
Introduction

The haze pollution in China is becoming increasingly 
serious, especially in mega cities with highly populated 
clusters [1]. In 2016 about 254 out of 338 cites could not 
meet the National Ambient Air Quality Standards of 
China, accounting for 75.1%. The population-weighted 
average of PM2.5 in China’s cities reached 61 μg/m3 

– up to 3 times as high as the global mean [2]. These 
figures not only reflect the grim situation, but also 
indicate the limited capacity of the government to 
address the haze pollution. Haze refers to especial 
weather characterized by horizontal visibility of less 
than 10 km caused by the light extinction of particulate 
matter [3]. In general, transport emissions [4], industrial 
exhausts [5], municipal heating [6], biomass burning 
[7], seasonal variability [8], and regional aerosols [9] 
are major contributors to haze pollution, but quantifying 
each source remains challenging due to different 
chemical characteristics in various regions. For example, 
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nitrate played a more dominant role than sulfate in the 
Yangtze River Delta region, which is different from 
the North China Plain region [10]. A range of scholars 
have conducted extensive research on the formation 
mechanisms of haze pollution [8, 11-13], but the process 
is too complex to simulate its dynamic evolution. 
Basically, anomalous meteorological conditions such 
as low wind speed, high humidity, and large-scale 
atmospheric circulations play a very important role 
in causing haze pollution [5, 14], which could elevate 
concentrations of aerosols and its chemical components 
during haze days [4]. 

In addition, plants, regarded as the source of life 
in nature (whether forests, landscapes, or houseplants) 
perform indispensable ecological functions in 
maintaining human living environments. Species 
most resistant to water stress, such as Pinus nigra and 
Cupressus sempervirens, are particularly necessary for 
water shortages areas [15]. Although no experiments 
have yet demonstrated that plants could absorb 
particulate matter, they indeed consume carbon 
dioxide and sulfur dioxide, and reduce airborne dust to 
indirectly prevent the formation of haze pollution [16]. 
However, the function of plants to improve air quality 
is limited by climatic and edaphic conditions, referring 
to nutriment elements, enzyme activity, and effective 
hormones [17, 18] – in short, bioclimatic comfort and 
appropriate soil structure are essential for the life of 
living things [19]. It can be seen that haze pollution is 
definitely not only caused by a single factor, but also 
is one of the consequences of the maladjustment of the 
natural ecosystem.

Despite a certain degree of plant, soil, meteorological, 
and geographical factors, the socioeconomic drivers 
including rapid industrialization, urbanization, economic 
growth, population aggregation, transportation, and 
inefficient ERS are culprits from the perspective of 
economics and management disciplines [13]. Take 
transportation as an example, on the one hand, exhaust 
emissions are closely related to haze pollution, on the 
other hand, heavy metals arising from car wheels and 
vehicle corrosion tend to bioaccumulate, which weaken 
the function of plants to purify the air [20]. With the 
intensification of environmental pollution, various 
studies regarding ERS have been conducted, like its 
connotation, type, legislation, heterogeneity, efficiency, 
and effect [21-24]. ERS can generally be divided into the 
command-and-control type (non-market based) and the 
motivate-and-cooperate type (market-based) [21], but 
their impacts on firm specific behaviors are sometimes 
quite different [25]. One other thing that needs to be 
emphasized is that ERS builds the foundation of the 
three major environmental theories. The pollution 
haven hypothesis believes that pollution-intensive 
corporations prefer countries with looser ERS to avoid 
strict ERS in their own countries [26]. The race-to-the-
bottom hypothesis emphasizes that developing countries 
compete to reduce their ERS standards in order to 
attract more foreign-funded enterprises [27]. The porter 

