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Abstract

Predicting hydrological variables is a very useful tool in water resource management.  
The importance of the forecast in environmental issues causes us to use more accurate statistical  
methods for studying the weather and climate change. The main objective of this study is to investigate  
the use of additive and multiplicative forms of the Holt-Winters time series model to predict  
environmental variables such as temperature, precipitation, and sunshine hours for one year in advance. 
As the Holt-Winters model uses a weighted average of current and past values to provide predictions, in 
this study higher emphasis is placed on the recent observations by using larger weights for these data 
compared to the older ones. As a case study, monthly environmental data (i.e., precipitation, maximum 
temperature, minimum temperature and sunshine hours) collected for a span of 30 years (from 1981  
to 2010) from Robat Gharah-BilStation located in Golestan, Iran was used. After modeling the data 
through additive and multiplicative procedures, the main three smoothing parameters of the model are 
optimized using a nonlinear optimization method. Based on this study, using the multiplicative form 
of Holt-Winters time series results in an overall of 4% less mean absolute percentage error (MAPE) 
compared to the additive one. The result showed that this model is more efficient in predicting and 
modeling climate parameters, which show stable patterns of cycle and seasonality.
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Introduction 

Predicted weather conditions in the future play a 
significant role in the decision-making process of many 
organizations [1-2]. In order to predict future events, 
we need to rely on information that is obtained from 
past events. In recent years, time-series analysis has 
been widely used for predicting environmental events  
[3-6]. A set of time series are the data collected at 
regular equal intervals, and statistical methods used to 
analyze these data are called time series analyzing. 

The Importance of Rainfall Prediction

Limited water resources for agricultural and 
industrial water supply requirements, drinking and 
alike have caused major problems – particularly in 
arid and semi-arid areas. Therefore forecast and 
estimate of rainfall for each catchment area are one 
of the most important climatic parameters in order to  
use water resources efficiently [7-10]. Measurement  
and prediction of rainfall runoff to study runoff, 
sediment, groundwater, and flood is required generally 
[11-12]. Furthermore, prediction of precipitation for any 
watershed area is considered one of the most important 
climatic parameters for optimal use of water resources 
[13-14]. 

The Importance of Temperature Prediction

Due to climate change, global warming and recent 
droughts, temperature prediction and maximum 
temperature are some of the most important climate 
parameters that provide an opportunity to plan and,in 
the meantime, give planners appropriate schemes [15]. 
Analysis of maximum temperatures as one of the climate 
parameters in water and natural resources management 
[16], agriculture [17-18], spread of pests and diseases 
[19-21], snowmelt and runoff [22-24], evapotranspiration 
[25-28], and drought [29-31], etc., is crucial.

The Importance of Solar Radiation Prediction

Solar radiation is a meteorological variable that 
affects many processes, such as water and soil 
evaporation [32-33], snowmelt [34-35] and plant 
growth [36]. The Food and Agriculture Organization 
of the United Nations (FAO) has reported that having 
the exact amount of solar radiation is necessary for 
estimating potential evapotranspiration [37]. Due to 
large differences of latitude in Iran, solar radiation has 
considerable differences across the country [38-39]. 

The use of time series in hydrology started four 
decades ago and has reached the height by BUX and 
JENKINZ models. One of the first important studies 
on the use of time series in hydrology was done 
by McKerchar and Delleur [40], which due to the 
characteristics of the seasonal parameters of river flow, 
the ARIMA model (which is multiplicative and seasonal) 

was chosen to simulate the river. Many researchers 
have used time-series for predicting processes in 
their studies. Tiba et al. [41] used an AR-1 model for 
investigating monthly sunshine hours and solar radiation 
in tropical climates, i.e., Brazil. Komornik et al. [42] 
used hydrological time series models to be effective in 
predicting hydrological variables in the Czech Republic. 
Chatupadhyay [43] predicted seasonal precipitation 
in India by using the multilayer perceptron model in 
a neural network. Damle and Yalcin [44] predicted 
flooding by using time series in the Mississippi River 
in America. Their results show the ability of time series 
in constructing the daily discharge data and accuracy 
of the resulting predictions. Sunyer et al. [45] estimated 
the probability of dry and wet days based on future 
time series of daily precipitation using five different 
statistical down scaling methods. Noori et al. [46] used 
the LARS-WG to model of meteorological parameters 
such as rainfall, temperature and sunhours. 

