Synthesizing and Characterizing Sawdust Biochar/Fe$_3$O$_4$ Nanocomposites and its Potential Application in Textile Wastewater Treatment

Farah Nadeem, Nadia Jamil*, Amna Moazzam, Sajid Rashid Ahmad, Ambreen Lateef, Anam Khalid, Abdul Qadir, Azhar Ali, Soniya Munir

College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan

Received: 5 January 2018
Accepted: 15 May 2018

Abstract

The present research deals with the synthesis and viability of Sawdust biochar/Fe$_3$O$_4$ nanocomposite toward textile waste water treatment. The structure, functionality, and morphology of the nanocomposite were determined by FT-IR, powder XRD, and SEM. Removal of the textile dye Reactive Blue 21 (RB21) was almost 75% under optimum conditions. The value of Langmuir dimensionless separation factor R_L indicated a favorable adsorption ($0 < R_L < 1$). Langmuir constant (K_L, i.e., 0.15) symbolizes that there is high affinity of the adsorbent for the adsorbate. The value of Freundlich constant was found to be 2.78 (n>1), hence denoting favorable sorption. The negative values for free energy indicated a spontaneous reaction. Positive value for enthalpy suggested the endothermic nature of adsorption. The kinetic data showed a pseudo first-order kinetic model. The calculated value of q_e agreed with the experimental value of q_e at equilibrium. The results depicted that sawdust biochar/Fe$_3$O$_4$ nanocomposites are efficient adsorbents for removing RB21 and has potential application in treatment of textile wastewater.

Keywords: textile wastewater, nanocomposites, adsorption, biochar

* *e-mail: ndnaveed@gmail.com*

Introduction

Azo and reactive dyes are mostly used in various industries like textile, leather, paper, food, plastic, and printing of color products [1-3]. Dyes are toxic for humans as well as the environment, and must be treated before their discharge to reduce environmental pollution [4]. Several methods for removing dyes include membrane filtration [5], coagulation/flocculation [6], advanced oxidation [7], and phyto-catalytic degradation [8]. Biodegradation of dyes is difficult because of their stable and complex chemical structure. Therefore, the adsorption process has been adopted for removal of dyes due to its simplicity, flexibility, ease of operation, and cost effectiveness [9].

Various adsorbents have been utilized for dye removal, such as alumina, rice husk, banana peels, orange peels, coconut shells, peanut shells, and various clays, etc. [10]. Among these, carbon-based materials are more efficient adsorbents, comprising large numbers of pores and high surface area for adsorption of dyes, but due to their high preparation cost they can’t be used...
on a large scale [11, 12]. Plenty of research has been done on materials that can be used as raw materials for preparing low-cost charcoal [13], such as rice husk [14], seed shell [15], sawdust [16], coconut shell [17], pine cone [18], and wheat husk [19].

These either have low adsorption capacity when applied for actual wastewater or are ineffective for removing dyes. To enhance their effectiveness, charcoal is incorporated with different nano-materials for synthesizing nanocomposites [20]. Magnetic nanoparticles have seemed to show promising results with dyes. They can degrade and adsorb dyes from wastewater over a wide range of temperatures and pH values [11]. Charcoal with magnetic nanoparticles has been found to be more effective than other nanocomposites [21]. Simply put, it can be separated by external magnetic field from solution for reuse [22].

The current study is an attempt to synthesize Fe$_3$O$_4$/sawdust charcoal nanocomposite adsorbent for removing dyes from simulated textile effluent to reduce the environmental impacts of water pollution. Reactive blue 21 is a commonly used dye in textile industries and renders a strong color to the textile effluent. The use of such nanocomposites can be employed in industries as it will be a significant way forward for reducing water pollution and water waste caused by the textile industry.

