
Introduction

Assessment of soil quality plays a vital role in 
the management of environmental and agricultural 
resources. In order to get optimum results from the 
inputs in agriculture, cost-effective soil analysis is 
very important [1-5]. We have to make efficient use of 
different inputs, such as pesticides and fertilizers not 
only for crop production but also to mitigate and abolish 
pollution risks resulting from the over-application 

of different agrochemicals [6-10]. NIR spectroscopy  
is a rapid, inexpensive, and precise technology for 
predicting a range of soil properties in ecological studies 
[11-12].

In soil sciences, NIR spectroscopy is used to 
measure different factors such as clay content, cation-
exchange capacity, specific surface area, organic 
matter, moisture content, and concentrations of organic 
and inorganic fractions of nitrogen and carbon [13-
14]. In literature, some studies have also tried to 
predict microbial, fungal biomass, respiration in boreal  
[15-18] and temperate forest soils [19-21]. As silica, 
being the major part of the inorganic substance in the 
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soil, is transparent to infrared radiation, on the other 
side, NIR spectroscopy, when applied on high organic 
matter soils, produces different results as compared  
to high mineral content soils. However, measurements  
on forest humus advocate for the use of NIR 
spectroscopy on organic soil [15-16]. Arctic soils, 
which account for 14% of the total world organic 
carbon in the soil [22], experience rapid progressive 
climatic warming. Greater attention is being paid to the  
science of climate change, and therefore the applicability 
of NIR spectroscopy techniques to this highly organic 
soil.

NIR spectroscopy usually measures the bond 
structure of molecules through their vibrational 
transitions. A wide range of molecules belonging to 
organic compounds absorbs in the NIR spectroscopy 
range, which makes it a reasonable technique not only 
for the qualitative analysis but also for quantitative 
analysis of organic matters. NIR spectroscopy is fast 
and invasive because, in NIR spectroscopy mostly, 
samples are analyzed without any pretreatment.

The goal of this study was to search the prediction 
models of NIR spectroscopy to determine the essential 
quality indices of the soil. A total of 108 samples  
of soil data from Abisko, northern Sweden were 
collected. Our purpose in this study was to evaluate  
the performance of NIR spectroscopy in measuring 
both the Ergosterol concentration and the soil organic 
matter. Some alternative statistical models to the PCR  
or the linear partial least squares regression are  
employed in this prediction setting. The proposed 
models come from the recent devolvement of the 
modern Statistics that allow for analyzing the big data 
without reducing the dimension. These new models 
are taken using the notion of functional statistics, 
which allows us to analyze the data as curves instead 
of some numerical numbers. Notice that the functional 
statistics have encountered a strong infatuation in these 
last years, as evidenced by the several special issues 
dedicated to this topic by various papers [e.g., 23-24]. 
Such statistical analysis is motivated by the recent 
technological development of the measuring instruments 
and the informatics tools that allow for the recovery 
of increasingly bulky data being recorded densely 
over a thinner discretization grid, which makes them 
intrinsically a continuous curve. One of the advantages 
of this approach is that it takes into account the whole 
curves in its continuous path instead of taking some 
discrete points. Of course with this consideration we 
keep all the information in the sampled data. In this 
contribution, we will predict the chemical and the 
microbiological properties of soil quality by using a 
various nonparametric functional regression approach. 
More precisely, we use four regression models: FNR, 
FLLR, FRER and FRR. A comparison between these 
models is carried out by evaluating their rapidness, 
accuracy and robustness in the prediction of the 
ergosterol concentration and the peregrinate soil organic 
matter.

Methods and Materials

Samples Collection and their Pretreatment

Soil samples were obtained in the result of a  
long field experiment in Abisko, northern Sweden 
(681210 N, 181490 E). The soil samples taken from the 
site have a depth of organic horizon of 12–15 cm, while 
the vegetation is controlled by Cassiope tetragona (L.) 
D. Don. The samples for analysis were obtained from 
6 different replications, including: 1) high nutrient 
availability, provision of NPK fertilization; 2) high 
temperature, provision of passive open top greenhouse; 
3) cloudiness, provision of shading treatment; 4) 
provision of mixture of fertilization as warming 
conditions; 5) mixture of fertilization and shading 
environment; and 6) use of control plots without any 
manipulation. In the result of this, we get 36 plots  
(120 *120 cm). The details of these plots are available 
in [25-26]. In short, only four soil cores of 10 cm depth 
were obtained from each of 36 plots. Furthermore, each 
core was divided into two equal parts of 0-5 cm and 
5-10 cm. Two subsamples were formulated per plot for 
surface layer while only one sample for the deeper layer. 
In this way, we obtained 108 samples (72 for the surface 
layer and 37 for the deeper layer). The soil samples were 
also made homogenous after the removal of roots and 
stones, and these samples were further dried in the oven 
for 15 minutes at 70ºC. Some other related studies are 
available [e.g., 27-29].

