average irradiance PM 2.5 Average T 1

Sunshine hours 1 0.603 -0.561 0.880

Average irradiance 0.603 1 -0.576 0.583

PM 2.5 -0.561 -0.576 1 -0.478

Average T 1 0.880 0.583 -0.478 1

Table 1. Correlation coefficients of input variables in 15 min ahead forecast.

Table 2. Correlation coefficients of input variables in 24 h ahead forecast.

Humidity Irradiance PM 2.5 Pressure T 2 T 1

Humidity 1 -0.328 0.384 0.210 -0.381 -0.384

Irradiance -0.328 1 -0.055 -0.050 0.872 0.427

PM 2.5 0.384 -0.055 1 -0.426 0.123 0.319

Pressure 0.210 -0.050 -0.426 1 -0.330 -0.605

T 2 -0.381 0.872 0.123 -0.330 1 0.765

T 1 -0.384 0.427 0.319 -0.605 0.765 1
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                           (7)

               (8)

Optimized Basic Model

The neural network, first introduced in 1943, [29] is 
the simulation of the structure and function of biological 
neurons. It has the characteristics of parallel processing 
and can realize the nonlinear mapping of dimension 
input space to dimension output space [30]. 

Elman networks are typically multi-layer feed-
forward and dynamic recurrent neural networks.  
An Elman neural network comprises 4 layers: input, 
hidden, context, and output. The structure of an Elman 
network is shown in Fig. 2. The network has additional 
units compared with BP neutral networks, which are 
called context units. The additional units are used to 
memorize the output value of hidden layer unit and 
make a recurrent connection from the output of the 
hidden layer to its input. By storing the internal state, 
the system can adapt to the change of the input variables 
over time and express the time delay between input and 
output [31].

The context layer feeds back to the hidden layer 
value last time, which could equip the networks’ 
dynamic learning ability and improve the prediction 
accuracy of the system. Therefore, the section of  
feed-forward network can be used to amend the 
correction. The connection between output layer, hidden 
layer, and input layer is similar to the feed-forward 
network.

Although the Elman neutral network has satisfactory 
performance in most cases, it still has some limitations 
of reducing accuracy. Although in Elman’s learning 
process the parameters are trained by gradient descent 
method, this method has inherent characteristics of 
slow learning speed and can easily fall into local 
minimum. In addition, self-feedback gain coefficient is 

usually acquired by trial, which leads to low efficiency 
of learning. These limitations would debase Elman’s 
performance and lead to unstable predictive results.

Aiming at the above problems, this paper proposed 
that Elman be optimized by the particle swarm 
optimization (PSO) algorithm, which taps PSO into 
training weights and self feedback gain factors in 
Elman. PSO was proposed by Kennedy and Eberhart in 
1995 [32]. The optimization procedure of specific flow 
chart is shown in Fig. 1.

Every particle denotes a potential optimal position of 
the problem. At the outset of the iterations, parameters 
are initialized, including the position, velocity, and 
fitness value. In the process of exploring the best 
position, each particle’s position corresponds to a fitness 
value updated by Pbest and Gbest. Pbest is the optimal 
position by the particle itself, and Gbest is the global best 
position of the entire swarm for the moment. Suppose 
there are n particles in the D-dimensional search space, 
for the renewal of speed and position of each particle, 
certain formulas (9-10) are shown as follows, where  
d = 1, 2,…, D represents dth dimensional space, 
i = 1, 2,…, n refers to ith particle, k indicates an 
iteration count, c1 is the cognitive scaling parameter 
and c2 is the social scaling parameter, r1 and r2 are 
random numbers uniformly distributed between 0 and 1,  
Xi = [xi1, xi2,..., xiD]T and Vi = [Vi1, Vi2,..., ViD]T respectively 
refer to the ith particle’s position and velocity, and  
pbest and gbest are the individual extremum and  
the global extremum, respectively [33].