In recent years, researchers have studied the 
interaction of climate change on water resource issues 
in different parameters such as agriculture [47-48], 
water resources [49-50], urban water management [51-
52], erosion control [53], ecosystems and environmental 
issues [54-55], and water supply and demand [56]. 

All aforementioned and recent studies, however, 
have tried to simulate the main climate parameters  
such as precipitation and temperature to study the 
pattern of the related time series. Additionally, they 
try to present a future pattern of these parameters 
using several predicting methods. Therefore, the main 
purpose of this research is to apply the additive and 
multiplicative Holt-Winters model to predict the four 
climate parameters (maximum temperature, minimum 
temperature, rainfall and sunshine hours) for one 
consecutive year.

Materials and Methods

Study Area

Golestan Province with an area of over 20,387 km2 
is located in northeast of Iran. Rabat Gharah-Bil  
Station is southeast of Gorgan-Rood basin. It has a 
semi-arid climate with an average annual rainfall  
of 350 mm and medium annual temperature of 18ºC. 
Rabat Gharebill Station is positioned at 21 degrees  
37 minutes 12 seconds north latitude and 19 degrees 56 
minutes 18 seconds east longitude, and is 1450 m a.s.l. 

Materials

In this study, the maximum temperature, minimum 
temperature, rainfall and sunshine hours are utilized 
as parameters from the beginning of 1981 to the end of 
2010. Data of average temperature, average minimum 
temperature, average rainfall, and average sunshine 
hours are given in Table 1. 
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Methods

Holt-Winters Forecasting Method

This prediction method is based on weighted average 
of past and present observations. In this method larger 
weights are used for more recent data to increase the 
significance of these data compared to the older data. 
In such a particular type of average, the heaviest weight 
is given to the most recent observation, and the lesser 
weights are given to previous observations. Afterward, 
estimation of level, procedure and seasonal index are 
required. Weather forecasting in Holt-Winters acquires 
the estimation of elements of average, procedure and 
seasonal index.

Holt-Winters’s method can be developed to deal 
with time series that include trend and seasonal 
variations. This method has two versions: additive 
and multiplicative. The default of this method is 
multiplicative, which is the following function:

 (1)

…where mn is a part of the level, bn is a component of 
the slope, and cn – s + 1 is the relevant seasonal part (for 
example, 4 is for the season and 12 is for the month). 
Therefore, if the monthly time series are considered, 
one-step-ahead predictions are:

Table 1. Average maximum temperature, average minimum temperature, average rainfall and mean of sunshine hours (Maraveh Station 
Hill).

Month Average of Minimum Temperature Average of Maximum Temperature Average of Rainfall Average of Sunny Hours

Jan -8.2 8.45 7.2 4.97

Feb -6.87 9.57 31.5 5.58

Mar -2.28 14.23 31.7 5.65

Apr 3.09 21.1 29.0 6.36

May 6.9 26.46 22.6 8.56

Jun 11.16 31.29 8.3 9.89

Jul 12.94 32.9 21.4 9.73

Aug 12.26 23.15 5.5 10.02

Sep 8.98 29.79 4.9 9.12

Oct 3.84 23.58 10.5 7.8

Nov -1.37 16.86 17.6 5.66

Dec -5.29 11.17 19.0 5.03

Annual 
Mean 2.93 20.71 17.42 7.36

Fig. 1. Case study location (Rabat Gharah-Bil Station, Golestan Province): a) Maximum temperature(°C), b) Minimum temperature(°C), 
c) Rainfall (cm), d) sunshinehours(average hours per day).
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         (2)

