Original Research

N₂O Abatement over Ruthenium Supported on Highly Dispersed Hydrotalcite-Like Composite Metal Oxides

Yuanyang Zhang, Yaqiong Guo, Na Li, Yaoyu Feng*

School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China

Received: 7 June 2018
Accepted: 8 September 2018

Abstract

Highly dispersive hydrotalcite-like composite metal oxides were prepared by coprecipitation method. CO₂-TPD characterization showed that the adsorption capacity over the samples at low (<300°C) and middle (300~550°C) temperatures was improved by using La or Cu to modify the sample of MgAlO, while slightly reduced at high temperature (>550°C). The experimental results showed that the composite metal oxide, MeₓOᵧ (Me=La, Mg, Al), had relatively good performance on N₂O decomposition. A series of Ru/MeₓOᵧ catalysts were prepared by programed impregnation method. CO₂-TPD analysis indicated that the samples of Ru/MeₓOᵧ not only increased the total CO₂ adsorption capacity, but also obviously enhanced CO₂ adsorption capacity at 300~550°C compared with MeₓOᵧ. TEM characterization showed that the Ru component was uniformly loaded on the support surface under nanoscale. N₂O catalytic decomposition showed that the suitable Ru loading on support was 2.0(wt)%, i.e., Ru(2.0)/MeₓOᵧ. Under conditions of (v/v) 10% N₂O+82% N₂+5.0% O₂+3.0% H₂O, 30000h⁻¹ of space velocity, 510°C, the stability test showed that N₂O conversion remained ca. 95.0%, indicating that Ru(2.0)/MeₓOᵧ had good stability and activity at relatively low temperature.

Keywords: N₂O abatement; composite metal oxides; hydrotalcite-like structure; coprecipitation; programmed impregnation

Introduction

It has been reported that the global warming potential of N₂O is approximately 300 times higher than that of CO₂, and N₂O also shows a long lifetime in the atmosphere (almost 150 years). In addition, its potential for depleting the stratospheric ozone layer is comparable to that of hydrochlorofluorocarbons (HCFCs), known as the most important ozone-depleting agents [1,2]. However, the average rate of increase of the N₂O levels in the atmosphere is still approximately 0.2~0.3% annually, which is mainly caused by human activity, such as adipic and nitric acid plants as well as fuel combustion processes, especially after the 1980s [3-5]. Therefore, more research has not only paid much attention to the study of the effects of N₂O on the environment and human body, but also has focused on the effective control of N₂O emissions from stationary and mobile processes [6-9]. Several technologies have been potentially developed for N₂O abatement,
including thermal decomposition (TDeN,O) [10], nonselective catalytic reduction (NCR) [11], selective catalytic reduction (SCR) [12, 13], and direct catalytic decomposition (DeN,O) [14]. In addition, techniques using N.O as an oxidant to catalyze benzene to phenol (OBrPh) are also very interesting [15]. However, it is believed that the DeN,O approach is the most promising method due to its efficiency and low energy requirements.

