
Introduction

The CO2 effect brought about by the consumption 
of fossil energy is becoming more and more obvious. 
The emission of greenhouse gases has caused serious 
environmental problems such as global warming, and 
also has caused huge economic losses. Urban areas and 
the rapid progress of industrialization and technology 

are leading to serious air pollution in urban areas. In 
particular, human beings trying to maintain urban life 
harm health [1-6]. In Europe, more than two-thirds of 
the total population lives in cities. Population growth and 
industrialization have led to air pollution in some cities 
that reaches levels that threaten human health. This has 
become one of the most important topics of our day. 
Human health is affected by all air pollution, but some 
emissions have more severe atmospheric conditions. In 
particular, carbon dioxide (CO2) and other pollutants, 
which provide global warming, have recently attracted 
attention; because CO2 is one of the most searched gases 
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Abstract
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[7-13]. Recent studies show PM10 and PM2.5 CO2 air 
quality indices. There are a lot of studies for carbon 
emissions, including indoor and outdoor – especially 
urban areas and parks. This shows that PM2.5 affects 
human health.

 China’s primary energy consumption accounts for 
23% of world consumption, of which coal consumption 
accounts for 62%. China is the world’s largest energy 
consumer and CO2 emitter. In order to solve the problem 
caused by the greenhouse effect, countries around the 
world have also made relevant efforts. In 2015, 200 
countries agreed the Paris Agreement, clarifying the 
goals that the global community pursues. Under the 
agreement, China has pledged that by 2030, carbon 
emissions per unit of GDP will fall by 60% to 65% from 
2005. Research on influencing factors analysis and CO2 
emission prediction will help the government extract the 
main factors influencing CO2 emissions and use them 
to guide CO2 reduction efforts [14]. In recent years, 
research on CO2 emission factors has mainly related to 
(1) exponential decomposition analysis methods, such 
as the generalized Fisher Index (GFI) decomposition 
analysis, logarithmic mean index Divisia decomposition 
method, and Laspeyres decomposition method [15-17]. 
Decomposition methods such as LMDI can improve 
the accuracy of calculations. In the processing data, it 
has the characteristic of no residual decomposition, 
simple calculation process and visual decomposition 
result; (2) structural decomposition analysis methods, 
including input-output method [18]; and (3) econometric 
method methods, including Granger causality analysis 
[19], factor analysis [20], provincial panel data analysis 
[21], etc. This kind of statistical analysis method, in 
the general sense, has a wide range of analysis and 
can handle various situations flexibly, but has many 
influencing factors. The areas covered by the CO2 
emissions forecasting analysis include data from various 
departments and regions, such as the industrial sector 
[22], the transportation sector [23], and the steel industry 
[24], as well as multi-regional research [25].

The research on CO2 emissions prediction is mainly 
on the establishment of different models. The traditional 
predictive model is computationally complex and 
prediction accuracy depends on historical data such as 
the establishment of regression prediction models. Xu 
and Lin [26] use vector autoregressive models to analyze 
the influencing factors of industrial CO2 emissions 
and show that energy efficiency plays a leading role 
in CO2 emissions. Wang et al. [27] adopted a partial 
least-squares regression model. The results show that 
the level of urbanization, economic level, and industry 
share have positive effects on CO2 emissions. Meng and 
Niu [28] used a logistic model to predict CO2 emissions 
in various industries. Rigoberto et al. [29], based on 
the extended environmental Kuznets curve (EKC) and 
environmental logistics curve (ELC) combined with the 
logistic model, empirical samples of 175 countries, and 
CO2 emissions prediction. Zhang et al. [30] used the 
extended STIRPAT model to analyze and predict CO2 

emissions in Henan Province, as well as the traditional 
forecasting models such as time series models, Holt-
winters models, and smoothing index forecasting 
models. However, the disadvantage is that it depends 
heavily on past data and is suitable for the prediction 
of horizontal data. Due to giving a larger weight in the 
near future and a smaller proportion in the long-term, it 
is suitable for short-term forecasting.