Updating formula for each component requires a 
smoothing constant. Considering, and to be parameters 
of level, slope and smoothing constant respectively, then 
the updated equations will change to:  

    (3)

     (4)

            (5)

…where α, β and γ are all between zero and one. If 
the additive version of Holt-Winters is used, then the 
seasonal factor is simply used as opposed to multiplying 
into the one-step-ahead forecast function, so:

         (6)

The level and the updating equations of the seasonal 
include differences as opposed to ratios:

 (7)

     (8)

       (9)

Selecting proper smoothing parameters and initial 
values are important, Chatfield and Yar in 1988 
discussed in this field [57]. It seems for initial values 
it is better to replace the m0 parameter with medium 
observations in the first year (for example), which 
means:

                        (10)

…where s is the number of seasons. The initial value for 
the slope parameter is obtained by averaging the rate of 
variations from the first year to the second.
 

Fig. 2. Decomposition of seasonal variations and irregular variations for a) maximum temperature, b) minimum temperature, c) rainfall 
and d) sunshine hours.
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Fig. 3. Minimum temperature and time series components evaluation (ºC).

Fig. 4. Effects of the seasonal cycle (left) and the estimated seasonal effect (right) for a) maximum temperature, b) minimum temperature, 
and c) rainfall and d) sunshine parameters. 
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Fig. 5. Monthly forecast of the a-b) minimum temperature, c-d), maximum temperature, e-f) sunshine hours and g-h) rainfall obtained 
from multiplicative Holt-Winters and additive Holt-Winters.
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  (11)

Finally, the amount of seasonal index starting can be 
calculated after trend adjusting.

 (12)

 (13)

…where k = 1, 2... Obviously this will lead to s separate 
values for c0, which is the basic requirement to reach the 
initial seasonal pattern.

Most of the smoothing parameters are chosen 
between 0.02 and 0.2. It is possible to estimate 
smoothing parameters by minimizing the mean average 
percentage errors (Eq. 15). Once the one-step-ahead 
prediction is created, the percentage error PEt of the 
real and predicted data is obtained. Afterward, MAPE, 
which is the average of obtained PEt, is minimized 
(Eq. 14).

                  (14)

               (15)

Constrained to:

                    (16)

               (17)

…where Pi is observational data, P̂i is computational 
data (predicted), and is the number of predicted data.

Results and Discussion

Modeling of many hydrological processes results 
from numerous interactions that create complex systems; 
it’s a difficult yet important task. Time series modeling 
to generate data and forecast hydrological variables is 
an important step in the design and sensitivity analysis 
of water resources. Usually for analyzing time series, 
changes that result from trend, seasonal variations and 
irregular variations are taken into account.

Trend: It is called natural trend of time series in 
long-term. In this case, the fluctuations of the time series 
are negligible and the overall view can be considered. 
Therefore, by studying data from a long period a general 
idea of a phenomenon’s behavior can be obtained, which 
can help in predicting future behavior.

Seasonal changes: changes that occur during a 
short interval. These changes are related to factors 
that operate in a regular and cyclical manner over a 
period of less than one year. For instance, if time series 
observations are recorded monthly, seasonal changes in 
time series are available on a monthly basis.

Irregular changes: These changes are completely 
random and result from unpredictable factors, which act 
in an irregular manner. These changes do not show a 
specific plan and occurring time is not regular; this is 
because it is called irregular changes. These changes 
have short-term effects, but occasionally they are 
frequent enough to cause periodic or other changes. 
Fig. 2 shows graphs of decomposition of maximum 
temperature a), minimum temperature b), rainfall c), 
total sunshine hours d), the separation process, seasonal 
variations and irregular variations (random). As can 
be seen, irregularities in rainfall data are far more 
distinctive. 

To evaluate the time series components such as 
trend component, seasonal component and residual 
component, for example, for minimum temperature data 
we have: 
 – Total Variation: 18- (-20) = 38.
 – Trend Component: 4.5/38 = 12%.