hypothesis maintains that appropriate ERS can stimulate 
enterprises to carry out technological innovation, 
thus ensuring and enhancing the competitiveness of 
enterprises [28]. It can be found that ERS plays a 
decisive role in the theoretical basis of environmental 
protection, even though large numbers of models such 
as the slacks-based measure model [21, 22, 29], spatial 
Durbin model [23, 30], and structural equation model 
[25] are widely used in existing literatures. With regard 
to empirical studies, the relationship between ERS and 
the total factor/green productivity [22], energy efficiency 
[29], foreign direct investment [31, 32], firm/government 
competitiveness [25, 33], and technological innovation 
[34] have been explored. For example, Decai Tang et al. 
(2017) found there was a significant “match-up” effect 
between ERS and economic development level [22]. Bin 
Li and Shusheng Wu (2017) investigated the influences 
of both local and civil ERS on green total factor 
productivity, concluding that ERS inhibited the original 
technological innovation of enterprises [23]. However, 
Xiaoli Zhao et al. (2015) showed that ERS enhanced 
firm competitiveness by promoting the firm behavior 
shift toward green development [25], because ERS  
had significant positive effects in terms of clean 
production industries [35]. In addition, conclusions like 
tougher ERS leading to less foreign direct investment 
[32] and ERS affecting energy efficiency in China’s 
thermal power generation [29] have also been put 
forward. 

Overall, the relative low efficiency of ERS in China, 
coupled with the haze’s cross-border nature and spillover 
characteristics, makes it harder to manage. However, 
the examples of “APEC Blue” and “Olympic Blue” 
have fully demonstrated that ERS is effective during a 
special period, and that embodying the control of haze 
pollution depends largely on the intensity, supervision, 
and execution of ERS. Above discussions and results 
have important implications for the development of 
this study, but there are still some deficiencies. First, 
researches of haze pollution mainly focus on the fields 
of environment, meteorology, chemistry, and ecology, 
while there is still a lack of systematic research on 
the causes and mechanisms from the perspective of 
economic management. Second, the effects of ERS  
on technological progress, local government competition, 
and environmental pollution have been widely studied, 
while its specific impact on haze pollution is largely 
ignored. Third, although the traditional panel data 
analysis is often applied, to the best of our knowledge, 
research on ERS and haze pollution based on the spatial 
econometric analysis has not yet appeared. Fourth, 
even if the spatial econometric method has never been 
introduced (like the Durbin model), the majorities of 
them are static rather than dynamic. 

In view of this, the purpose of this research is to: 
1. Taking ERS and haze pollution as research objects, 

thoroughly investigate the spatial spillover effects of 
ERS on haze pollution using exploratory spatial data 
analysis (ESDA).
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2. Constructing static and dynamic spatial panel data 
models based on the environmental Kuznets Curve 
while considering the time lag, space lag, and time-
space lag effects.

3. Examining the effects of seven socioeconomic drivers 
on haze pollution, including economic growth, FDI, 
industrial structure, population density, urbanization 
process, transportation, and R&D intensity. 
Abbreviations used in this paper are summarized 

and explained in Table 1.

Methods  

Exploratory Spatial Data Analysis (ESDA)

In order to analyze spatial spillover effects on haze 
pollution, the technology of ESDA is needed [36], 
including global spatial auto-correlation (GSA) and local 
spatial auto-correlation (LSA).

GSA is usually applied to describe spatial 
distribution characteristics in the entire study area and 
is measured by the indices of global Moran's I, as: 

 
(1)  

…where Moran's I values between -1 and 1 reflect 
the degree of similarity of attribute values of each 
neighboring spatial regions, n presents the 31 provinces 
and regions in China, xi and xj are observed annual 
averaged PM10 concentrations from regions i and j, wij 
is a spatial weight matrix, x–  is the average observed 
variables, and S2 is the corresponding variance. 
Standardize Moran's I as:
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LSA is used for evaluating spatial agglomeration, 
spatial heterogeneity or spatial regimes among regions, 
measured by Moran scatter plot (MSP) and local 
indicator of spatial association (LISA). Local Moran's I 
is expressed as:
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    (3)      

…where xi, xj, n, wij, and S2 are the same as calculating 
global Moran's I index. 