 
(9)

                (10)

Ensemble Learner

AdaBoost.RT is an ensemble learning algorithm 
of wide application in addressing regression problems. 
The letters R and T stand for regression and threshold, 
respectively. And the rough process is described next 
[34].
1) Input: sequence of m samples (x1, y1), (x2, y2),..., (xm, 
ym); weak learner; integer T as the number of iterations; 
threshold φ (0 〈 φ 〈1) for distinguishing correct and 
incorrect predictions
2) Initialization: iteration t = 1; the initial weight of each 
training sample is Dt(i) = 1/m; error rate is εt = 0
3) Training process (t≤T): 
Move 1: call weak learners, and offer it distribution Dt 
Move 2: establish the regression model, ft(xi)→y
Move 3: calculate the error of each sample by Formula 
(11)

            (11)

Fig. 2. Structure of Elman neutral network.
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Move 4: calculate the error of base learner by Formula 
(12)

                     (12)

Move 5: by Formula (13), calculate the , where 

      (13)

Move 6: set, output the final hypotheses by Formula (14)

 (14)

Results and Discussion

In this section, for the purposes of exploring the 
efficiency and practicability of the proposed model in 
15 min and 24 h ahead forecasting, specific data was 
served to conduct empirical research described in detail 
below. PM 2.5, the temperature of the PV module (T2), 
meteorological data, the hours of sunshine, and power 
data are collected from the PV power plant in Huangsi, 
HeBei. Data from October 1, 2016 to January 31, 2017 
are selected as training samples and test samples. An 
inland solar plant, Huangsi is located in Xingtai, of 
approximately 20 km to the northwest. The altitude 
of the site is 145~257 m. The installed capacity of the 
photovoltaic power plant is 50 MW, and the annual 
power generation is 5700 MWh. The plant covers about 
94 hectares.

This paper investigates thoroughly the applicability 
of the integrated model proposed to different short-
term time scales by the comparisons of several models. 
In order to highlight the superior performance of 
Adaboost+Elman proposed in this paper, RBF and  

BP neutral network integrated are applied. Fig. 3  
shows the curves of the real and the 15 min ahead PV 
power prediction of three base models integrated by 
Adaboost, namely Adaboost+Elman, Adaboost+RBF, 
and Adaboost+BP. Fig. 4 presents the real curves 
and the 24 h ahead PV power prediction curves of 
Adaboost+Elman, Adaboost+RBF, and Adaboost+BP. 
The analysis shows that: A) Adaboost+Elman has 
the best fitting effect in both time horizons, while 
Adaboost+BP shows the worst performance of the three 
models. This is because Elman neutral network has 
a context layer, which gives Elman a better dynamic 
performance. And the very nature of BP leads to its low 
efficiency and local optimum. B) The goodness of fit 
reaches relatively high levels in two time scales, which 
is between the predicted values by the three models 
and the real values. This is accounted for in that the 
ensemble learning algorithms have good performance in 
reducing errors and improving accuracy.

The following focus on the comparison of the 
8 models’ prediction results and the measurements 
in different time horizons of 15 min and 24 h. These 
8 models are Adaboost + Elman, Adaboost + RBF, 
Adaboost + BP, RandomForest, single Elman, single 
RBF, single BP, and single ARIMA, which are shown 
in Fig. 5.

To make a more visual and effective comparison 
of those models, three generally adopted error criteria 
are presented to measure the accuracy of all involved 
models, including mean bias error (MBE), mean 
absolute error (MAE), and root mean square error 
(RMSE). MBE, MAE, and RMSE are calculated by 
formulas (15-17), where Pi is the measured power 
output, namely actual data;  ^Pi is the value of forecasting 
for Pi; and N denotes the number of data points. MBE 
could measure the bias between the expected value 
from forecasting and the true value. MAE is utilized 
to estimate the proximity between the actual value and  
the predicted value in absolute scale. RMSE introduces 
the square form to large and severely punish errors. Fig. 3. Curves of the real and the 15 min ahead PV power 

prediction of three base models integrated by Adaboost.