Materials and Methods

Synthesizing Sawdust Biochar (SDB)

The sawdust was subjected to carbonization under anoxic conditions using a charcolator operated at atmospheric pressure. The sample at ambient temperature was placed in an aluminum container and heated at 300ºC for three hours. A 1 mm hole was drilled in the lid of the aluminum container so that steam and gas could escape to avoid any explosion during heating. After the carbonization was over, the container was left to cool for 30 minutes [23]. The prepared charcoal was soaked in distilled water for 2 hours and then boiled for one hour. It was then filtered, dried, ground to fine powder, and passed through a 60 mesh/inch sieve. The sieved sawdust biochar was stored in Ziploc polyethylene bags at room temperature until further experimentation.

Synthesizing Fe$_3$O$_4$/SDB Nanocomposite

The Fe$_3$O$_4$/SDB nanocomposite was synthesized by an in situ chemical co-precipitation method [24] in which SDB was used as support material. 20 g of SDB was added to 400 ml distilled water in a 1000 ml conical flask and stirred for 1 hr on a magnetic stirrer (MSH-20A WiseStir). In a separate beaker, 5.5602g of ferric sulphate (FeSO$_4$.7H$_2$O) and 10.812g ferric chloride (FeCl$_3$.6H$_2$O) were dissolved in 200 ml distilled water and added in SDB suspension. 100 ml of 0.8 M NaOH was taken in a separating funnel and added dropwise into the suspension of iron salts and SDB with continuous stirring. After dropping NaOH solution, the suspension was filtered and washed with a mixture of ethanol and water to clear all impurities and by products. The residue was dried in an oven (Memmert D-91126 Schwabach, FRG) at 150ºC for 2 hours.

Characterization Techniques

The residual dye concentrations in aqueous solutions were determined by a UV-Vis spectrophotometer (752N, HEB, China). The prepared nanocomposite was characterized by Fourier transform infrared spectroscopy (FT-IR) to obtain information about the functional groups using a Fourier transform infrared spectrometer (Perkin Elmer spectrum RXI), scanning the sample in the wavelength range of 4000-700 cm$^{-1}$. A powder x-ray diffraction (XRD) study was conducted using a PANalyticalX’Pert Pro diffractometer. Diffraction data was attained by exposing samples to Cu-K$_\alpha$ x-ray radiation of wavelength (λ) 1.5418 Å. The sample was scanned for 20-80º with step size of 0.05º/20 at 0.5 seconds per step size. Phase identification was carried out by means of MATCH! software in conjunction with the Crystallography Open Database. The surface morphology of the sample can be determined by scanning electron microscopy (Jeol JSM6480LV).

Batch Adsorption Studies: Kinetics, Thermodynamics, and Isotherms

The experiments of adsorption were carried out in 500 ml conical flask containing 30 ml of RB21 dye solution and 0.25 g of Fe$_3$O$_4$/SDB nanocomposite, with constant stirring at shaking speed of 200 rpm at different temperatures (10ºC, 30ºC, 50ºC, and 70ºC) in different time intervals (15, 30, 45, 60, 75, 90, and 105 minutes). The content of the experiment was filtered by Whatmann filter paper No. 41 to measure the Reactive Blue 21 (RB21) dye concentration in each sample using UV-Visible Spectrophotometer (752N, HEB, China) at λ_{max} = 621 nm by plotting the calibration curve. Then the effect of optimum parameter, experiments were carried out for different nanocomposite doses of 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 g/L at initial pH of 3, 5, 7, 9, 11, and RB21 concentrations of 30, 60, 90, 120, 150, and 180 mg/L. Dye uptake efficiency was calculated using Eq. 1:

$$q \ (mg/g) = \frac{(C_i - C_f) \times V}{M}$$

(1)

...where q is the dye uptake by adsorbent (mg/g), and C_i and C_f are initial and final concentrations of RB21 dye, respectively. V is dye solution volume (1000 ml) and M is the mass of adsorbent used (grams).