In this study, a spatial-adjacency-relationship-based 
spatial weight matrix is introduced, where wij = 1 if 
region i and j are adjacent cells; otherwise, wij = 0. wij is 
calculated as follows:

   

              (4)

Model Specification

Grossman and Krueger (1995) found an inverted 
U-shaped relationship between economic development 
and pollution emissions – the so-called environmental 
Kuznets curve (EKC) [37]. ERS has direct and indirect 
effects on environmental quality, and there may be 
a non-monotonic relationship between them [38]. 
Meanwhile, all variables are logarithmically processed 
in order to eliminate heteroscedasticity. According to 

No. Abbr. Full name No. Abbr. Full name

1 ERS Environmental regulations 12 SLM Space lag model

2 ESDA Exploratory spatial data analysis 13 SEM Spatial error model

3 EKC Environmental Kuznets curve 14 CIAM Comprehensive Index Assessment Method

4 APEC Asia-Pacific Economic Cooperation 15 FEM Fixed effect model

5 FDI Foreign direct investment 16 REM Random Effect Model

6 R&D Research and development 17 LM-Lag Lagrange multiplier lag

7 GSA Global spatial auto-correlation 18 LM-Error Lagrange multiplier error

8 LSA Local spatial auto-correlation 19 SFE Space fixed effect

9 MSP Moran scatter plot 20 TFE Time fixed effect

10 LISA Local indicator of spatial association 21 STFE Space-time dual fixed effect

11 OLS Ordinary least squares

Table 1. Summary of abbreviations in the text.
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the general equilibrium model of Antweiler et al. (2001) 
[39] and EKC, the basic model is constructed as below:

2
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…where Pit indicates the annual average value of PM10, 
GDPit represents the output level, ERSit shows the 
intensity of environmental regulations, and Xit reflects 
other control variables (including FDI, industrial 
structure, population size, urbanization, transportation, 
and technical progress). However, when spatial 
autocorrelation exists, the ordinary least squares (OLS) 
estimation would lead to invalid results. Thus two 
different spatial econometrics models are set up based 
on Anselin’s research [34]. The space lag model (SLM) 
focuses on the spatial diffusion of each variable while 
the spatial error model (SEM) examines the error impact 
of the dependent variables. SLM and SEM are described 
as follows: 
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…where W ln Pit indicates the space lag variable, ρ  means 
the spatial spillover effect with values ranging from 
-1 to 1, and λ is the spatial autocorrelation coefficient. 
Considering characteristics of dynamic and continuous 
changes of environmental pollution, the dynamic spatial 
panel data model is necessary. Therefore, the lag term of 
haze pollution β ln Pi,t–1 is introduced in Eqs. (6) and (7), 
respectively, as:
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Data Sources 

We collected panel data of 31 provinces in China 
during 2005-2015. All the original economic and 

regulated data were taken from the National Statistical 
Yearbook (2006-2016) and China Statistical Yearbook 
for Regional Economy (2006-2016). It needs to be 
emphasized that the PM2.5 data was not monitored by 
cities in China until 2012. Therefore, the annual average 
of PM10 is used to measure haze pollution in this study. 
However, the statistics on PM10 in the National Statistical 
Yearbook are for the provincial capital. Taking into 
account the spatial spillover effect of the haze pollution 
and the center status of provincial capital, the PM10 
average value of the provincial capital is applied instead 
of the entire province.  

As for ERS, its measurement has always been 
challenging due to large numbers of data missing and 
unavailable in the field of haze pollution. In order to 
accurately reflect the intensity of ERS across various 
regions of China, the comprehensive index assessment 
method (CIAM) is introduced to estimate ERS rather 
than the single indicator, which can only reflect a 
certain aspect of it. The system of CIAM consists of 
one target layer (ERS composite index), three evaluation 
index layers (industrial wastewater, waste gas and solid 
waste, collectively referred to as “three wastes”), and 
five single indicator layers including the attainment rate 
of industrial wastewater, the removal rate of SO2 (smoke, 
dust), and the comprehensive utilization of solid waste. 
The calculation steps are as follows:

Firstly, standardize individual indicators:

[ min( ) [max( ) min( )]s
ij ij j j jUE UE UE UE UE= − −                               

(10)

…where UEij is the original value of the indicator in 
terms of major pollutant j in all regions and UEit

S is its 
normalized value.        