In recent years, artificial intelligence technology  
has been widely applied. Compared with the above 
models, the artificial intelligence prediction and 
optimization model has improved the accuracy and 
calculation speed. For example, Wang and Dang 
[31] has applied the gray model GM (1, 1) to the 
prediction of Jiangsu’s CO2 emissions. Although grey 
prediction requires less sample data and does not 
require the exploration of internal mechanisms, the 
model prediction accuracy is not high. Chen and Ye 
[32] used artificial neural networks (ANN) to predict 
CO2 emissions and estimated the amount of CO2 
emitted by the global reservoir. Because the neural 
network algorithm converges very slowly, it is easy 
to fall into a local minimum. Thus, Sun et al. [33] 
proposed the genetic algorithm (GA) optimized back 
propagation neural network (BPNN) to predict CO2 
emissions, selected multiple influencing factors, and 
used autocorrelation and partial correlation to analyze 
CO2 emissions. The hybrid algorithm improves the 
speed of convergence. And Wen and Liu [34] use the 
particle swarm optimization neural network (IPSO-
BP) to show that the particle swarm optimizes the BP 
initial connection weights and thresholds. The algorithm 
can fully utilize the PSO’s global search capability and 
BP’s local search ability. Zhao et al. [35] combined the 
mixed data sampling regression model with BPNN to 
predict CO2 emissions. Literature [36] proposed extreme 
learning machine (ELM) to overcome the shortcomings 
of the BP neural network. This method not only reduces 
the risk of falling into local optimum, but also greatly 
improves the learning speed and generalization ability 
of the network. However, when the extreme learning 
machine’s initial function was selected improperly, the 
extrapolation ability was poor. Therefore, Sun et al. [37] 
improved the particle swarm optimization limit learning 
machine, which optimizes the input weights and biases 
and improves the generalization ability. It also shows 
that selecting more carbon dioxide emission factors 
can more fully study CO2 emissions. The literature [38] 
proposed a support vector machine (SVM) to avoid local 
optimization problems. Using an SVM prediction model 
to study the inevitable link between CO2 emissions and 
economic growth, the SVM algorithm is difficult to 
achieve for large sample data calculation training. There 
are difficulties in solving the problem of multivariate 
planning. Therefore, the literature [39] improved 
LSSVM to study the effects of the three major industries 
and household consumption on CO2 emissions. It shows 
that the classification analysis has higher accuracy than 
the unclassified prediction.
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Based on the above research, it is observed that a 
number of selected influencing factors and different 
classifications affect prediction accuracy. In previous 
studies, decomposition methods or classification method 
were applied to avoid the problem of including too many 
influencing factors, which may lead to a decrease in 
the accuracy of CO2 emissions forecast. However, the 
factors of CO2 emissions are numerous and it is difficult 
to determine which factor is influential intuitively.

To solve this problem, this paper presents a method 
based on principal component analysis (PCA) and 
an improved least squares support vector machine 
(LSSVM) prediction. The PCA method converts the 
pre-selected influencing factors for dimension reduction. 
Through PCA process, fewer components are selected 
to represent most of the original information as input 
factors. With fewer inputs, the LSSVM can be solved 
quickly by PSO and avoid the possibility of PSO 
procedure falling into a local optimum. Through the 
combination with PSO-LSSVM, the CO2 emission 
prediction model can be established, avoiding the 
difficulties in the selection of impact factors, strong 
collinearity between them and low accuracy of 
prediction results, etc.

Material and Methods

This paper applies the CO2 emission prediction 
model of PSO-LSSVM. First, the PCA is applied to 
screen main factors as input factors, then the PSO 
is applied to optimize the LSSVM model, and the 
parameters are trained using historical data to obtain 
the optimal penalty and nuclear parameters to obtain the 
final Prediction model.