Recently Developed Regression Models

The chemical and microbiological properties of 
this data set have been described in detail by [30]. 
Nevertheless, from a statistical point of view, we have 
observed that there is wide variability in the Ergosterol 
concentration. Indeed, it ranges 53.7 to 434.15 µg/g 
soil and its standard deviation, whose measure of the 
dispersion of the data is 85.49 µg/g soil. On the other 
hand, the soil organic matter (SOM) index is more 

Fig. 1. NIR spectroscopy curves.
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homogenous than the Ergosterol concentration. In 
particular, the SOM-percentage of 108 samples ranges 
from 43% to 95% and has a standard deviation equal 
to 10.82. We return to [30] for the NIR spectroscopy 
analysis of these data. 

From Fig. 1, it appears clear that the shape of the 
spectra contains some peaks that hide information. 
Therefore, it is challenging to evaluate the quantity of 
the chemical and microbiological properties through 
the NIR spectroscopy analysis. Thus, some statistical 
models might be necessary to quantify these properties. 
In this context, multiple linear regression (MLR), PCR 
and partial least squares regression (PLSR) are the 
most popular models of this kind of data. However, 
the implementation of these models is based on the 
dimension reduction of the data. Alternatively, in this 
paper we use some new statistical models in order to 
investigate the soil quality without dimension reduction. 
These new models come from the recent development 
of modern statistics, allowing us to analyze the data 
as curves. The main advantage of this approach is the 
fact that it takes into account the whole curves in its 
continuous path and not only on some discrete points. 
Of course, with this consideration we keep all the 
information in the sampled data. As pointed out in 
the introduction, we will predict the chemical and the 
microbiological properties of the soil quality by using  
a varied nonparametric functional regression approach. 
To fix the ideas, let’s present the mathematical 
formulation of the prediction problem, the regression 
formula:

                (1)

…where Y is a real variable means – either the 
SOM-percentage or the Ergosterol concentration. 
The functional variable is the curve of the NIR  
spectroscopy (700-2500 wavelength). So, the prediction 
of Y is based on the determination of function r(.). In 
modern statistics there exists a various nonparametric 
approach that can be used to model this prediction 
issue. In order to provide the results to the users of 
NIR spectroscopy, we analyzed a varied collection 
of statistical predictors. We present in the rest of this 
section some regression models recently developed in 
functional statistics. 

Functional Classical Regression (FCR)

Classical regression was introduced in functional 
statistics by [31-38], where they studied the functional 
version of the Nadaraya Watson estimator, which is 
obtained by 

       (2)

By a simple derivation we get explicitly the estimator 

                   (3)

Then for all given spectra curves we predict its 
SOM-percentage or the Ergosterol quantity by  

                            (4)

…where r̃  (x) is the kernel estimator of r(x) as defined by:

              (5)

Functional Local Linear Regression (FLLR)

This regression model is obtained by combining 
the linear approach with the nonparametric model. The 
local linear regression inherits the advantages of the 
two regression models. In particular, from the linear 
property of this model we reduce the convergence rate 
and from the nonparametric one we explore the local 
structure of the curves. This statistical model is obtained 
by assuming that the function  has a linear form at the 
neighborhood of a given spectra curvex. Mathematically, 
this assumption is expressed by:

 
(6)

…where the quantities a and b are obtained by 
minimizing 

     
(7)

…with β(x, x) being the known function used to measure 
the proximity between the curves. The local linear 
estimator (LLE) r(x) can be explicitly expressed as 
follows

                   (8)

…where:

       (9)

We point out that this estimator is a functional 
version of the LLE proposed by Fan et al. [37]. Such  
a version has been introduced by [40-44].

Functional Relative Error Regression (FRER)

This regression model was introduced in functional 
statistics by Demongeot et al. [43] and further used by 
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[46-47]. It constitutes an alternative of the classical 
regression model. The advantage of this model is the fact 
that it takes into account the largest value of the response 
variable. Indeed, the least square of this regression is 
defined relative to the values of the response variable as 
follows. For a given curve the predictor of the response 
variable  is a solution of:

              (10)

Once again this regression is very easy to implement 
in practice, because its expression can be explicitly 
defined by: 

               (11)

Functional Robust Regression (FRR)

The M-regression or the robust regression is an 
old alternative model introduced by Huber (1964). It 
allows us to correct many drawbacks of the classical 
regression such as heteroscedasticity and the presence 
of the outliers. The functional version of this model has 
been introduced by [48] and also implemented in [49]. 
This model is defined as the solution of the following 
optimization problem:

            (12)

…where ρ is a real-valued Borel function chosen by the 
user according to the studied data. It is clear that this 
mode covers and includes many usual nonparametric 
models, for example for ρ(Y, f ) = (Y – f )2 we obtain 
the classical regression and ρ(Y, f ) = (Y – f| leads to 
the conditional median. More examples can be found 
in [50]. With this regression, the predictor is obtained 
by resolving the empirical version of the optimization 
problem that is:

      (13)

Results and Discussion

We point out that the performance of all these 
models is closely linked to the different parameters 
involved. In fact, the most influenced parameters in 
this prediction issue are smoothing parameter hn, kernel 
K and the parameters related to the distance between 
the curves. Concerning this last point, most of the 
metrics are based on some usual interpolation such as 
trigonometrics, spline or by wavelet basis functions [32]. 
In all these cases, we approximate curve x by using 
a basis function, and we write: 

Fig. 2. Prediction results of functional classical regression (SOM 
on the left and Ergosterol at right).