The residual dye concentration in synthetic wastewater was calculated using Eq. 2:
\[R(\%) = \frac{(C_i - C_e)}{C_i} \times 100 \]

(2)

…where \(R \) is the residual dye concentration as a percentage, and \(C_i \) and \(C_e \) are initial and final concentrations of BR21 dye, respectively.

Isotherm models, including Langmuir and Freundlich models, were used to calculate equilibrium adsorption and to study surface properties and attraction of adsorbent toward the dye molecules [25]. The thermodynamic parameters were determined, and in order to explain the mechanism of adsorption of the solute on the adsorbent, the adsorption constants were calculated by pseudo first- and second-order mechanisms [26].

Results and Discussion

Characterization of Fe\(_3\)O\(_4\)/SDB Nanocomposite

The FT-IR spectra of synthesized nanocomposite shown in Fig. 1a) represents the peak at 799 cm\(^{-1}\), which contributes to the Fe-O bond while other peaks appearing at 1119 cm\(^{-1}\) and 1380 cm\(^{-1}\) were due to the C-H bending and C-O stretching of the phenolic and methyl groups, respectively. Carbonyl vibrational stretching can be observed at 1901 cm\(^{-1}\). The peaks at 2005 cm\(^{-1}\) and 2325 cm\(^{-1}\) correspond to C=O bond and O=C=O stretching, respectively. The peak at 3218 cm\(^{-1}\) is attributed to O-H stretching, which could also be due to the moisture content in the adsorbent [27].

The powder XRD pattern of nanocomposite (Fig. 2a), indicates two distinct peaks depicting the presence of carbon between 20 values of 22° and 26°, and of magnetite peak 36° as matched by the pattern [96-900-6922]. The nanocomposite was amorphous in nature, which depicts no or very little crystallinity. The SEM image of Fe\(_3\)O\(_4\)/SDB nanocomposite in Fig. 2b) (A and B) shows white color particles on SDB surface, which confirms the presence of Fe\(_3\)O\(_4\).

Adsorption Capacity of Fe\(_3\)O\(_4\)/SDB Nanocomposite Toward Adsorption Capacity of Reactive Blue 21

The present study investigated the adsorption of RB21 on Fe\(_3\)O\(_4\)/SDB nanocomposite as a function of shaking speed, shaking time, adsorbent dose, pH,
temperature, and effect of initial dye concentration. There was an increase in removal efficiency of RB21 with the increase in shaking speed, as shown in Fig. 3a). However, removal efficiency decreased when the shaking speed was increased past 200 rpm. The increase in adsorption with increase in agitation speed could be due to an increase in the mobility of the adsorption system. Resistance among the particles decreases and the adsorbate is moved toward the adsorbent. When the shaking speed is less, the adsorbent gets collected and does not spread, so a less active site will be available for the adsorbate to adhere. When there is sufficient speed, the sites on the surface of the adsorbent will be available to the dye [28]. However, after a certain speed (200 rpm in this case) there is a reduction in the adsorption, and desorption begins. This could be because there is more than the required increase in the kinetic energy of the molecules of the adsorbent as well as the dye, and they start hitting each other with greater force, which results in detachment of some dye molecules from the surface of the adsorbent [29].

The results in Fig. 3b) show an increase in removal efficiency of RB21 with the increase in shaking time,

Fig. 2 a) Powder XRD pattern of Fe$_3$O$_4$/SDB nanocomposite along with COD reference pattern; b) SEM images of Fe$_3$O$_4$/SDB nanocomposite at 10µm (A) and 50µm (B) resolution showing white color particles on charcoal surface.
but after 90 minutes there was no further improvement in adsorption capacity. This behavior of the adsorbent and dye could mean that high adsorption in the beginning could be due to the large number of sorption sites present at the earlier stage. A high concentration gradient between dye in solution and dye present on the surface of the adsorbent is developed. As the contact time increases, the number of active sites also decreases because they have been occupied by the adsorbate. When an optimum time is reached and maximum sites have been utilized, no further change in removal efficiency is observed [30].