Principal Component Analysis

Principal component analysis is a statistical  
method that aims to reduce dimensions and eliminate 
multi-collinearity, combining multiple correlation 
variables into one or several variables. Orthogonal 
transformation transforms a set of p-dimension 
variables (X1, X2,..., Xp)

T = X with correlations into 
a set of p-dimension linear independent indicators 
y, which are independent of each other. The 
relationship between them is y = a1X1 + L + apXp = aTX. 
Where a is the coefficient vector to be determined, and 
the goal is to find a. The newly generated comprehensive 
index y has become the main component. These 
components should satisfy the following conditions: 
(1) each principal component is perpendicular to each 
other; and (2) the sum of the variance of each principal 
component is equal to the sum of the eigenvalues.  
In this paper, SPSS 20.0 is used to calculate the 
principal component whose eigenvalue is greater than 1,  
so that its cumulative contribution rate exceeds  
85%.

Least Squares Support Vector Machine

Support vector machine (SVM) is a supervised 
learning algorithm that can build prediction models 
based on regression methods. It maps vectors into a 
higher dimensional space and solves the maximum 
interval hyperplane classification problem. Cortes and 
Vapnik (1995) have a great advantage in solving small 
samples, nonlinear problems, etc. However, it is difficult 
to solve large sample data, which consumes a lot of 
memory and computational time.

In order to solve the above problem, an improved 
LSSVM based on SVM is proposed by Suykens, (1999). 
LSSVM proposes a norm in the objective function of the 
optimization problem so that (1) the original inequality 
constraints are transformed into equality constraints 
and different loss functions are applied; (2) turning the 
optimization problem from quadratic programming to 
a linear equation solving problem, the complexity of 
the solution is reduced, and the convergence speed is 
improved [40]. Thus in this paper, the LSSVM method 
is applied to build the prediction model.

In the LSSVM model, the given training sample is 
set as D = {(xn, yn) | n = 1, 2,..., k}, xn ∈ Rk, yn ∈ R where 
xn is the input variable and yn is the corresponding output 
variable. The training set is mapped from the input 
space to the feature space using the nonlinear mapping 
φ(·), and then the linear regression is performed in the 
high-dimensional feature space.

The LSSVM model can be expressed as:

( ) ( )Ty x x bω φ= +
                 (1)

…where ω is weight and b is bias. Based on the principle 
of minimizing structural risks, the optimization problem 
is expressed as follows:
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…where γ is the regularization parameter and ln is the 
error. In order to solve the optimization problem, the 
Lagrange equation is constructed:
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…where an(n = 1,2,..., k) are the Lagrange multipliers. 
According to the KKT (Karush-Khun-Tucker) 
conditions, find the partial derivative for ω, b, ln, an and 
make it equal to zero.
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With simplification after removing both ω and ln 
variables, the optimization problem can be simplified to 
solve linear equations:
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Then the LSSVM regression model can finally be 
obtained:
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         (7)

Among them, K(x, xn) is a positive definite kernel 
function that satisfies Mercer’s theorem. In this paper, 
a radial basis kernel function with strong generalization 
ability is applied. Its expression is as follows:
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=

                (8)

… where σ2 is the kernel width of the kernel function.

Particle Swarm Optimization Algorithm

Particle swarm optimization is an intelligent 
algorithm proposed by Kennedy and Eberhart (1995) 
[41]. This algorithm is an intelligent optimization 
algorithm based on inter-group collaboration that 
observes and simulates behaviors of the birds. Each 
bird is modeled as an optimal solution to the search 
space, called “particles.” Particle swarm optimization 
algorithm has good robustness and is easy to converge, 
but it is easy to fall into the local optimum. It is often 
used to optimize algorithms such as neural network. 
This paper applies the PSO algorithm to optimize the 
parameters of LSSVM.

In order to search for the optimal position, the fitness 
value is calculated by the fitness function. The current 

position of each particle is compared with the best 
position of the particle itself, and the optimal position 
is selected after iteration. These two optimal extremum 
are individual optimal and global optimal, respectively.