Various catalytic systems such as transition and noble catalysts, perovskites, spinels and zeolites have been widely reported [16-21]. Yentekakis et al. [22] used iridium as a catalytic component and it was supported on a variety of surfaces, e.g., γ-Al₂O₃ and composites of gadolinia-ceria, alumina-ceria-zirconia, indicating that the composites exhibited high resistance of the iridium nanoparticles to sintering in an oxidative environment, and that the catalytic behavior was consistent with the independently measured sintering characteristics, while Lin et al. [23] reported that the Ir/Al₂O₃ sample exhibited excellent performance in initiating the decomposition of N₂O at a low temperature of 200°C. Abu-Zied et al. [24] recently indicated that the samples of rare earth (Nd, Pr, Tb and Y) doped NiO prepared by the calcination of their corresponding oxalate mixtures, which were synthesized via the microwave-assisted precipitation method, had led to an obvious decrease of the NiO crystallites size, and it was the origin of a substantial activity increase upon doping NiO with the various rare earth oxides. Basahel et al. [25] showed that the addition of a small amount of ZrO₂ to Zn/Co-mixed spinel could improve its activity on N₂O decomposition, which could be ascribed to the fact that Zr⁴⁺-doped samples not only stabilized the ZnCoO₂ phase and suppressed the formation of the ZnO phase at the temperatures from 550°C to 750°C, but is also related to the increased Co³⁺/Co⁵⁺ redox couple content. Its activity could be further improved by a suitable addition of CeO₂ to Zn-Co-O mixed oxide, which could be the reason for the eventual promotion of the reduction of Co⁵⁺ to Co²⁺ [26]. Eom et al. [27] indicated that various forms of cobalt oxide (Co₃O₄ and CoO) as well as modified with alkali metal (10% Na) and alkaline earth metal (10% Ba) were inactive for N₂O decomposition, while these samples became very active for N₂O decomposition when reduced under reduction media (H₂ gas), probably due to the oxidation state change of cobalt oxides during the reduction process. However, Kim et al. [28] found that an alkali metal modified sample (K/Co₃O₄) showed notable activity on N₂O decomposition, and its performance could be further improved with the suitable addition of CeO₂ (K/Co₃CeO₄). Zhang et al. [29] used potassium or sodium oxide to modify the Zn/Mg–Co catalyst and found that the catalyst activity for N₂O decomposition was improved. Characterization indicated that the addition of potassium or sodium oxide decreased the binding energy and resulted in an increase in the density of the electron cloud around Co and an improvement of catalytic activity. Grzybek et al. [30] found that the (Co, Zn)Co₃O₄/CeO₂/cordierite catalyst prepared by the impregnation method gave good performance for N₂O decomposition with the help of dispersion of the active spinel phase over the cordierite. Zabilsky et al. [31] recently reported the performance of a series of CuO/Co₃O₄, catalysts prepared by impregnation method for N₂O decomposition. It was found that the sample containing 10(wt.%) of Cu showed the best activity on N₂O degradation, which could be attributed to the highest number of small CuO clusters on the catalyst surface and the synergistic interaction between copper and ceria [32]. The catalyst activity, however, was found to be degraded in the presence of small amounts of oxygen and water vapor in the feed stream [33]. Zheng et al. [34] used zinc oxide to replace CeO₂ and supported ZnAl₂O₄, indicating that Cu-Zn/ZnAl₂O₄ showed higher catalytic performance along with good stability during N₂O decomposition by using the mixture (v/v) 8.1% N₂O+10.2% O₂+balanced N₂ at atmosphere. Liu et al. [35] reported that the mixed metal oxides with molar ratio of Ni/Co by 8.0/1.0, denoted Ni₃Ce, prepared by hydrothermal method showed good activity and stability on N₂O decomposition at 450°C by using the model mixtures (v/v) 0.2% N₂O+2.0% O₂+balanced He.

The studies of the various N₂O decomposition catalysts described above have mostly focused on the use of transition metal oxides as the main catalytic components, which were usually modified by using alkali and alkaline earth metals or rare-earth metals. Catalysts related to Co-Me (Me = Zn, Cu, Ce) or Cu-Ce have been mostly investigated. However, due to the cobalt’s negative effect on the environment during the process of industrial catalyst manufacturing as well as the degradation of the Cu-Ce catalyst activity in the presence of oxygen and water vapor in the feed stream, it is still interesting and challenging to explore novel catalysts potentially applying for effective catalytic N₂O decomposition. This paper reports that the high dispersive hydrotalcite-like composite metal oxides, Me₃O₃ (Me = La, Mg, Al), modified with Ru oxides by using programmed impregnation method, show good stability and activity at relatively low temperature, which provides the basis for further pilot-scale study for potential application in industries.