Secondly, calculate the adjustment factor of each 
evaluation index. Due to the differences in the nature 
and attributes of the industry, the proportion of pollution 
emissions relating to “three wastes” appears differently. 
The role of the adjustment factor Cj is similar to the 
weight, approximately reflecting the changes in the 
governance of major pollutants in each region, as:
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…where Eij represents the emission of pollutant j in 

i  industry and 1

m
iji

E
=∑ is the total amount of similar 

pollutants in the country. Pi denotes the output value 

of industry i and 1

m
ii

P
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is its corresponding entire 

industrial output value. Through identity transformation, 

Cj is concluded as the ratio of UEij (unit Eij) and ijUE
(national average unit Eij).
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Finally, measure the environmental regulation 
of each single index Si, and then estimate the 
comprehensive index of ERS, as:

   
1

1 n S
i j ijj

S C UE
n =

= ×∑
             (12)

1

n
ii

ERS S
=

= ∑                      (13)

Definitions and descriptive statistics of variables are 
listed in Table 2.

Results and Discussion

Global Spatial Autocorrelation Analysis

GeoDa 1.12 software was used to calculate the 
global Moran’s I values of ERS and haze pollution, and 
their significance levels were tested (Table 3). Both the 
Moran’s I values from 2005 to 2015 were greater than 0, 
where the former was between 0.1104 and 0.2145 while 
the latter varies from 0.1390 to 0.4651. Meanwhile, 
both of them passed the significant level test of 0.01 
or 0.05 and showed the evolution trend of volatility. 
This indicates that there is a significant positive spatial 
correlation for both ERS and haze pollution in China. 
Their spatial distribution is not random but shows spatial 
aggregation in some areas, that is, high ERS areas are 
surrounded by high ERS areas and vice versa.

Local Spatial Autocorrelation Analysis

Limited to space, the four years of 2006, 2009, 2012, 
and 2015 were selected as the representative year for 
further analysis. As shown in Figs 1 and 2 that ERS 
in most provinces in China was distributed evenly in 

the first three quadrants where the number was close 
to 10 or so. However, the number of provinces located 
in the fourth quadrant was as small as 1, 1, 2, and 4, 
respectively. As for haze pollution, most provinces were 
located in the first quadrants that include 13, 15, 13, 
and 15, respectively. Overall, the total number of haze-
contaminated provinces located in the first and third 
quadrants accounted for 67.74%, 74.19%, 67.74%, and 
80.65% of the total, respectively. It is further confirmed 
that there is significant spatial autocorrelation in both 
ERS and haze pollution.

From Fig. 3, in the local spatial distribution, the 
ERS in our country has formed different high-valued 
aggregation regions. In 2006 the ERS high-value 
gathering area was centered on Hebei, and it was 
composed of four provinces, including Shanxi, Shaanxi, 
and Inner Mongolia. After a sharp drop in 2009 (only a 
province of Shanxi left), the high-high aggregation type 
has experienced a rebound trend year after year. Inner 
Mongolia and Shaanxi joined this region in 2012 and 
2015, respectively. The ERS located in this concentrated 
area had a higher intensity and drove the increase of 
ERS levels in the adjacent areas through cooperation 
with neighboring regions.

Similarly, as can be seen from Fig. 4, haze 
pollution in China also formed different aggregation 
areas in the local spatial distribution, and the spatial 
aggregation features became more and more obvious 
with the passage of time. The most prominent were the 
changes of high-high concentration regions and low-
low agglomeration areas. From the initial high-haze-
polluted areas centered on Gansu-Shaanxi in 2006, the 
trend gradually expanded to the west (Qinghai) and then 
to the east (Shanxi, Hebei) and north (Inner Mongolia). 
Until 2015, a total of 6 provinces were in these high-
high aggregation regions covering Shaanxi, Shanxi, 
Hebei, Henan, Inner Mongolia, and Shandong. Among 

Variables Mean S.D. Max Min

ln PM10 4.5747 0.3177 5.7203 3.5264

ln ERS -1.1135 1.5725 1.0895 -5.8091

ln2ERS 3.7056 7.8005 33.7461 0.0005

ln GDP 10.1320 0.6376 11.8702 8.5407

ln2GDP 103.0630 13.0712 140.9022 72.9438

ln FDI 4.8298 1.7606 7.4894 -0.1054

ln IS 3.8333 0.2072 4.1187 2.9826

ln PS 8.0877 0.8560 9.2918 5.6359

ln UD 3.8882 0.2891 4.4954 3.0374

ln TRA 8.6598 0.9295 9.9496 5.8749

ln R&D 10.6651 1.3565 13.1622 6.3953

Table 2. Variables definition and descriptive statistical results.