Assume that the particle population size is M, and 
the particle performs the flight search optimal solution 
in the D-dimensional space. The spatial position 
vector of the ith particle is xi

(t) = xi
(t)

1, xi
(t)

2,..., xi
(t)

d)
T, and 

the fitness of each particle’s corresponding spatial 
position is calculated according to the objective function. 
The ith particle has a spatial displacement speed of 
vi

(t) = vi
(t)

1, vi
(t)

2,..., vi
(t)

d)
T,, an individual extremum of 

pi
(t) = pi

(t)
1, pi

(t)
2,..., pi

(t)
d)

T,, and a global extremum of 
pg

(t) = p(t)
g1, p(t)

g2,..., p(t)
gd)

T,. According to the particle 
fitness value, the position and velocity of each generation 
of particles are iterated under the following equations:

( ) ( ) ( ) ( )( ) ( ) ( )( )1
1 1 2 2

t t t t t t
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(9)

( ) ( ) ( )1 1t t t
id id idx x υ+ += +                     (10)

t = 1, 2, ..., n; d = 1, 2, ..., D      
( )( ) /s e m m et t tω ω ω ω= − − +

         (11)

…where ω is the weight of inertia, where a large value 
is better for obtaining global optimization; on the 
contrary, a smaller value is better for the convergence 
of PSO; c1 and c2 are acceleration constants, generally 
taken between [0, 2]. r1 and r2 are randomly distributed 
between [0, 1]. Additionally, to avoid blind search,  
υid ∈ [–υmax, υmax], xid ∈ [–xmax, xmax].

LSSVM Optimized by PSO 

The optimization of LSSVM parameters mainly 
focus on obtaining the parameters C and σ. The steps of 
the proposed PSO-LSSVM are as follows:

Step 1: Particle group parameter initialization.
Step 2: Calculating particle fitness value.
Step 3: Finding individual extremes and population 

extremes.
Step 4: Update the particle velocity and position 

according to equations (10) (11).
Step 5: Check whether the condition is satisfied; if 

so, go to Step 6; if not, return to Step 2.
Step 6: Substitute the optimization parameters (C, σ) 

into the LSSVM.
The overall work flow chart for CO2 emission 

prediction in this paper is shown in Fig. 1. In Part 1, 
the bivariate correlation and significance tests were 
used to study the correlation between the influencing 
factors and CO2 emissions. Then the dimension of the 
preselected influential factors is reduced by using PCA. 
Part 2 includes the PSO algorithm. The third part is to 
build the LSSVM for CO2 emissions prediction.
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Data Source and Conversion

In order to verify the accuracy of the proposed 
forecasting model, our paper studies the CO2 emissions 
from 1990 to 2016 in Hebei Province. CO2 emissions 
are calculated based on consumption of various 
energy sources, in the Economic Yearbook of Hebei 
Province, and it is shown in Fig. 2. Then according to 
the 2006 IPCC Guidelines for National Greenhouse 
Gas Inventories, the standard coal for energy sources 

is converted into CO2 emissions through the energy 
conversion coefficients in Table 1. To facilitate intuitive 
understanding, Table 2 lists the four types of energy 
CO2 emissions and total CO2 emissions in Hebei from 
1990 to 2016.

As can be seen from Fig. 2, between 1990 and 
2016, coal accounts for most of the CO2 emissions in 
Hebei, while crude oil and natural gas account for only 
a small part of CO2 emissions. In order to respond to 
the national energy-saving and emission-reduction 
policy, the proportion of natural gas consumption has 
been gradually rising. Based on 1990, it has grown 
by more than 11 times in recent years. The increase 
in primary electricity was even greater. Using 1990 
as a benchmark, there was an increase of 36.44 times 
in 2016. As China’s “coal to electricity” and “coal 
to gas” implementation, the consumption of coal 
gradually decreased; on the contrary, the portion of 
clean energy gradually increased. In order to further 
study the relationship between CO2 emissions in Hebei 
and China’s CO2 emissions, this paper also calculates 
China’s CO2 emissions for comparison. 

Fig. 1. Flowchart of PSO-LSSVM.

Fig. 2. Primary energy consumption and the source of energy in 
Hebei during 1990-2016.

Table 1. Coefficients of CO2 emissions for different energy 
species.