Material and Methods

Sample Preparation

The high dispersive hydrotalcite-like composite metal oxides were prepared by coprecipitation method. A prepared solution containing Na₂CO₃ and NaOH was added dropwise to a solution containing known amounts of Al(NO₃)₃, Mg(NO₃)₂, Cu(NO₃)₂, Zn(NO₃)₂, Zr(NO₃)₄, Mn(NO₃)₃, or La(NO₃)₃ (C.P. grade, China) under stirring at ca. 70°C until the pH of the solution reached ca. 9.0. The resulting precipitate was aged at 70–90°C
overnight, and then filtered, washed with distilled water until the pH of the filtrate was ca. 7.0, and dried at 105°C overnight, followed by calcination in a muffle furnace for 4–6h at 530°C in static air. Afterward, a series of ruthenium-supported catalysts were prepared by using the suitable hydrotalcite-like composite metal oxide as the support and programmed impregnation method, in which the RuCl₃·xH₂O (C.P. grade, China) was used as the precursor of Ru active component.

Characterization

The specific surface area and pore structure of the prepared samples were analyzed at -196°C over a range of relative pressures through nitrogen adsorption-desorption isotherms performed on an automated ASAP 2020 instrument (Micromeritics Corporation, USA). The compositions of catalytic components for typical samples were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) (Varian 710-ES, USA). Fourier transform infrared spectra (FT-IR) were performed on Nicolet NEXUS 470 (USA) spectrometer equipped with a DTGS detector. Structural characterization via X-ray diffractometry (XRD) was performed on a computerized Rigaku D/max-RB diffractometer (Japan, CuKα radiation, λ = 0.154 nm, 50 kV, 40 mA) over a 20 range of 5–80° with a step of 4°/min. The surface morphology (SEM) of the samples was characterized by using an FEI Quanta 400 FEG ESEM (15kV) electron microscope (USA), and an energy dispersive spectrometer (EDS) was used to confirm the nature of the components on the surface. The typical supported Ru samples were characterized by using the transmission electron microscopy (TEM) (Japanese, JEM-2010HR, operated at 200kV). Transmission electron microscopy and FT-IR characterization via X-ray diffractometry was performed on a computerized Rigaku D/max-RB diffractometer (Japan, CuKα radiation, λ = 0.154 nm, 50 kV, 40 mA) over a 20 range of 5–80° with a step of 4°/min. The surface morphology (SEM) of the samples was characterized by using an FEI Quanta 400 FEG ESEM (15kV) electron microscope (USA), and an energy dispersive spectrometer (EDS) was used to confirm the nature of the components on the surface. The typical supported Ru samples were characterized by using the transmission electron microscopy (TEM) (Japanese, JEM-2010HR, operated at 200kV). The physicochemical properties of the sample surface were determined by using a TP-5080 multi-functional automatic adsorption instrument (China) with CO₂ temperature-programmed desorption (CO₂-TPD). A particle size analyzer of S3500-BWD (Microtrac, USA) was used to identify the particle size distribution of composite metal oxides prepared by coprecipitation method.

Activity Evaluation

The experiments on catalytic N₂O abatement were carried out in a laboratory fixed-bed micro reactor using approximately 1.0 g of catalyst for each test. Before testing, the sample loaded in the reactor was pretreated with a mixture of N₂ and O₂ at 500°C for approximately 1.0h to yield a clean surface. Then the temperature of the reactor was controlled at the testing temperature. Afterward, the reactant mixture containing N₂O with an hourly space velocity in the range of 10000–40000 h⁻¹ was used to evaluate the sample performance on N₂O decomposition. The reaction system was maintained for 1 h at each reaction temperature so that the system could reach a steady state to obtain reliable N₂O conversion data. The tested temperature range was varied from 150°C to 700°C for each sample. The composition of the outlet mixture was analyzed by an online gas chromatograph (GC-2010 PLUS, Shimadzu, Japan) equipped with HP-PLOT/Q capillary columns (30 m × 0.32 mm × 20 μm) and an ECD detector. The catalyst performance was expressed as N₂O conversion under the applied experimental conditions, which was calculated based on the N₂O concentrations at the inlet and outlet, respectively.