We observed that removal efficiency of RB21 increased continuously with the increase in adsorbent dose as in Fig. 3c). This could be justified by the fact that the more the adsorbent, the more the number of sites present for adsorption. The adsorption sites do not saturate the adsorption system, hence increasing the dye uptake with an increase in adsorbent dose [31].

The effect of pH on adsorption of RB21 is shown in Fig. 3d), where the results depict maximum adsorption at neutral pH. The adsorption decreased in acidic and basic conditions. Similar results were obtained by some researchers [32] when using activated carbon to remove azo dyes. Highly acidic conditions led to an increase in amount of H+ ions, and the surface of the charcoal composite obtains a positive charge by absorbing those ions. The dye ions and the hydrogen ions hence get into a competition for the surface of the adsorbent, resulting in low adsorption of dyes due only to iron oxide

Fig. 3. Effects of: a) shaking speed on adsorption of RB21 on Fe3O4/SDB nanocomposite, b) shaking time on adsorption of RB21 on Fe3O4/SDB nanocomposite, c) adsorbent dose on adsorption of RB21 on Fe3O4/SDB nanocomposite, d) different pH on adsorption of RB21 on Fe3O4/SDB nanocomposite, e) varying temperature on adsorption of RB21 on Fe3O4/SDB nanocomposite, and f) initial dye concentration on adsorption of RB21 on Fe3O4/SDB nanocomposite.
nanoparticles. An increase in pH results in an increase in the negatively charged sites, and hence adsorption takes place only at the charcoal surface. So at neutral pH maximum adsorption took place [33].

The RB21 dye showed an increase in adsorption with the increase in temperature of the dye solution in Fig. 3e). The increase in adsorption along with temperature could be due to enhanced penetration of the dye. This also symbolizes that the adsorption of the dye was endothermic. A study by a group of researchers [34] also describes how such an increase in adsorption could be because of the creation of more active sites due to heat energy. A decrease in removal efficiency was noted with the increase in initial RB21 dye concentration, as shown in Fig. 3f). The adsorbent has a specific number of active sites for adsorption. Once the adsorbent becomes saturated, no further adsorption takes place. In the case of low dye concentrations, the numbers of binding sites increase, but with increasing dye concentration those sites fall short and hence adsorption capacity decreases [35].

Adsorption Isotherm Models

The Langmuir model [36] was calculated by Eq. 3:

\[
\frac{C_e}{q_e} = \frac{1}{q_{\text{max}}} \frac{C_e}{1 + \frac{1}{K_L}q_{\text{max}}} \tag{3}
\]

...where \(q_{\text{max}}\) is the maximum amount of dye adsorbed per unit mass of adsorbent, and \(K_L\) is the Langmuir Constant. A linear plot of \(C_e/q_e\) against \(C_e\) was plotted and the values of \(q_{\text{max}}\) and \(K_L\) were obtained using the slope and intercepts of the plot.

The graph of specific sorption (\(C_e/q_e\)) was plotted against equilibrium concentration for RB 21 in Fig. 4a). The linear plot for batch data with high coefficient of correlation (\(R^2\)) value for the dye revealed that the adsorption process obeyed the Langmuir isotherm model. The values of Langmuir constants, i.e., \(K_L\) and \(R^2\) were given in Table 1 for RB 21. Fig. 4b) shows variation of separation factor \(R_L\) with initial dye concentrations for RB 21. We observed from the graph that the separation factor decreases and nears zero with the increase in dye concentration. The value of Langmuir dimensionless separation factor \(R_L\) indicated favorable adsorption (0< \(R_L\)<1) [37] with a value of 0.04. We used the following equation for the Freundlich model [38]:

\[
\log q_e = \frac{1}{n} \log C_e + \log K_f \tag{4}
\]

...where \(K_f\) is the Freundlich constant. A linear plot of \(\log q_e\) against \(C_e\) was plotted and the values of \(n\) and \(K_f\) were obtained using the slope and intercepts of the plot.