Type Coal Petroleum Natural gas Primary 
Power

C/(t/t) 0.7476 0.5825 0.4435 1.814
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As shown in Fig. 3, by comparing Hebei’s CO2 
emissions with that of the whole country, it can be 
seen that the total emissions of Hebei and China’s total 
emissions continue to grow. It can be seen that Hebei 
emits at least 6% of China’s CO2 emissions. From 2000 
to 2009, the proportion has risen by close to 8%, and 
the proportion has continued to decrease since 2010. 
From the figure, before 2000, the growth rates of CO2 
emissions in both China and Hebei increased slowly. 
After 2000, the growth rates increased significantly. 
Hebei has a faster rate of increase in CO2 emissions than 
the national growth rate. It has only slowed down in 
the past three years, indicating that Hebei has achieved 

initial results in conformity with the national emission 
reduction policies.

The prediction results of CO2 are related to the 
selection of influencing factors. In order to better 
study CO2 emissions, this paper extracts the main 
sub-indicators from the general indexes of the Hebei 
Economic Yearbook. Pre-selected 24 variables, namely, 
coal consumption, primary sector GDP, secondary 
industry GDP, tertiary industry GDP, area final 
consumption, total population, power generation, total 
export, coverage of railway, coverage of highway, 
urbanization level (%), total investment in fixed assets of 
the whole society, consumer price index, transportation 
possession quantity, fuel and power purchase price 
index, cement production, urban green areas, added 
value of construction industry, producer price index, 
total power of agricultural machinery, consumption of 
pure fertilizers, total retail sales of consumer goods, 
finished steel production, and gross output value of 
agriculture animal husbandry and fisheries.

Pre-selection Factors Analysis

Due to the large number of influencing factors, it is 
necessary to ensure the rationality of the pre-selection 
factors. Firstly, the correlation between CO2 emissions 
and preselected influencing factors was analyzed. This 
paper applied SPSS 20.0 to select the Pearson coefficient 
and the two-sided significance to reflect the correlation. 
The results are shown in Table 3. The coefficient of 
correlation of the selected influencing factors was 
greater than 0.8, except for the producer price index, 
and the probabilities of the two-sided significance tests 
were all less than 0.05, satisfying the confidence level 
of 95%, indicating that there is a significant correlation 
between CO2 emissions and influencing factors. 
Therefore, 24 influencing factors are used as preselected 
factors. However, the correlation between factors is 
also great, affecting prediction accuracy. It is important 
to eliminate multicollinearity between variables using 
PCA.

Table 2. CO2 emissions of total energies and main sources during 
1990-2016 in Hebei (10,000 tons).

Year Total 
emissions

Raw 
coal

Crude 
oil

Natural 
gas

Primary 
electricity

1990 4501.98 4136.19 282.18 35.85 47.76

1991 4755.83 4385.06 289.15 38.18 43.45

1992 5039.14 4650.20 310.77 40.81 37.37

1993 5785.31 5296.87 386.52 33.47 68.46

1994 5983.63 5522.43 395.41 39.13 26.67

1995 6515.19 6005.10 442.36 37.07 30.66

1996 6553.75 6050.91 429.55 39.25 34.05

1997 6613.53 6100.06 455.67 34.85 22.95

1998 6686.66 6135.34 497.34 35.72 18.27

1999 6858.48 6311.45 491.71 36.61 18.72

2000 8196.27 7611.60 532.81 41.71 10.16

2001 8887.62 8317.62 523.60 37.61 8.80

2002 9816.61 9131.34 636.36 41.61 7.29

2003 11253.50 10610.97 578.32 44.78 19.43

2004 12718.73 11820.14 809.42 57.70 31.47

2005 14573.99 13616.35 860.81 53.66 43.17

2006 15997.19 14923.00 969.90 64.76 39.53

2007 17338.61 16285.14 943.82 71.13 38.51

2008 17866.12 16784.76 944.97 101.11 35.28

2009 18667.91 17579.75 919.48 136.41 32.27

2010 19344.96 17625.44 1182.83 175.47 361.22

2011 20809.10 18699.00 1327.92 206.69 575.49

2012 21466.08 19107.41 1253.21 260.23 845.24

2013 22210.71 19668.86 1247.58 293.38 1000.89

2014 21987.02 19390.25 1192.12 330.29 1074.37

2015 21975.64 19020.20 1368.11 430.22 1157.11

2016 22588.36 18935.38 1497.76 414.91 1740.31

Fig. 3. CO2 emissions of Hebei Province and China.
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PCA Analysis 