Results and Discussion

Hydrotalcite-Like Composite Metal Oxides

BET and ICP Characterization

The composition, specific surface area and average pore size characterized by BET and ICP over the composite metal oxides prepared by coprecipitation method are listed in Table 1, which indicates that the molar composition of the active components of the prepared samples were close to the designed value. The specific surface area and pore size for all samples was ca. 50 m²/g and 8–12 nm, respectively. In addition, the distribution of particle size measured by laser particle size analyzer for the precursors prepared by coprecipitation method was ca. 0.8–2 μm under applied preparation conditions.

FT-IR Characterization

FT-IR characterization over LaMgAlO samples before and after calcination prepared by the precipitation method are shown in Fig. 1. This indicated

<table>
<thead>
<tr>
<th>Samples</th>
<th>Calcined temperature (°C)</th>
<th>ICP Molar composition</th>
<th>BET Surface area (m²/g)</th>
<th>BET Pore size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgAlO</td>
<td>530</td>
<td>Mg/Al=3.0</td>
<td>48</td>
<td>8.6</td>
</tr>
<tr>
<td>CuMgAlO</td>
<td>530</td>
<td>Cu/(Cu+Mg+Al) =0.1</td>
<td>39</td>
<td>11</td>
</tr>
<tr>
<td>ZrMnZnO</td>
<td>530</td>
<td>Zr/(Zr+Mn+Zn) =0.1</td>
<td>45</td>
<td>12</td>
</tr>
<tr>
<td>LaMgAlO</td>
<td>530</td>
<td>La/(La+Mg+Al) =0.1</td>
<td>51</td>
<td>9.8</td>
</tr>
</tbody>
</table>
that the characteristic peaks for the sample before calcination mainly appeared in 3400 cm\(^{-1}\), 1630 cm\(^{-1}\), 1350 cm\(^{-1}\), 750 cm\(^{-1}\), 630 cm\(^{-1}\), and 530 cm\(^{-1}\). The wide characteristic peak ca. 3400 cm\(^{-1}\) belonged to the stretch and flexural vibration of the water molecule at interlayer, and the characteristic peak ca. 1600 cm\(^{-1}\) belonged to the bending vibration of the crystallized water, and 1350 cm\(^{-1}\) characteristic peak was attributable to the C-O asymmetric stretch vibration of CO\(_3^{2-}\), indicating that it was shifted to the low wave number compared with the free OH\(^-\) (ca. 3600 cm\(^{-1}\)) and CO\(_3^{2-}\) (1430 cm\(^{-1}\)), which was probably a result of the interaction between the crystallized water and CO\(_3^{2-}\) at interlayer of the hydrotalcite-like structure. Furthermore, the characteristic peaks among the region of 700~400 cm\(^{-1}\) belonged to M-O vibration of composite metal oxides. Similar characteristic peaks appeared in the sample calcinated at 530°C, which indicated that the LaMgAlO sample prepared by precipitation method after calcination also remained the hydrotalcite-like structure. However, it showed that the characteristic peaks over calcinated LaMgAlO sample appeared in ca. 1600 cm\(^{-1}\) for OH\(^-\) of the crystallized water and ca. 1350 cm\(^{-1}\) for C-O of CO\(_3^{2-}\) were obviously weakened compared with the sample before calcination, respectively, which indicated that although the samples before and after calcination remained somewhat similar while the microstructure and composition of the samples had been changed, the physical and chemical properties of the samples would also be different. In addition, the other samples prepared by the coprecipitation method also showed similar results to the LaMgAlO sample.

XRD Characterization

XRD characterization over the prepared samples is shown in Fig. 2, which indicates that the spinel diffraction peak of MgAl\(_2\)O\(_4\), appeared in the MgAlO sample besides the main diffraction peak of MgO and Al\(_2\)O\(_3\). The diffraction peak of CuAl\(_2\)O\(_4\) spinel structure appeared in the CuMgAlO sample calcinated at 530°C. With respect to ZrMnZnO and LaMgAlO samples, the obtained results indicated that it only showed characteristic peaks of single metal oxides, i.e., ZrO\(_2\), Mn\(_2\)O\(_3\), ZnO, or La\(_2\)O\(_3\), respectively, without composite spinel structure formed when calcinated at 530°C under used preparation conditions.