The linear plot of log of amount adsorbed per amount of adsorbent at the equilibrium (\(\log q_e\)) is plotted against the logarithm of equilibrium concentration (\(\log C_e\)) for RB 21 in Fig. 4c). The linear plot for batch data with high coefficient of correlation (\(R^2\)) value revealed that the adsorption process obeyed the Freundlich isotherm model. The Freundlich constants were determined from the slope and intercept of the linear plot. The values of Freundlich constants, i.e., \(1/n\), \(n\) (adsorption intensity), \(K_f\) (adsorption capacity), and \(R^2\) are given in Table 1.

Thermodynamic Models

The thermodynamic parameters were determined using the following Eqs. 5 and 6 [39] (\(\Delta H^o\) and \(\Delta S^o\) were determined from the slope and intercept of the linear Van’t Hoff plot of ln\(K_{eq}\) versus 1/T):

\[
\Delta G^o = -RT\ln K \tag{5}
\]

and \(\ln K_{eq} = \frac{\Delta S^o}{R} - \frac{\Delta H^o}{RT} \tag{6}\)

... where \(\Delta H^o\) is enthalpy of adsorption, \(\Delta S^o\) is entropy change, \(\Delta G^o\) is Gibbs free energy change, R is the gas constant, T is absolute temperature, \(\ln\) is the natural logarithm, and \(K_{eq}\) is the equilibrium constant.

Fig. 4d) shows the linear plots of ln\(K_{eq}\) against 1/T. The thermodynamic parameters for adsorption of RB 21 on Fe₃O₄/SDB nanocomposite are given in Table 2. The value of \(K_{eq}\) increased with temperature while Gibbs free energy (\(\Delta G^o\)) decreased with increasing temperature. The values obtained for \(\Delta H^o\) and \(\Delta S^o\) were positive for adsorption. The negative values for free energy indicated a spontaneous reaction. Positive value for enthalpy suggests the endothermic nature
of the adsorption. Also, ΔH° was found to be greater than 40 KJ/mol, symbolizing the chemisorption of RB 21 on the adsorbent. Positive values for ΔS° indicated an increase in randomness during the adsorption process [40].

Kinetic Models

The following Eq.7 was used for the pseudo first-order mechanism:

$$\log (q - q_e) = \log q - k_1 t/2.303$$ \hspace{1cm} (7)

...where q is the amount of dye adsorbed at equilibrium (mg/g), q_e is the amount of dye adsorbed at time t (mg/g), and K_1 is the equilibrium rate constant of pseudo first-order sorption (min$^{-1}$).

A linear plot of $\log (q - q_e)$ was plotted against time t. The values of rate constant (K_1), coefficient of correlation (R^2), and $q_{calculated}$ were found using slope and intercept of the graph.

The following equation was used for the pseudo second order mechanism:

$$t/q = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$ \hspace{1cm} (8)

... where q is the amount of dye adsorbed at equilibrium (mg/g), q_e is the amount of dye adsorbed at time t (mg/g), K_2 is the equilibrium rate constant of pseudo second-order sorption (mg/g$^{-1}$min$^{-1}$), and $h = k_2 q_e^2$.

Table 1. Adsorption isotherm parameters for RB21 onto Fe$_3$O$_4$/SDB nanocomposite (bold values are experimental finding results).