Prior to the principal component analysis, KMO 
and Bartlett tests were performed on the data applying 
SPSS 20.0, where the KMO test value was 0.764>0.5, 
the approximate Chi-Square was 2464.493, the df was 
276, and the significance was 0.000<0.05. The results 
indicate that principal component analysis is effective. 

Then reduce the dimensions of the influencing 
factors. After processing and analysis, as shown in  
Fig. 4, gravel chart, select the components with 
eigenvalue greater than 1. The first principal component 
explains 91.493% of the factors; the second principal 
component is the auxiliary component, and the 
cumulative interpretation of more than 97% of the 
variables. The composition matrix is shown in Table 4. 
As a result, these two principal components are applied 

to explain and replace the impact factors as input factors 
for CO2 emissions prediction.

Application of the PSO-LSSVM

In order to verify the accuracy of the prediction 
model proposed in CO2 emission prediction, this paper 
applies the data of Hebei’s CO2 emissions from 1990 to 
2016. The PSO-LSSVM model was used to predict the 
CO2 emissions in Hebei from 2012 to 2016. The relative 
error (RE), the mean absolute percentage error (MAPE), 
and the root mean square error (RMSE) were selected to 
test and predict the CO2 emissions. The smaller the error 
value obtained, the higher the accuracy of the prediction 
and the better the performance of the prediction model. 
The error equations are as follows:

ˆ
100%t t

t

y yRE
y
−= ×

                (12)

1

ˆ1 100%
n

t t

t t

y yMAPE
n y=

−= ×∑
         (13)

2

1

ˆ1 n
t t

t t

y yRMSE
n y=

−= ∑
              (14)

Where yt, ŷt are the actual and predicted CO2 
emissions during the t-period, and n represents the 
number of samples of the predicted CO2 emissions.

In this paper, PSO optimizes the parameters of  
C and σ in LSSVM. In PSO, max-generation = 100,  

Table 3. Correlation and bilateral significance analysis of CO2.

Factor Pearson correlation Factor Pearson correlation

Coal consumption 0.997** Consumer Price Index 0.900**

Primary sector GDP 0.971** Transportation possession quantity 0.935**

Secondary industry GDP 0.972** Fuel and power purchase price index 0.950**

Tertiary GDP 0.942** Cement production 0.954**

Area final consumption 0.956** Urban green areas 0.992**

Total population 0.973** Added value of construction industry 0.951**

Power generation 0.986** Producer price index 0.747**

Total export 0.961** Total power of agricultural machinery 0.904**

Coverage of railway 0.966** Consumption of pure fertilizers 0.866**

Coverage of highway 0.971** Total retail sales of consumer goods 0.914**

Urbanization level (%) 0.993** Finished steel production 0.960**

Total investment in fixed assets 
of the whole society 0.893** Gross output value of agriculture animal husbandry 

and fishery 0.965**

Note: **indicates a significant correlation at the significance level of 0.01.

Fig. 4. Scree plot of principal component analysis. 
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the size of population = 20, and inertia weight ω = 0.5, 
C1 = 1.5, C2 = 1.7.

Results and Discussion

The prediction model PSO-LSSVM was 
implemented by MATLAB 2014a. Based on the data 
from 1990-2016, the prediction of CO2 emissions in 
Hebei was conducted. A total of 26 data were collected, 
and 21 samples from 1990 to 2011 were selected as the 
training set. The remaining 5 years of sample was as a 
test set. 

As shown in Fig. 5, the CO2 emissions forecast for 
2012-2016 are predicted by five forecasting models. It 
can be seen that the PCA/PSO-LSSVM model has the 
closest predictive value to the actual value. 