Year
ERS Haze pollution

Moran’s I P-value Moran’s I P-value

2005 0.2135 0.016 0.1946 0.031

2006 0.2145 0.017 0.2544 0.017

2007 0.2070 0.017 0.1878 0.037

2008 0.1899 0.021 0.1390 0.073

2009 0.1802 0.025 0.2385 0.016

2010 0.1713 0.030 0.2049 0.031

2011 0.1772 0.036 0.1753 0.051

2012 0.1685 0.040 0.2008 0.027

2013 0.1618 0.040 0.3208 0.002

2014 0.1104 0.094 0.4528 0.001

2015 0.1823 0.034 0.4651 0.001

Table 3. Moran’s I values of ERS in China from 2005 to 2015.
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them, Gansu Province was gradually farther away 
from high-high gathering areas. The low-haze-polluted 
areas were centered on Yunnan-Guangdong in 2006, 
and then gradually extended to neighboring Guangxi 

and north. Finally, they formed low-low areas with 
surrounding Guizhou, Yunnan, Jiangxi, and Zhejiang in 
2015. In addition, the haze pollution also formed low-
high agglomeration areas, where the degree of haze 

Fig. 1. Moran scatterplots of ERS in China.

Fig. 2. Moran scatterplots of haze pollution in China.

Fig. 3. LISA cluster maps of ERS in China.
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pollution in Inner Mongolia and Ningxia was low, while 
the surrounding Gansu and Shaanxi were relatively 
high, resulting in the initial low-high agglomeration 
approaching the high-high concentrations. Thus, the 
level of haze pollution in an area is not only related to 
its own geographical location, but also related to the 
degree of haze pollution in the surrounding areas.

Spatial Correlation Test and Model Checking

From the test results in Table 4, Moran’s I values of 
the two types of models are 0.498 and 0.452 respectively, 
which are significant at the level of 0.01, indicating 
that the haze pollution in China presents spatial 
autocorrelation. In addition, before conducting spatial 
econometric analysis, two issues need to be solved.

First, selecting the fixed effect model (FEM) or 
random effect model (REM) in spatial panel data models: 
FEM emphasizes that variables containing effects of 
individuals are endogenous, while REM believes they 
are exogenous. The difference between them is that the 

latter ignores the correlation between individual effects 
and explanatory variables. The statistic of Hausman 
test was -58.886 (P = 0.000), indicating that the null 
hypothesis was rejected at a significance level of 0.01, 
which also meant FEM performance was superior to 
REM in this study.

Second, identifying the spatial lag and spatial errors 
in panel data models: In the static model, values of 
the Lagrange multiplier lag (LM-Lag) and Lagrange 
multiplier error (LM-Error) are 167.554 and 166.423, 
respectively, which are both significant at the 1% level. 
However, the Robust LM-Lag value (5.605, P = 0.018)
is larger than the Robust LM-Error value (4.473,  
P = 0.034), indicating that the spatial lag model is more 
appropriate. In the same way, for the dynamic model, 
the spatial lag model is still suitable (see Table 4).

Test of Static Spatial Panel Data Model

The fixed effects model can be divided into space 
fixed effect model (SFE), time fixed effect model 

Fig. 4. LISA cluster maps of haze pollution in China.

Test Static spatial autocorrelation test Dynamic spatial autocorrelation test

Statistics P value Statistics P value

Moran’s I 0.498 0.000 0.452 0.000

LM-Lag 167.554 0.000 146.226 0.000

Robust LM-Lag 5.605 0.018 15.261 0.000

LM-Error 166.423 0.000 136.942 0.000

Robust LM-Error 4.473 0.034 5.977 0.014

Table 4. Static (dynamic) autocorrelation test.
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(TFE), and space-time dual fixed effect model (STFE).  
Tables 5 and 6 show that, regardless of the static model 
or the dynamic model, the R2 value of the STFE is 
obviously greater than that of the other two models. 
Therefore, the spatial-time dual fixed effect of the spatial 
lag panel data model can better explain the influence 
of ERS on haze pollution under static and dynamic 
conditions. 

