
Introduction

The fog and haze weather that occurs year by year in 
China seriously affects people’s life and health. Pollution 
weather often sweeps through most parts of the country, 
especially in northern China, the Yangtze River Delta 
and central China. These areas are densely populated 
and economically developed, and their demand for 

natural resources is far higher than those in other parts 
of China. With the increasing consumption of fossil fuels 
from factories and private cars, SO2 and NOx emitted 
to the air not only do direct harm to human beings 
and plants, but also cause secondary pollution such as 
acid rain, haze, greenhouse effect and photochemical 
smog. Severe smog pollution has also occurred in many 
developed countries, such as the photochemical smog 
events in Los Angeles in 1955 and 1970, and the smog 
events in London in 1952, which resulted in a large 
number of deaths. As the culprit of air pollutants, PM2.5 
concentration increases the mortality of respiratory and 
cardiovascular diseases.
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A novel method was proposed for identifying air quality in China. Causality analysis-based 
significance tests combined with different machine-learning algorithms were carried out to achieve 
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In order to monitor air quality, many countries 
have set up monitoring stations. The air components  
are recorded and analyzed in real time. However, for 
those areas without air monitoring stations, how to 
accurately predict the air quality and timely report 
to the public is still a difficult problem. The factors 
affecting air quality are very complex, including natural 
and human factors such as temperature, humidity, 
atmospheric pressure, and fossil fuel combustion. These 
factors together lead to the non-linear distribution of  
air quality in space. Therefore, air quality of a certain 
area cannot be judged well by monitoring data in  
nearby city stations. Distance is not a good means of 
evaluation.

Air quality forecasting methods can be classified 
into three kinds of categories, physical characteristics-
based, statistical characteristics-based and hybrid 
methods. Pollutant diffusion model is one of the 
physical characteristics-based methods. It establishes a 
mathematical formula, such as Gaussian plume models, 
which brings meteorological data, street structure, 
traffic flow and then evaluates air quality. Toja et al. [1] 
demonstrated that the average height of the buildings 
showed a clear influence on the vertical profile of 
carbonic oxide concentration. Super et al. [2] proposed 
a multi-model approach based on the combination of 
Eulerian model and Gaussian plume model to monitor 
emissions of CO from the urban-industrial complex. 
For statistical characteristics-based methods, time series 
analysis and significance test are often used to evaluate 
air quality. Linear and non-linear regression models in 
statistics reflect the intrinsic property of different air 
components. Chang WY et al. [3] evaluated the long-
term historical records for 1970-2010 in eastern China, 
and a significant relationship was found between PM2.5 
concentrations and SO2. Liu et al. [4] recommended a 
mixed forecast strategy ARIMAX for values of PM2.5, 
NO2 and O3 based on daily and hourly records. Chen et 
al. [5] suggested that individual meteorological factors 
can influence local PM2.5 concentrations indirectly in 
interacting with other meteorological factors. They 
tested the convergent cross-mapping (CCM) causality 
relationship between different meteorological factors 
and PM2.5, and it was proven that PM2.5 concentrations 
in winter were notably higher than that in other seasons, 
meaning that temperature took significant impacts on 
air quality. Moreover, positive bidirectional coupling 
between humidity and PM2.5 concentrations, and negative 
bidirectional coupling between wind, solar radiation and 
PM2.5 concentrations were explained by comparing the 
causality direction results. On the other hand, it is not 
convincing to affirm that air pollution is only caused by 
natural factors. The influence of human activities and 
industrial production is also crucial. Kolluru et al. [6] 
discussed the contribution of different travel modes to 
passengers’ pollutant exposure for long-distance travel 
on a national highway in India. The concentrations of 
CO, CO2, and PM2.5 were studied by the analysis of 
variance (ANOVA) method and it was concluded that 

avoiding national highways passing through cities can 
reduce up to 25% PM2.5 and 50% CO mass exposures. 
Zhou et al. [7] indicated that population density, 
industrial structure, industrial soot (dust) emissions, and 
road density had a significantly positive effect on PM2.5 
concentrations, with a significantly negative influence 
exerted only by economic growth in China.