Fig. 4. Curves of the real and the 24 h ahead PV power prediction 
of three base models integrated by Adaboost.
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              (15)

               (16)

          (17)

From Fig. 6, namely the results of 15 min ahead 
forecast of PV power, three base models integrated 
by Adaboost perform best combining with three error 
indicators. The estimation of errors of three base models 
integrated are obviously much smaller than the other 5 
models. ARIMA ranked fourth in the prediction results, 
the fifth is the Random Forest, and the remaining three 
base models have the worst performance. The results of 
Fig. 7 are roughly the same as in Fig. 6, which strongly 

indicates that the proposed model of the Elman neutral 
network integrated by Adaboost is suitable for two 
different scales of short-term PV power prediction. 

From the results of Figs 6-7, the following 
conclusions can be drawn: A) All the errors of 
integrated base models are small. This is because “bad” 
samples with lower accuracy in Adaboost algorithms 
are paid more attention by models endowed with larger 
weights. The weights are related to the learning result of 
the last iteration. And through bootstrap, Random Forest 
makes unbiased estimation on generalization error, 
which improves the generalization ability and prediction 
precision. B) In general, the error of Adaboost is smaller 
than the Random Forest. The reason for this result 
mainly is that Adaboost algorithm is more concerned 
about the larger sample of errors. C) The fitting 
effect of Elman is better than that of BP and RBF in 
general, mainly because the Elman neutral network has  
a context layer, which leads to Elman’s better dynamic 
performance. D) The ARIMA model is more suitable 

Fig. 7. Analysis of 24 h ahead PV power production forecasting: 
MBE, MAE, and RMSE of 8 models in 24 h ahead forecasting.

Fig. 5. Framework of the forecasting model comparisons.

Fig. 6. Analysis of 15 min ahead PV power production 
forecasting: MBE, MAE, and RMSE of 8 models in 15 min 
ahead forecasting.
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for short-term prediction, and the error becomes larger 
with the increase of prediction time scale. Moreover, 
the model considers only the characteristics of the time 
series itself and does not take other uncertainties into 
account.

Conclusions

This paper proposed an Elman-based forecaster 
integrated by Adaboost, namely Adaboost + Elman, 
for 15 min and 24 h, respectively, ahead of PV power 
forecasting and the RBF, Elman, BP neutral network, 
RandomForest, and ARIMA are exploited to make a 
prediction, as the comparison of the proposed model, 
Adaboost + Elman, which is the greatest innovation 
in this article. Obviously, a single base model is of 
poor generalization, and may easily get trapped in a 
local optimum. Thus, ensemble algorithms are applied 
to improving generalization ability and precision. 
Besides, correlation analysis is conducted to calculate 
the correlation coefficient of input variables. Once 
the correlation coefficient of the variable exceeds 
the threshold, it will not be put into the same feature 
set, which could effectively reduce the redundancy 
of information, avoid over fitting, and boost the 
generalization ability. Moreover, it is crucial for 
clustering and discriminatory, which enhance the 
generalization ability and decrease the risk of over-
fitting as well.

In addition to the innovation of methods applied 
to this paper, there is also a shining point that the 
temperature of photovoltaic modules, PM values, and 
sunshine hours are taken into account as influential 
factors, which proves to be an effect. The temperature 
of photovoltaic panels directly affects the conversion 
efficiency of photovoltaic cells. Air quality affects 
power by affecting conspicuity and irradiance. Previous 
studies have rarely predicted power by incorporating 
PV module temperature and air quality into the input 
variables system.

The forecasting results indicate that the 8 designed 
models are effective and efficient for the 15 min and 24 
h ahead PV power prediction. Based on the results of 
prediction in this research, conclusions could be drawn 
as below: A) Combining ensemble learners and base 
models is an innovative application to predict PV power 
production. B) The Elman model integrated by Adaboost 
has the best ability of forecasting in 8 models, which 
better adapts to time-varying change and can be easily 
put into effect in a photovoltaic plant. C) The proposed 
model outperforms other methods in both two time 
horizons of solar power output forecasting, thus greatly 
expanding the application of the model and meeting the 
demands of the solar farm.

Although the proposed models have distinct 
advantages in PV power prediction, other methods with 
good performance, such as SVM, KELM, and so on, are 
not adopted in this research. It may be better to set the 

threshold of coefficients to 0.8, so splitting the variables 
into different feature sets may make the prediction more 
perfect. The next study is to incorporate these methods 
into the prediction and discuss the application to more 
time scales.
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