From Table 5 we can draw the following conclusions:
First, geographical proximity has a significant 

positive impact on haze pollution in China, that is, there 
is a spatial correlation between haze pollution in the 
region and haze pollution in adjacent areas. The space-
time lag coefficient ρ of the spatial lag panel data model 
is 0.2680, which is significant at the level of 0.01. When 
the degree of haze pollution in the area increases by 1%, 
the haze pollution in the neighboring regions will also 
increase by 0.2680%, indicating that there is a spatial 
aggregation phenomenon and strong spatial spillover 
effect of haze pollution. Some scholars have shown 
that atmospheric circulation, wind direction, rainfall, 
etc., can affect haze pollution. Due to the long-distance 
transportation and transfer of pollutants caused by 
these natural and geographical reasons, haze pollution 
in an area must be affected by neighboring regions. In 
addition, transportation, FDI, ERS, etc., will further 

deepen the spatial correlation of haze pollution between 
regions. It can be seen that natural spatial and man-
made factors are important reasons for the formation of 
fog and haze pollution. Cross-regional coordination is 
an effective way to fundamentally resolve regional haze 
pollution problems [40].

Second, ERS and haze pollution show an inverted 
U-shaped relationship, indicating that a EKC curve 
exists between them. Both the STFE of SLM and SEM 
and the impact coefficient of ERS on haze pollution is 
positive, while its square term is significantly negative 
at the level of 0.01, indicating that there is a threshold 
value for the influence of ERS on haze pollution. 
When the ERS intensity is less than the threshold, haze 
contamination is not improved with ERS enhancement, 
but haze pollution decreases with increasing ERS 
intensity when above the threshold. There may be two 
reasons for this. On one hand, at the initial stage of 
ERS, China’s environmental administrative control, 
pollution supervision, and economic regulation are all 
incomplete in that China’s economy is in an extensive 
development stage, that is, at the expense of the 
environment in exchange for economic development, so 
haze pollution has not been effectively controlled with 
the strengthening of the ERS. On the other hand, at 
the later stage of ERS, the requirements for advanced 

Spatial Lag Model Spatial Error Model

Variables SFE TFE STFE SFE TPFE STPFE

ln ERS 0.0118
(0.2536)

-0.0027
(-0.1391)

0.0370
(0.8097)

-0.0078
(-0.1662)

-0.0286
(-1.3640)

0.0204
(0.4436)

ln2ERS -0.0591***
(-3.8972)

-0.0106**
(-2.1120)

-0.0450***
(-3.0042)

-0.0581***
(-4.3239)

-0.0159***
(-3.1791)

-0.0473***
(-3.3061)

ln GDP -2.7154***
(-4.3055)

1.0053**
(2.0782)

-2.2856***
(-3.1770)

-2.4667***
(-3.7359)

1.1247**
(2.4095)

-2.3174***
(-3.0687)

ln2GDP 0.1319***
(4.3361)

-0.0496**
(-2.2047)

0.1182***
(3.6880)

0.1237***
(3.8740)

-0.0584***
(-2.6252)

0.1185***
(3.5600)

ln FDI -0.0205
(-1.1394)

-0.0900***
(-5.6069)

-0.0111
(-0.6345)

-0.0250
(-1.4755)

-0.0623***
(-4.6670)

-0.0158
(-0.9326)

ln IS 0.2246**
(2.3396)

0.0517
(0.5170)

0.1049
(0.8869)

0.2108**
(2.2802)

0.0100
(-0.1257)

0.1373
(1.2050)

ln PS -0.5434*
(-1.8689)

-0.0580
(-1.0589)

-0.6243**
(-2.1815)

-0.8751**
(-2.5450)

-0.0260
(-0.5167)

-0.7612**
(-2.4406)

ln UD 0.6574***
(2.8629)

-0.0236
(-0.1686)

0.5827**
(2.4360)

0.5394**
(2.0467)

0.0163
(0.1207)

0.5314**
(2.1228)

ln TRA -0.0156
(-0.3700)

-0.0596***
(-3.0018)

-0.0504
(-0.7654)

-0.0468
(-0.7591)

-0.0057
(-0.2342)

-0.0502
(-0.7430)