For hybrid models, most of the air quality evaluation 
methods combine the advantages of physical and 
statistical methods, and predict the air quality by 
artificial intelligence algorithms. This includes types 
of applications with machine learning. Cordero et al. 
[8] measured NO2 concentrations using multivariate 
linear regression, random forests and artificial neural 
networks. Zhu et al. [9] achieved high classification 
accuracy in predicting the haze in China based on a 
selective ensemble algorithm. However, feature selection 
in machine learning is a difficult problem. There is no 
universal criterion to determine whether a feature is 
suitable or not until the prediction results come out after 
iterations of solving.

In this study, a novel method was proposed for 
identifying air quality in China. Causality analysis-
based significance tests combined with different 
machine learning algorithms were carried out to achieve 
an automated and accurate classification. To this end, 
the most developed 100 cities in China were selected 
as study areas. We analyzed types of meteorological 
factors and the individual industrial pollutants of NO2, 
SO2, CO and O3 by means of time series from a large 
number of air monitoring data, and focused on the 
causality influence of the accumulative process of each 
pollution ingredient on PM2.5. In order to better clarify 
the formation of haze, joint regression models were 
established to quantify the influence degree of different 
factors on the cause of PM2.5. Features selected by filter 
and wrapper methods were used to train and test the 
classification model. An accuracy of 90.2% with the 
ensemble (boosted trees) classifier was obtained in the 
comparison of different algorithms.

Material and Methods

Data Acquisition and Preprocessing

The first part of the data used in this paper comes 
from the China Meteorological Data Service Center 
(http://data.cma.cn), an authoritative and unified 
shared service platform for the China Meteorological 
Administration, and its meteorological data resources 
are open to domestic and global researchers. Various 
factors under record have been continuously updated 
from 1951 to three months lagging before current in 
the database of “Daily data set of surface climate in 
China” in version 3.0. In this paper, we analyzed natural 
factors composed of average station air pressure (PRS, 
0.1 hPa), average air temperature (TEM, 0.1ºC), average 
relative humidity (RHU, 1%), average wind speed 
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(WIN, 0.1m/s), daily total precipitation (PRE, 0.1 mm), 
evaporation (EVP, 0.1 mm), sunshine duration (SSD,  
0.1 h) and ground surface temperature (GST, 0.1ºC).

The analyzed daily data in this study covered 
the duration from January 1, 2015 to December 31, 
2017. Data of each factor referred to different types of 
record structures, so preprocessing was carried out for 
normalization. First, we filtered the most developed 
100 cities in China. Each city contains various 
monitoring stations, so normalization is crucial to the 
comparison among regions. The records of a city with 
incomplete information were excluded in this paper. As 
a result, there were 93 cities left, including Shanghai, 
Guangzhou, Shenzhen, Chengdu, Hangzhou, Tianjin, 
Nanjing, Chongqing, Xi’an, Qingdao, Dalian, Xiamen, 
Ningbo, Hefei, Zhengzhou, Ha’erbin, Kunming, 
Taiyuan, Nanchang, Nanning, Wenzhou, Shijiazhuang, 
Changchun, Quanzhou, Guiyang, Changzhou, Zhuhai, 
Jinhua, Yantai, Haikou, Huizhou, Wulumuqi, Xuzhou, 
Jiaxing, Weifang, Luoyang, Nantong, Yangzhou, 
Shantou, Lanzhou, Guilin, Sanya, Huhehaote, Shaoxing, 
Yinchuan, Zhoushan, Xining, Wuhu, Ganzhou, 
Jinyang, Zhangzhou, Linyi, Tangshan, Taizhou, 
Yichang, Huzhou, Baotou, Jining, Yancheng, Langfang, 
Hengyang, Qinhuangdao, Daqing, Huaian, Linjiang, 
Jinzhou, Lianyungang, Zhangjiakou, Zunyi, Shangrao, 
Longyan, Quzhou, Chifeng, Yuncheng, E’erduosi, 
Yueyang, Anyang, Zhuzhou, Zibo, Qizhou, Nanping, 
Qiqihaer, Changde, Liuzhou, Nanchong, Luzhou, 
Bengbu, Baoji, Yibin, Yichun, Huaihua, Yulin and 
Meizhou.