CO\(_2\)-TPD Characterization

CO\(_2\)-TPD characterization showed that the adsorbed CO\(_2\) on the surface of the composite metal oxides could be divided into three states: temperature below 300°C (<300°C), middle temperature (300~550°C), and temperature above 550°C (>550°C) (Fig. 3). This indicates that the surface over MgAlO sample
appeared in a relatively strong desorbed CO$_2$ characteristic peak at high temperature above 550ºC, while the characteristics of surface alkaline would be inevitably changed by using metal oxides of La$_2$O$_3$ or Cu$_2$O/CuO to modify the sample of MgAlO under applied preparation conditions, indicating that the modified samples (CuMgAlO, LaMgAlO) had enhanced its adsorbed ability on CO$_2$ at low temperature while being weakened at high temperature, respectively. However, the sample of ZrMnZnO showed a relatively weak wide characteristic peak in the temperature range of 300~600ºC, probably indicating the interaction among various active components on the sample.

N_2O Decomposition

Fig. 4 showed the N_2O conversion over different hydrotalcite-like composite metal oxides under the following experimental conditions, gas mixture (v/v) 37% N_2O+40% N_2+20% O$_2$+3.0% H$_2$O, 10000 h$^{-1}$ of space velocity. This indicated that the activity was not very different when the reaction temperature was below 500ºC, while its activity had been improved when samples modified with different active components compared with the MgAlO sample when the reaction temperature was above 500ºC. The activity order over samples was followed by LaMgAlO>ZrMnZnO>CuMgAlO>MgAlO under applied experimental conditions, which was basically consistent with the variation of surface alkaline characteristics (Fig. 3). In addition, the stability test over the LaMgAlO sample indicated that it had relatively good activity and stability under applied experimental conditions, 10000 h$^{-1}$ of space velocity, reaction temperature of 600ºC, the same reactant gas mixture as above, and lasted for 120 h, which provided the theoretical and experimental basis for further research on improving sample activity.

Preparing Ru/Me$_x$O$_y$ Catalysts

The above results showed that the hydrotalcite-like composite metal oxide, LaMgAlO (Me$_x$O$_y$), had relatively good performance on N_2O decomposition, while its activity on N_2O decomposition was not good enough under used experimental conditions. Therefore, a series of Ru/Me$_x$O$_y$ catalysts were prepared by

<table>
<thead>
<tr>
<th>Samples</th>
<th>Calcined temperature (ºC)</th>
<th>ICP Ru content (wt%)</th>
<th>BET Surface area (m2/g)</th>
<th>BET Pore size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru (0.5)/ Me$_x$O$_y$</td>
<td>380</td>
<td>0.5</td>
<td>48</td>
<td>9.5</td>
</tr>
<tr>
<td>Ru (1.0)/ Me$_x$O$_y$</td>
<td>380</td>
<td>1.0</td>
<td>46</td>
<td>9.4</td>
</tr>
<tr>
<td>Ru (1.5)/ Me$_x$O$_y$</td>
<td>380</td>
<td>1.5</td>
<td>45</td>
<td>9.6</td>
</tr>
<tr>
<td>Ru (2.0)/ Me$_x$O$_y$</td>
<td>380</td>
<td>2.0</td>
<td>43</td>
<td>8.9</td>
</tr>
<tr>
<td>Ru (3.0)/ Me$_x$O$_y$</td>
<td>380</td>
<td>3.0</td>
<td>43</td>
<td>9.1</td>
</tr>
</tbody>
</table>
programmed impregnation method in order to further improve its activity on N₂O decomposition.

ICP and BET Analysis

ICP and BET results over Ru/MeₓOᵧ samples were listed in Table 2, which indicated that the loading of Ru on the MeₓOᵧ support was in the range of 0.5–3.0 (wt)%.

BET analysis indicated that the specific surface area of Ru/MeₓOᵧ samples was slightly decreased with the increase of the loading Ru on the support, indicating the influence of the supported catalyst on the pore structure of the support, MeₓOᵧ, was not obvious by using the programmed impregnation method.