Fig. 6 shows the relative error of each model 
for each year. Except for 2016, the relative errors  
predicted by the PCA/PSO-LSSVM model are less 
than 0.7%. To further prove the effectiveness of PCA, 
PCA/LSSVM and LSSVM are also implemented. In 
contrast, the comparison shows that PCA/LSSVM 
has higher prediction error accuracy than LSSVM. 
There is still a large error between the predicted and 
actual values of the BPNN model, with the maximum 
relative error reaching 5%. Table 5 clearly lists the 
mean absolute error percentage (MAPE) and root mean 
square error (RMSE) values of the five models. The 
analysis shows that: (1) The PCA/PSO-LSSVM model 
has the best results in terms of MAPE and RMSE. They 
are 0.663% and 0.009 respectively. It is already a very 
accurate result. (2) The application of PCA reduces 
the multicollinearity between the influencing factors, 

Table 4. Component matrix.

Component PCI PC2 Component PCI PC2

Coal consumption 0.975 0.117 Consumer Price Index 0.934 0.197

Primary sector GDP 0.995 -0.075 Transportation possession quantity 0.964 -0.25

Secondary industry GDP 0.991 -0.101 Fuel and power purchase price index 0.947 0.279

Tertiary industry GDP 0.974 -0.225 Cement production 0.931 0.268

Area final consumption 0.982 -0.186 Urban green areas 0.994 -0.004

Total population 0.988 0.063 Added value of construction industry 0.982 -0.136

Power generation 0.997 -0.039 Producer price index 0.726 0.63

Total export 0.976 -0.104 Total power of agricultural machinery 0.896 0.392

Coverage of railway 0.975 -0.069 Consumption of pure fertilizers 0.875 0.383

Coverage of highway 0.965 -0.048 Total retail sales of consumer goods 0.953 -0.29

Urbanization level (%) 0.987 0.041 Finished steel production 0.979 -0.185

Total investment in fixed assets 
of the whole society 0.937 -0.334 Gross output value of agriculture animal 

husbandry and fishery 0.993 -0.08

Fig. 5. Fitting curves of the five predictions and actual values.
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simplifies the calculation and improves accuracy. The 
prediction accuracy of PCA/PSO-LSSVM is higher 
than that of PCA/LSSVM. The main reason is that PSO 
optimizes the kernel parameters and regularization 
parameters of LSSVM and increases the global 
optimization ability.

Conclusions

This paper uses a least squares support vector 
machine to establish a CO2 emission prediction model 
and uses PSO to solve the parameters. The algorithm 
not only retains the global optimum searching ability, 
but also improves PSO convergence. It has certain 
advantages in dealing with high-dimensional issues. 
With optimal regularization parameters the CO2 
emissions of Hebei in 2012-2016 are applied to verify the 
effectiveness of the prediction model. Based on the error 
values ​​of CO2 emissions forecast from 2012 to 2016, it 
can be observed that: (1) PCA is applied and both PSO 
convergence and LSSVM accuracy are improved; and 
(2) Compared with other models, the PSO-LSSVM 
model has higher accuracy. Therefore, the PCA/PSO-
LSSVM model proposed in this paper can be effectively 
applied to CO2 emissions prediction.

Based on the results, the following suggestions can 
be proposed for China’s future CO2 emissions reduction: 
(1) According to the energy consumption data, coal 
consumption has a high correlation with CO2 emissions, 
thus Hebei should respond to the national energy-
saving and emission-reduction policies by substituting 

coal with clean energy and renewable energy. (2) 
Restricting high-energy-consuming industries, adjusting 
the structure of the first, second and third industries. 
Hebei’s high-energy-consuming departments, such as 
steel and cement production, should improve production 
processes and prohibit high-pollution, poor-quality small 
workshops to reduce CO2 emissions during production. 
(3) The development of public transportation should be 
encouraged in order to reduce the growth of combustion 
cars, and the coverage of electric vehicles, hybrid 
vehicles, and the addition of charging piles should be 
promoted.
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