The other part of the data used in this study were 
records of air pollutants. Since 2012, the Chinese 
government has put more effort to monitoring air quality, 
and has released the air quality index (AQI) information 
of each city in the country hourly, which can be 
acquired from the Ministry of Environmental Protection 
of the People’s Republic of China (http://datacenter.mep.
gov.cn). We focused on the major pollutants, including  
PM2.5 (μg/m3), CO (mg/m3), NO2 (μg/m3), O3 (μg/m3)
and SO2 (μg/m3). Records of pollutants from the 
93 cities above also cover the period from January 
1 2015 to December 31 2017. All time series were 
normalized.

Finally, there was a matrix of 93 x 1096 x 13 datasets, 
where 93 represented the number of cities, 1096 days 
from 2015 to 2017, and 13 included 8 meteorological 
factors and 5 pollutants.

Proportion-Based Causality Test

Proportion-based causality (PBC) [10] used in this 
study is briefly described below. As a statistical theory, 
it evolves from the granger causality (GC) [11], which is 
widely used in the field of economics. PBC avoids the 
fatal drawback in GC, which only takes the error term 
into consideration to calculate the log value and neglects 
the role of independent variable terms in regression. 
To deal with time series, we estimate the current value 

of the variable through its past values. The joint auto 
regression model is applied to measure the regression 
characteristics between multi-variables. In this study, 
we consider the bi-variable situation and assume the 
lagged length to be m. This means that the current value 
is linearly related to the time series of the preceding m 
moments. The autoregressive representations and their 
joint representations are described respectively in the 
following Eq. (1) and Eq. (2):
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…in which ε and η are uncorrelated noise terms, and a  
is the coefficient of variables in the regression model. 
In the autoregressive model of Eq. (1), the current value 
of X depends linearly on its own previous values and on 
the stochastic term ε. Covariance between η1 and η2 is 
defined by ση1η2 = cov(η1η2). If the past values of variable  
X2 make the estimation of X1 to be more accurate, the 
noise term of σ2η1 should be less than σ2ε1. In this case, 
X2 is said to have a causal influence on X1. While if 
σ2ε1 = σ2η1, X2 has no causal impact on X1. In the 
GC method, causality value from X2 to X1 is defined as 
Eq. (3).

                       (3)

There is no causal influence from X2 to X1 
when FX2→X2 = 0, and if FX2→X2>0, X2 takes causal impact 
on the value of X1. For long-term empirical research, 
the vector of past values in X1 or X2 will be too large 
to build the regressive model. A general approach 
for determining the lagged order m is AIC-Akaike 
Information Criterion (AIC) [12]. It was proposed  
by Akaike to evaluate the behavior of a statistical  
model. In general, the lagged order m can be defined as 
Eq. (4).

1 2

2AIC(m) N log(det( )) 2mnη η= σ +∑      (4)

…in which N is the length of sampled time series data,  
m represents the lagged order, and n is the number 
of variables used in Eq. (2). The appropriate m will 
minimize AIC value. 
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In Eq. (2), past values of X1,t–j and X2,t–j occupy a 
large portion among the three contributors to X1,t or  X2,t. 
Based on this, a more appropriate form of causality for 
multivariate interactions is defined as Eq. (5) and Eq. (6). 
Fig. 1 explains how to derivate Eq. (6).  Firstly, nXi→Xk 
represented the causality from Xi to Xk. Terms of Xi 
and Xk were expanded within Eq. (5), and the lagged 
order m was highlighted in green in Fig. 1. Thus, from 
Xk to X(k–m+1) there were totally m expanded equations 
that were considered as taking influence on the current 
value of Xk. All the Xi related terms, which were 
delineated with a circle in Fig. 1, were summed to be 
the divisor in Eq. (6). The summation of Xk in Eq. (5) 
was the dividend in Eq. (6). It describes what proportion  
Xi occupies among all the contributions of Xk. More 
details can be referred to the definition of PBC, which 
is also named as a new causality method proposed by 
Hu [10].
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In this paper causality relationship between different 
factors and PM2.5 concentrations was tested, and based 
on Eq. (7), models were built to describe the influence 
of each component contributing to haze.
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…in which F represented time series of different factors 
related to PM2.5.

Significance Test

In order to determine whether the causality test 
results were accidental, we repeated the whole process 
one hundred times to verify the effectiveness of time 
series. Besides the normal time series aligned in the 
duration from January 1, 2015 to December 31, 2017, 
sequence of variables in the other processes was 
resampled and shuffled into disorder. It was analogous to 
the bootstrap function widely used in statistical analysis.