TEM Characterization

TEM characterization over 2.0(wt)% Ru/MeₓOᵧ sample, i.e., Ru(2.0)/MeₓOᵧ, calcinated at 380°C was shown in Fig. 5, which showed that the Ru component was uniformly loaded on the support surface under nanoscale, indicating that the preparation method was suitable and could fully make use of the ruthenium active component on N₂O abatement.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Amount of total basic sites (μmol g⁻¹)</th>
<th>Distribution of different basic sites (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><300°C</td>
<td>300–550°C</td>
</tr>
<tr>
<td>MeₓOᵧ (support)</td>
<td>129</td>
<td>23.2</td>
</tr>
<tr>
<td>Ru (0.5)/MeₓOᵧ</td>
<td>147</td>
<td>9.5</td>
</tr>
<tr>
<td>Ru (1.0)/MeₓOᵧ</td>
<td>166</td>
<td>6.6</td>
</tr>
<tr>
<td>Ru (1.5)/MeₓOᵧ</td>
<td>186</td>
<td>4.3</td>
</tr>
<tr>
<td>Ru (2.0)/MeₓOᵧ</td>
<td>224</td>
<td>2.2</td>
</tr>
<tr>
<td>Ru (3.0)/MeₓOᵧ</td>
<td>229</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Fig. 6. Effect of Ru loadings on N₂O decomposition over supported Ru/MeₓOᵧ catalysts.

Fig. 7. Variation of N₂O conversion over Ru (2.0)/MeₓOᵧ catalyst as a function of time-on-stream.

Ru/MeₓOᵧ Performance on N₂O Decomposition

Fig. 6 showed the variation of N₂O conversion over Ru/MeₓOᵧ samples with Ru loadings on MeₓOᵧ support under the following conditions: gas mixture (v/v) 37% N₂O+40% N₂+20% O₂+3.0% H₂O, 30000 h⁻¹ of space velocity, reaction temperature 450°C. This indicated that the activity of Ru/MeₓOᵧ samples was obviously increased with the loading of Ru when the content of Ru on support was below 2.0(wt)%, while the activity was not continuously increased when Ru loading was above 2.0(wt)%. The suitable Ru loading on the hydrotalcite-like composite metal oxide, MeₓOᵧ, was ca. 2.0(wt)%, which not only made the prepared sample, Ru(2.0)/MeₓOᵧ, have good activity on N₂O decomposition but also saved the cost of catalyst production for potential industrial applications.
with the MeO\textsubscript{y} sample. Furthermore, the total adsorbed CO\textsubscript{2} capacity on the surface of Ru/MeO\textsubscript{y} samples was obviously increased compared with the MeO\textsubscript{y} sample, indicating that it was probably the origin of Ru/MeO\textsubscript{y} catalysts that had good activity compared with the MeO\textsubscript{y} sample under similar applied experimental conditions.

Stability Test over Ru(2.0)/MeO\textsubscript{y} Catalyst

Fig. 7 showed the stability result over Ru(2.0)/MeO\textsubscript{y} catalyst under the following applied conditions, gas mixture (v/v) 10% N\textsubscript{2}O+82% N\textsubscript{2}+5.0% O\textsubscript{2}+3.0% H\textsubscript{2}O, 30000 h-1 of space velocity, and 510\degree C. It indicated that the Ru(2.0)/MeO\textsubscript{y} catalyst had good stability when the reactant mixture contained small amounts of oxygen and water vapor. The N\textsubscript{2}O conversion was stable and more than 95% during the period of stability test lasted for over 100h, which also implied that the Ru(2.0)/MeO\textsubscript{y} catalyst had good activity at low temperature. The preprimary results provided the basis on further pilot scale study for potential industrial applications.