Fig. 3. Prediction results of functional local linear regression 
(SOM on the left and Ergosterol to the right).

Fig. 4. Prediction results of functional relative error regression 
(SOM to the left and Ergosterol at right).
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                  (14)

…where is (Bi(.))i a given orthonormal basis function. 
In practice, we use a penalized version of this 
approximation, and we put:

               (15)

Thus, the distance between the curves is computed 
between their interpolation functions.   Readers can find 
in [32] more details on the mathematical formulation for 
this notion of a functional metric. For this prediction 
issue, after dividing the 108-sample into parts (learning 
sample and testing sample), we use the leave-one-out 
cross-validation technique to select parameters  and 
the bandwidth parameter We point out that the cross-
validation procedure is implemented with respect to the 
least square error defined by

             (16)

…where θ(.) means one of the previous regression 
models. Concerning the locative function, we choose 
the same function used by Rachedi et al. [51]. Using the 
same kernel and score function as in [52], we obtained 
the following results (Figs 2-5).

Finally, we compare these results to the PCR. 
The latter is obtained by using the routine pcr in the 
R-package PLS.

It is clear that these new regression models have 
satisfactory prediction results and they improve 
substantially the prediction results of the PCR studied 
by [30] (see Fig. 6). However, the performance of  
the studied models is varied with respect to the 
homogeneity of the data. For instance, the FCR and  
the FLLM are adequate for the SOM variable, which is 
more homogeneous than the Ergosterol concentration. 
On the other hand, the FREL and the FRR are more 
adapted to the Ergosterol concentration. Such a 
conclusion is justified by the cross-validated prediction 
error (CVPE) as defined in [16] and presented in  
Table 1.

Fig. 5. Prediction results of functional robust regression (SOM to 
the left and Ergosterol at right).

Fig. 6. Prediction results of principal component regression 
(SOM at left and Ergosterol to the right).

Model FCR-CT FLLR-CT FRER-CT FRR-CT PCR-CT

SOM 0.45 0.56 0.49 0.53 0.44

Ergosterol  0.43 0.51 0.42 0.57 0.50

Table 1. Cross-validated prediction error (CVPE) of the different regression models.

Table 2. Computational time (CT) of the different regression models.

Model CVPE-FCR CVPE -FLLR CVPE -FRER CVPE -FRR CVPE -PCR

SOM 0.87 0.74 0.98 0.94 2.91

Ergosterol  1.27 1 .12 0.91 0 .89 3.19
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Finally, we point out that these proposed models are 
very fast in predicting the chemical properties of the 
soil data. In Table 2 we give the computational time 
(CT) of each model using proc-time. It seems clear that, 
for the SOM case, the FCR and PCR have small CT as 
compared to the FLLR, FRER and FRR models. While 
for the Ergosterol concentration data the fast models are 
FCR and FRER.

Conclusion

In this work we have developed a new approach 
to predicting the soil quality of Alisko in terms of its 
chemical and microbiological properties. Typically, 
we have focused on both the prediction of the soil 
organic matter (SOM) and the Ergosterol concentration. 
This new approach combines recent developments in 
chemistry and modern statistics. Specifically, from 
chemistry we use NIR spectroscopy to analyze the 
collection of some regression models recently developed 
in nonparametric statistics. The technology of NIR 
spectroscopy is the fastest and most accurate method. 
Moreover, it reduces the need for conventional wet 
chemistry procedures. Next, the functional statistics 
allows us to explore all the information of the 
spectroscopy analysis where the spectra are viewed 
as curves. These models are easily implementable, 
and their efficiency is related to the homogeneity of 
the studied data. In this sense for each case, we can 
choose the adapted model. Moreover, the proposed 
models permit us to avoid the core drawback of the  
PCR model that is the loss of information after the 
predictors transformation. Indeed, this transformation 
is carried out through some directions chosen 
independently to the prediction problem. In particular, 
the response variable does not intervene in the choice  
of the optimal direction, which can influence 
negatively the prediction issue. Thus, the originality 
of the functional approach comes from the fact that 
the prediction problem is performed without any 
transformation of the data. We emphasize that such  
a combination of modern chemistry and modern 
statistics is very beneficial ecologically, and is more 
flexible, robust and fast. On the other hand, it is not 
necessary to add another chemical product, and with 
respect to the nature of data, we can choose an adequate 
model among the various functional models that exist. 
Last but not the least, in this study we have concentrated 
only on four models, but there exist a wide range of 
statistical models that can be used to describe this kind 
of data.
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