Feature Selection

An efficient feature selection strategy is a crucial 
part in classification, especially in the case of a high 
dimensional dataset. In this paper, the dataset was  
93 x 1096 x 13, where 13 was the number of candidate 
features including meteorological factors and pollutants, 
and 93 x 1096 = 105216 was the number of instances 
used for training and testing the classification model. 
The number of instances was much greater than that 
of the feature, so the choice of feature selection was 
simpler compared with other pattern recognition 

Fig. 1. Illustration of how Eq. 6 was derived.
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problems. Two kinds of algorithms were adopted to 
rearrange features to train the model, combining filter 
and wrapper methods. For the filter feature selection, we 
performed the so-called “importance ranking” using the 
ReliefF [13] script implemented in MATLAB. Features 
were passed to that function, and the ranks and weights 
of predictors would be returned for the training dataset. 
Here we labeled a daily record in each city with one of 
five symbols that represented five levels of air quality, 
including excellent (“00001”), good (“00010”), slightly 
polluted (“00100”), polluted (“01000”) and seriously 
polluted (“10000”) according to their scores of AQI. 
Therefore, “labels” stood for response vector and 
features were predictors. Based on the rank and weight 
of each feature, the sequence of features during training 
were rearranged.

In the second wrapper feature selection method [14], 
customized objective function was designed to evaluate 
the performance of each feature. In the subsequent 
classification procedure, we tested plenty of classifiers 
to test which one was more suitable for air quality 
recognition. Thus the customized objective function 
should be implemented by integrating the corresponding 
classifiers. We started the wrapper feature selection 
with an empty feature sequence, which was also called 
Forward sequential feature selection (FSFS) [15], and 
each feature that helped improve prediction accuracy 
was kept in the queue. Feature selection is useful 
for reducing noise features and training time while 
maintaining the high performance of classification. 

Classification

Supervised machine-learning methods were used to 
evaluate the behavior of different features and achieve 
high accuracy of air quality recognition. In the feature 
selection section, we labeled each instance with one of 
five levels, which was in accordance with air quality. 
Classifiers including KNN, tree, ensemble and SVM, 
with different kernel functions under test to train the 
model and test data. All the classification algorithms 
were implemented in the MATLAB and LIBSVM [16] 
software package (http://www.csie.ntu.edu.tw/~cjlin/
libsvm). 5-cross validation was used to assess the 

performance of each classifier. It is not enough to 
conclude the fitness of a classifier based on single 
testing dataset or prediction results. K-cross validation 
method divides the whole raw training dataset into K 
equal parts. For each part, it is used to test the model 
trained by the remaining K – 1 parts. As a result, each 
instance in the dataset would be used for training and 
testing. The original SVM algorithm only realized 
binary classification, while LIBSVM extended SVM 
and achieved multi-class recognition. Five statistical 
indicators were introduced to evaluate performance of 
classifiers: accuracy, sensitivity, specificity, positive 
predictive value (PPV) and negative predictive value 
(NPV). TP, TN, FP, and FN respectively correspond to 
the terms of true positive, true negative, false positive 
and false negative. Eq. (9) to Eq. (13) describe these 
statistical indicators.

Accuracy = (TP + TN) / (TP + FP + FN + TN) (9)

Sensitivity = TP / (TP + FN)          (10)

Specificity = TN / (TN + FP)           (11)

PPV = TP / (TP + FP)           (12)

NPV = TN / (TN + FN)            (13)

Results and Discussion

The data processing and machine learning work 
stream described in this study are shown in Fig. 2. 
The raw dataset acquired was normalized and labeled. 
Causality and significance tests were carried out to 
coarsely determine which meteorological factor or 
pollutant impacted air quality. The filtered factors 
were treated as features used to train the classification 
model. Starting from an empty set of features, the FSFS 
algorithm sequentially added features that resulted  
in the highest objective function when combined  
with the features that have already been selected. Using 

Fig. 2. Work stream proposed in this study.



3882 Wang B.

the MATLAB machine learning toolbox, six classifiers 
were trained and tested to achieve high accuracy of 
identification of air quality.