SEM Characterization over Samples before and after Reaction

SEM characterization over Ru(2.0)/MeO\textsubscript{y} catalysts before and after reaction is shown in Fig. 8, which indicates that the surface of the used Ru(2.0)/MeO\textsubscript{y} sample was slightly rough compared with the fresh Ru(2.0)/MeO\textsubscript{y} sample, while it did not affect its activity on N\textsubscript{2}O decomposition under applied experimental conditions (Fig. 7), indicating that the prepared Ru(2.0)/MeO\textsubscript{y} catalyst had good stable structure when the reactant mixture contained small amounts of oxygen and water vapor.

Conclusions

CO\textsubscript{2}-TPD characterization over hydrotalcite-like composite metal oxides prepared by the coprecipitation method showed that the adsorption capacity over the samples at low temperature (<300\degree C) and middle temperature (300–550\degree C) were improved by using La or Cu to modify the sample of MgAlO\textsubscript{x}, while being slightly reduced at high temperature (>550\degree C). Results indicated that the LaMgAlO\textsubscript{x} (MeO\textsubscript{y}) sample had relatively good performance on N\textsubscript{2}O decomposition. A series of Ru/MeO\textsubscript{y} catalysts were prepared by programed impregnation method. CO\textsubscript{2}-TPD characterization showed that the samples of Ru/MeO\textsubscript{y} not only increased total CO\textsubscript{2} adsorption capacity, but also obviously enhanced CO\textsubscript{2} adsorption capacity at 300–550\degree C compared with MeO\textsubscript{y}. TEM characterization indicated that the Ru component was uniformly loaded on the support surface under nanoscale, indicating that the preparation method was suitable and could make full use of ruthenium active component on N\textsubscript{2}O abatement. Catalytic N\textsubscript{2}O decomposition showed that the suitable Ru loading on the support was 2.0(wt)% i.e., Ru(2.0)/MeO\textsubscript{y}. The stability test showed that N\textsubscript{2}O conversion remained ca. 95.0%, indicating that Ru(2.0)/MeO\textsubscript{y} had good stability and activity at relatively low temperatures, which provided the basis for further pilot-scale study for potential industrial applications.

Conflict of Interest

The authors declare no conflict of interest.

References

2. ABU-ZIED B. M., SOLIMAN S. A., ABDELLAH S. E. Enhanced direct N\textsubscript{2}O decomposition over Cu\textsubscript{2}Co\textsubscript{x}Co\textsubscript{4-x}O\textsubscript{4} (0.0 ≤ x ≤ 1.0) spinel-oxide catalysts. J. Ind. Eng. Chem. 21, 814, 2015.
4. MASSARA T.M., MALAMIS S., GUIASOLA A., AEZA J.A.B., NOUTSOPoulos C., KATSOU E. A

12. PINAЕVA L.G., PROSVIRIN I.P., DOVLITIVA L.S., DANILEВA I.G., SADOВSKAYA Е.M., ISUPOВA L.A. Me\textsubscript{VI}MeO\textsubscript{VI}O\textsubscript{II} (Me=Fe, Co, Ni) catalysts for high temperature N\textsubscript{2}O decomposition and NH\textsubscript{3} oxidation. Catal. Sci. Technol. 6, 2150, 2016.

17. PIETROGLIACOMI D., CAMPA M.C., CARBONE L.R., TUTI S., OCCHIUZZI M. N\textsubscript{2}O decomposition on CeO\textsubscript{2}, CuO\textsubscript{2}, FeO\textsubscript{2} or MnO\textsubscript{2} supported on ZrO\textsubscript{2}: The effect of zirconia doping with sulfates or K+ on catalytic activity. Appl. Catal. B: Environ. 187, 218, 2016.

23. LIN J., PAN X.L., WANG X.D., CONG Y., ZHANG T., ZHU S.M. Catalytic decomposition of propellant N\textsubscript{2}O over Ir/Al\textsubscript{2}O\textsubscript{3} catalyst. AIChE J. 62, 3973, 2016.

34. ZHENG XY., ZHANG RH., BAI S.P., HUA C., WANG S.B., DUAN X.G. Catalytic decomposition of N\textsubscript{2}O over Cu-Zn/ZnAl\textsubscript{2}O\textsubscript{4} catalysts. Catalysts 7, 1, 2017.