Ln R&D -0.0209
(-0.5525)

0.2254***
(7.5193)

-0.0235
(-0.5973)

-0.0293
(-0.6470)

0.1686***
(5.9037)

-0.0279
(-0.6664)

     ρ 0.5250***
(10.1103)

0.6820***
(18.7094)

0.2680***
(4.0604)

0.5650***
(11.1493)

0.7910***
(25.3059)

0.2990***
(4.5354)

     R2 0.8802 0.7008 0.8892 0.8160 0.3610 0.8808

 Note: ***, ** and * indicate the significance at 1%, 5% and 10% level,  respectively. Figs in parentheses are t-statistics

Table 5. Results of static spatial panel data model estimation.
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production technologies and clean technologies have 
been gradually increased with the strengthening of 
ERS. The environmental quality of the region has been 
improved through technological innovation.

Third, based on the results of spatial econometric 
tests, the influence of other control variables on haze 
pollution in China is further analyzed. Research 
shows that the primary and quadratic coefficients of 
economic growth are significantly negative and positive 
respectively at the 0.01 level, indicating that economic 
development is in a U-shaped relationship with haze 
pollution. The regression coefficient of population 
size is -0.6243, which is significant at the level of 5%. 
This means that haze pollution can be aggravated with 
the expansion of population size. The urbanization 
coefficient of development is 0.5827, which is significant 
at the 5% level, indicating that the rapid expansion of 
cities has increased haze pollution. However, there 
is no significant relationship between FDI, industrial 
structure, transportation, and technological innovation 
and smog pollution in China. The regression coefficient 
of the population size is -0.6243, which is significant at 
the level of 5%, which shows that haze pollution can be 
aggravated with population expansion. Moreover, the 

coefficient of urbanization is 0.5827, which is significant 
at the level of 5%, indicating that rapid urbanization 
expansion aggravates haze pollution. However, FDI, 
industrial structure, transportation, and technological 
innovation do not have a significant relationship with 
haze pollution in China.

Testing the Dynamic Spatial Panel Data Model

The regression coefficient of the first-phase variable 
ln Pt-1, a variable of haze pollution lagging behind, was 
significantly positive (see Table 6), indicating that the 
current haze pollution was indeed affected by the haze 
pollution of the previous period. The space-time lag 
coefficient ρ is positive and passes a 1% significance 
level test, indicating that there is a spatial correlation 
and spatial spillover effect on haze pollution in adjacent 
areas. Both regression coefficients of ERS are significant 
at the 1% level with estimated values being positive and 
negative, indicating that in the dynamic spatial panel 
data model, the ERS and haze pollution still remain 
in an inverted U-shaped relationship. The impact of 
economic development level and population size on 
haze pollution is consistent with the conclusion in the 

Spatial Lag Model Spatial Error Model

Variables SFE TPFE STPFE SFE TPFE STPFE

ln Pt-1
0.1528***
(4.8884)

0.5019***
(15.2540)

0.2022***
(6.2911)

0.1929***
(5.3789)

0.5454***
(14.5049)

0.2087***
(6.2161)

ln ERS 0.0054
(0.1192)

-0.0143
(-0.9058)

0.0189
(0.4339)

-0.0031
(-0.0696)

-0.0126
(-0.7252)

0.0130
(0.2978)

ln2ERS -0.0529***
(-3.5829)

-0.0097**
(-2.4131)

-0.0379***
(-2.6560)

-0.0457***
(-3.4910)

-0.0083**
(-1.9656)

-0.0367***
(-2.6720)

ln GDP -2.0610***
(-3.2950)

0.7099*
(1.8513)

-1.6614**
(-2.4032)

-1.9330***
(-3.0144)

0.7686*
(1.9285)

-1.7628**
(-2.4507)

ln2GDP 0.1017***
(3.3770)

-0.0340*
(-1.9086)

0.0905***
(2.9404)

0.1005***
(3.2474)

-0.0379**
(-2.0101)

0.0944***
(2.9744)

ln FDI -0.0139
(-0.7978)

-0.0465***
(-3.5693)

-0.0045
(-0.2730)

-0.0147
(-0.8963)

-0.0382***
(-3.1890)