There were no significant results in testing the 
causality from SSD, PRE, GST and EVP to PM2.5. 
Causality value of the normal time series from January 
1, 2015 to December 31, 2017 was smaller than that of 
the other disordered sequences, which can be observed 
in Fig. 3. As a result, SSD, PRE, GST and EVP could 
not be considered as candidate features used to predict 
the emergence of PM2.5. The remaining eight factors 
were proved to have significant influence on air quality. 
In Table 1, rows were sorted by the average causality test 
values from 93 cities. The ranking was in line with the 
relief function in MATLAB. NO2 impacted PM2.5 with 

the most degree. Next were PRS, SO2, and CO. Three 
of four pollutants occupied the upper part of Table 1. 
More than half of the studied regions showed consistent 
results. Fig. 4 showed the impacts from different factors 
to PM2.5 calculated by causality test. The distribution 
of studied areas was drawn in Fig. 5. Influence degree 
from different features was represented by a heat map. 
The deeper the color, the greater the degree. 

After causality analysis, we investigated whether 
these meteorological factors combining pollutants can 
differentiate air quality. To this end, we started the 
feature selection produced by an empty set of candidate 
features, and a model was trained by first using the top 
ranking predictor in Table 1. By comparing with the 
following predictors, we obtained the best feature with 
greatest classification accuracy. Then we trained and 
tested the classifier by searching the second feature. 
The number of the features set increased in each stage 

Table 1. Rank of predictor and significant causality results; the 
number of cities increased when the influence from different 
factors to PM2.5 was greater than that of inverse direction.

Rank 
of Predictor

Number of 
City

Percentage 
(%) AC (10-2)

NO2→PM2.5 85 0.91 5.6521 

PRS→PM2.5 86 0.92 4.3418 

SO2→PM2.5 77 0.83 4.3012 

CO→PM2.5 67 0.72 4.2179 

TEM→PM2.5 88 0.95 4.0612 

O3→PM2.5 92 0.99 3.2139 

RHU→PM2.5 74 0.80 2.4122 

WIN→PM2.5 55 0.59 2.0669 

AC Average Causality test value

Fig. 3. Significance test. In each sub-figure, the first point represented the normal time series sequence of causality test. The following 
permutated 100 times of test were used to evaluate the robustness and stability of the normal sequence causality result. If the first value 
was greater than 95% of the 100 subsequent tests, the result was significant. In this study, causality results of SSD, PRE, GST and EVP 
were of no significance and were excluded from the feature selection procedure.

Fig. 4. Impacts from different factors on PM2.5 calculated by 
causality test.
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of searching until iteration was terminated by certain 
criterion. The criterion could be the situation that all 
features were used to train and test the model, or that 
prediction accuracy was no longer a significant change 
by adding any features. 

Different classifiers were trained and tested to 
recognize the labeled air quality. Accuracy, sensitivity, 
specificity, PPV and NPV were calculated during 
each procedure of feature selection. Table 2 listed the 
performance of each classification algorithm, and it 
could be observed that the highest accuracy of 90.2% 
appeared when the ensemble method with boosted trees 
was used to differentiate patterns. The other classifiers 
(except the decision tree algorithm) also achieved high 
accuracies. The decision tree algorithm has a good 
performance in solving linear classification, while 
air quality is often associated with many factors and 
influence by comprehensive situations, the recognition 
and prediction of that are usually non-linear problems. 
Therefore, the other non-linear classifiers, like SVM or 
ensemble methods, are more capable of achieving better 
classification. 

Long-term record-based recognition of air quality 
with high classification accuracy was achieved in 
this study. 93 cities in China with the most developed 
economy were studied. As shown in Fig. 5, most of 
the selected cities were basically located in the eastern 

region, and the westerns are less significant. It is 
consistent with China’s economy that the eastern regions 
are more developed than the western, and serious 
polluted air often occurs in eastern cities in China, such 
as Beijing, Shanghai and Guangzhou.