Rainfall Sunshine Hours Minimum Temperature Maximum Temperature

α β γ α β γ α β γ α β γ

Additive 0.15 0.02 0.13 0.02 0.00 0.38 0.13 0.04 0.60 0.13 0.00 0.43

Multiplicative 0.14 0.01 0.00 0.14 0.00 0.00 0.08 0.03 0.00 0.97 0.00 0.00

Table 2. MAPE and RMSE values for additive and multiplicative models.

Rainfall Sunshine Hours Minimum Temperature Maximum Temperature

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

Additive 0.38 0.496 0.88 1.29 2.4 3.58 3.13 4.84

Multiplicative 0.35 0.490 0.79 1.01 2.75 3.67 2.83 3.99

Table 3. Optimized values of triple exponential smoothing parameters.
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Fig. 6. Normal probability plot of the residuals: a-b) minimum temperature (ºC), c-d) maximum temperature (ºC), e-f) sunshine hours 
(average hours per day), g-h) rainfall (cm).
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 – Seasonal component: 20/38 = 53%.
 – Residual component: 7/38 = 18%.

Fig. 4 shows the effects of the seasonal cycle 
(left) and the estimated seasonal effect (right) for the 
parameters of temperature a), minimum temperature b), 
rainfall c), and total sunshine hours d). These images 
show that if there is a long-term process, they can be 
spread in such a manner. Also, it can be seen that there 
is a partly steady pattern for temperature, minimum 
temperature and total sunshine hours. However, the 
seasonality pattern oscillates a bit erratically for rainfall 
historical data.

Fig. 5 shows the monthly forecast for maximum 
temperature a), minimum temperature b), rainfall c), 
and total sunshine hours d) that are obtained from both 
the multiplicative and additive Holt-Winters model; red 
lines are the one-step-ahead forecast using Holt-Winters 
model. Green line shows one-year predicted values for 
related data.

The three aforementioned parameters of triple 
exponential smoothing model should be optimized to get 
better convergence of the observed and estimated data 
(Table 1). In this study nonlinear generalized reduced 
gradient algorithm (GRG nonlinear) is used to optimize 
the objective function that is to minimize the MAPE or 
RMSE. The only constraint of the problem is to limit 
the value of all three parameters between zero and one. 
The results are shown in Tables 2 and 3. According to 
Table 2, it can be seen that in the case of rainfall and 
sunshine, the multiplicative model shows better results. 
Although the optimized values of MAPE in both 
models are relatively close, the output shows significant 
differences in predicted values (Fig. 5).

Validity of the Model

Measuring validity of every hydrological model is 
essential to show the goodness of the fit. Regarding time 
series model, if the residuals (difference between actual 
and fitted data) are random, i.e., they are normally 
distributed, it can be deduced that the model is powerful 
enough to model the cyclic, seasonality and trend 
patterns of each climate parameter. Fig. 6 presents the 
normal probability plot of the residuals, which depict 
the colonization of residuals around the normal line. As 
can be seen, almost all the residuals are approximately 
normal.

As a result, except for the sunshine hours model 
(in both additive and multiplicative methods) in which 
residuals show normal distribution, the other models 
seem incapable of fitting the actual data. However, 
from the normal probability plots one can infer that all 
residuals are approximately normal.

Conclusions

In this study the additive and multiplicative HW 
model is used to predict the four climate parameters 

for one consecutive year. Best parameters α, β and γ  
are selected based on MAPE values. Because of the 
variant nature of meteorological time series, these 
parameters should adapt to this change, and therefore 
their values are optimized. It is observed that with 
adequate range of data a model can adapt better and 
tend to adjust to the most recently observed data. 
However, in this study the multiplicative form of HW 
model shows better accuracy and adjusts itself relatively 
well to the observed data.

The optimization procedure, however, may seem to 
have a major role in convergence of the model. Since one 
algorithm is used in this study, it is difficult to claim the 
accuracy of this procedure. Therefore, we recommend 
that several optimization algorithms be used in order to 
get better results.
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