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters, $q_{max,exp}$ (mg/g)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langmuir</td>
<td>$q_{max,cal}$ (mg/g)</td>
<td>27.7778</td>
</tr>
<tr>
<td></td>
<td>K_L (L/mg)</td>
<td>0.150627</td>
</tr>
<tr>
<td></td>
<td>R_L</td>
<td>0.042383</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.775</td>
</tr>
<tr>
<td>Freundlich</td>
<td>N</td>
<td>2.785515</td>
</tr>
<tr>
<td></td>
<td>K_F</td>
<td>6.251727</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.972</td>
</tr>
</tbody>
</table>

Table 2. Thermodynamic parameters (ΔH°, ΔG°, ΔS°) for the adsorption of Reactive Blue 21.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>K_{eq} (L/mg)</th>
<th>ΔG° (J/mol)</th>
<th>ΔH° (J/mol)</th>
<th>ΔS° (J/mol K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>510.5637</td>
<td>-14679.1</td>
<td>49.027658</td>
<td>221.73</td>
</tr>
<tr>
<td>26</td>
<td>594.0709</td>
<td>-15885.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1291.795</td>
<td>-18055.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>6378.947</td>
<td>-23537.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>13313.51</td>
<td>-27093.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Kinetic model parameters for the adsorption of RB21 onto Fe$_3$O$_4$/SDB nanocomposite (bold values are experimental finding results).

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters, $q_{max,exp}$ (mg/g)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo-first order</td>
<td>$q_{max,cal}$ (mg/g)</td>
<td>23.71374</td>
</tr>
<tr>
<td></td>
<td>K_1 (min$^{-1}$)</td>
<td>0.06445</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.947</td>
</tr>
<tr>
<td>Pseudo-second order</td>
<td>$q_{max,cal}$ (mg/g)</td>
<td>27.02703</td>
</tr>
<tr>
<td></td>
<td>K_2</td>
<td>0.00423</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.996</td>
</tr>
</tbody>
</table>

Fig. 5. a) Pseudo first-order sorption kinetics of RB21 on Fe$_3$O$_4$/SDB nanocomposite, and b) pseudo second-order sorption kinetics of RB21 on Fe$_3$O$_4$/SDB nanocomposite.
well. The value of calculated dye uptake at equilibrium for first-order kinetics is very close to the experimental value as opposed to the calculated value of second-order kinetics, hence the batch data for RB 21 best fit first-order kinetics. The kinetic parameters for adsorption on Fe₃O₄/SDB nanocomposite are given in Table 3.

Adsorption Mechanism

Fig. 1b) shows FT-IR spectra of nanocomposite after adsorption of dye, revealing that the intensity of the peaks has altered and that peak width has varied at some points. For RB21, the involvement of the major functional groups can be observed due to the change in intensity of the peaks. The transmission for almost all peaks has increased, indicating a decrease in intensity. Weak electrostatic forces or Vander Wall forces could be responsible for this adsorption, and some chemisorption has also occurred due to changes in the thickness of certain peaks.

Conclusions

It may be concluded that the proposed method is a simple and cost-effective way to synthesize Fe₃O₄/SDB nanocomposite for the efficient removal of RB21 from textile effluent. 75% color removal was attained at 90 minutes shaking with adsorbent dose of 0.25 g and initial dye concentration of 150 mg/L. The shaking speed was set at 200 rpm for 30 minutes at 30°C and neutral pH. The pseudo first-order and pseudo second-order kinetics, Langmuir and Freundlich isotherms, and thermodynamics revealed that the adsorption process was chemisorption. The negative values for free energy indicated a spontaneous reaction. Positive value for enthalpy suggests the endothermic nature of adsorption. The kinetic data obeyed a pseudo first-order kinetic model. The calculated values of q agreed with the experimental value of q at equilibrium. Hence, the results represent that Fe₃O₄/SDB nanocomposites can be used for the efficient removal of RB21 from wastewater. This research is a significant way forward toward the treatment of textile wastewater and can be used as a baseline for further innovation and development.

Conflict of Interest

The authors declare no conflict of interest.

References

17. SHARMA Y.C., UPADHYAY S.N.U. Removal of a cationic dye from wastewaters by adsorption on activated
carbon developed from coconut coir. Energy Fuels. 23 (6), 2983, 2009.