Causality and significance tests were used to 
evaluate the influence from meteorological factors and 
pollutants to PM2.5. This would be useful for excluding 
noisy features and reducing time consumption. It is 
a common method in machine learning to perform 
filter feature selection by ranking the importance of 
candidate features, especially in a high-dimension 
training set. In this study, NO2 was found to be the 
most effective predictor to train and test classifiers, 
and the ensemble method with boosted trees fitted the 
recognition best. Zhe et al. [17] and Zhai et al. [18] 
studied the contributions of PM2.5 emission sources in 
northern China, and proposed approaches measuring the 
impact of pollutants on haze. While regional records of 
meteorological data and pollutants often cannot reflect 
the overall source of air pollution, we know that haze 
frequently occurs in the Jing-Jin-Ji region in China, 
and may be caused by wind direction, wind speed, 
precipitation and other factors in the surrounding areas. 
Haze pollution is a national phenomenon in China, 
especially with the more developed areas, which have 
the most serious pollution. Evidence in recent years 

(%) Accuracy Sensitivity Specificity PPV NPV

Tree 75.1 83.99 64.43 73.92 77.02

SVM (Linear) 82.3 91.59 69.50 80.53 85.72

SVM (Gaussian) 85.6 92.08 75.55 85.39 86.01

KNN 80.2 77.52 83.06 83.64 76.80

Ensemble (Boosted Trees) 90.2 92.50 83.36 94.30 78.89

Ensemble (Bagged Trees) 89.1 94.34 78.41 89.91 87.17

PPV Positive predictive value, NPV Negative predictive value, SVM Support vector machine, KNN K-nearest neighbor

Table 2. Performance comparison of different classifiers in identifying air quality.

Fig. 5. Causality test results of impacts from different factors to PM2.5; the studied areas covered the most developed 93 cities in China 
(most located in the southeast).
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shows that haze in Japan [19] and Korea [20, 21] 
are aggravated by China’s industrialization process. 
Therefore, by analyzing the meteorological data and air 
pollution in different latitudes and longitudes, the causes 
of high PM2.5 concentrations in China can be better 
explained and further forecasted.

In this study, results of feature selection and 
classification both indicate that NO2 takes an important 
role in the contribution of PM2.5 concentrations. This 
is consistent with the previously reported conclusions 
that gas-phase and heterogeneous reactions with other 
gaseous contaminants and organic matter during the 
formation of nitrate and with the transformation of 
secondary aerosols enhance PM2.5 pollution levels. 
Binxu Zhai et al. [22] demonstrated that NO2 and CO 
concentrations measured from the city of Zhangjiakou 
were taken as the most important elements of pollutants 
for PM2.5, with the overall classification accuracy 
level of 73.93%. As to meteorological factor, SSD was 
considered a key feature for classification. However, 
causality test in this study showed that there were 33 
of 93 cities exhibiting evident impact from SSD on air 
quality. As shown in Fig. 3, the influence from SSD 
to PM2.5 was of no significance. Therefore, SSD was 
excluded for the subsequent feature selection procedure 
and classification. It can be explained that high PM2.5 
concentrations affected the duration of sunshine rather 
than the duration of sunshine aggravated air pollution. 
For meteorological factors, air pressure, relative 
humidity and temperature were found to have the most 
significant impact on the prediction of air quality. 

More aspects can be improved to further reach 
higher classification accuracy in the future. First, 
more detailed characteristics should be added to the 
candidate features set. The cause of haze is closely 
related to natural factors such as seasonal variations or 
area locations. Quantitative research of different factors 
such as economic development, population density, 
and traffic circumstance will greatly provide more 
clues to the formation of PM2.5. Statistical methods can 
also be beneficial for revealing internal relationships 
between factors. Second, meteorological factors and 
pollutants in different regions interact with each other, 
forming a network structure that affects air quality. 
Thus, a graph-based investigation like weighted, 
directed network measures can be used as features 
to train and test the prediction model. It has been an 
effective feature extraction method in other machine-
learning applications. Besides, the unsupervised neural 
network machine-learning methods are more suitable 
for classifying large datasets without explicit feature 
extraction.

Conclusions

A classification model with high accuracy was 
trained and tested based on different features and 
causality tests. The studied cities covered the most 

developed areas in China, and 93 of 100 with 
significance were selected to be analyzed. Historical 
daily records of pollutants and meteorological data from 
January 1, 2015 to December 31, 2017 were collected to 
fit the model. Our model evaluation demonstrates that 
NO2 plays a crucial role in identifying air quality, and 
the ensemble method with boosted trees performs better 
in classifying the air quality in China with the highest 
accuracy of 90.2%.
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