-0.0066
(-0.4086)

ln IS 0.2559***
(2.7388)

0.0068
(0.0849)

0.0881
(0.7853)

0.2106**
(2.3737)

0.0621
(0.8785)

0.1142
(1.0491)

ln PS -0.4878*
(-1.7266)

-0.0519
(-1.1790)

-0.6531**
(-2.3976)

-0.8956***
(-2.7117)

-0.0621
(-1.4281)

-0.7905***
(-2.7013)

ln UD 0.3723
(1.6201)

-0.1051
(-0.9441)

0.3295
(1.4292)

0.3278
(1.2800)

-0.0743
(-0.6402)

0.3082
(1.2882)

ln TRA -0.0376
(-0.9150)

-0.0371**
(-2.3406)

-0.1421**
(-2.2158)

-0.0850
(-1.4232)

-0.0085
(-0.4547)

-0.1318**
(-2.0169)

Ln R&D 0.0075
(0.2033)

0.1325***
(5.3167)

-0.0039
(-0.1028)

-0.0285
(-0.6563)

0.1160***
(4.5752)

-0.0166
(-0.4203)

   ρ 0.5110***
(9.9015)

0.4669***
(10.7717)

0.2189***
(3.3025)

0.5680***
(11.2558)

0.5840***
(11.8422)

0.2590***
(3.8276)

     R2 0.8878 0.8118 0.9002 0.8307 0.7261 0.8949

Note: ***, ** and * indicate the significance at 1%, 5% and 10% level,  respectively. Figs in parentheses are t-statistics.

Table 6. Results of dynamic spatial panel data model estimation.
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static spatial panel data model. The difference is that 
urbanization development did not pass the significance 
level test in the dynamic model. However, the regression 
coefficient of transportation (-0.1421) is significant at the 
level of 5%, which is contrary to the expected result. 
The choice of transportation indicators is subject to 
discussion.

Conclusions 

The exploratory spatial data analysis technique was 
used in this study to analyze the spatial correlation of 
ERS and haze pollution in China. The impact of ERS 
on haze pollution was empirically tested with static 
and dynamic spatial econometric panel data models, 
respectively. The panel data of 31 provinces in China 
was collected. The following main conclusions and 
policies are obtained and inspired the following.

First of all, the strong spatial autocorrelation 
significantly existed in both ERS and haze pollution in 
China, resulted in forming different aggregation areas in 
geographical distribution, respectively. This showed that 
haze-polluted areas tend to cluster toward the same type 
of regions and vice versa. Moreover, the heavily haze-
contaminated accumulation area partially overlapped 
with the ERS high-value aggregated region and 
expanded to the periphery. Obviously, the influence of 
space factors on haze pollution cannot be ignored. It is 
difficult to fundamentally solve the problem of regional 
haze pollution with their own governance models. 
To achieve the coordinated development of economy, 
society, and environmental protection, all regions should 
break through the regional restrictions on environmental 
governance and establish a “cross-regional cooperation 
of joint prevention and control” mechanism for inter-
regional haze pollution. 

Secondly, there is strong evidence for the inverted-
U-shaped EKC relationship between environmental 
regulations and haze pollution in both static and 
dynamic spatial econometric models. This shows 
that in the early stage of implementing environmental 
regulations, haze pollution in China did not decrease 
with the strengthening of unilateral environmental 
control. However, with economic, social, and legislative 
developments to a certain extent, haze pollution was 
effectively improved with the increasing intensity of 
environmental regulations. When formulating a haze 
pollution control plan, it is necessary to consider the 
integrated level of development combined with localities, 
that is, the effectiveness of ERS largely depends on the 
maturity and sophistication of social comprehensive 
development rather than its own strength. Therefore, 
in addition to cross-regional cooperation, the joint 
development of various functional departments in the 
region is also a top priority.

Thirdly, haze pollution is not only affected by 
economic growth, population size, and urbanization. 
What is more important is that the haze pollution in 

the current period is indeed affected by previous haze 
pollution. This indicates that the haze pollution in China 
is a process of dynamic and gradual accumulation with 
a certain lag. Its governance is a long-term and arduous 
task that cannot be accomplished overnight and requires 
the joint efforts of various stakeholders.
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