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Abstract

This paper examines the CO2 emissions from energy consumption in China’s transport sector, 
conducting an empirical investigation into the spatial distribution characteristics and influencing 
factors of transport CO2 emissions. This study, which is based on province-level panel data covering the 
30 provincial regions during the period 2001-2016, used the methods of exploratory spatial data analysis 
(ESDA) and the extended STIRPAT model (examined by the method of system-generalized method of 
moments (Sys-GMM) regression). The results indicated that the amount of CO2 emissions in China’s 
transport sector has increased steadily during the observation period, but there was a noticeable 
disparity across the provinces and regions. From the perspective of spatial dimension, the spatial 
agglomeration characteristics of provincial transport CO2 emissions tended to be strengthened, and 
the pattern evolutions of spatial distribution presented a path-dependence effect to some extent.  
The scale of population was found to be the most important influencing factor of transport CO2 
emissions, and followed by the per-capita GDP. Further, the improvement of energy efficiency was 
the key factor to controlling transport CO2 emissions. Compared to freight transportation, passenger 
transportation was more important in transport CO2 emissions reduction due to its lower efficiency 
of energy utilization and rapid growth. Meanwhile, electrification played an important inhibitory effect 
on transport CO2 emissions because of its high fuel efficiency and less pollution. Importantly, we could 
not support the existence of the environmental Kuznets curve (EKC) hypothesis in China’s transport 
sector during the observation period, which describes the relationship between the environmental 
pressures and economic development. These findings contain some meaningful implications for policy 
makers: confirm the priority transport CO2 emissions reduction areas, improve transport energy 
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Introduction

The transport sector, the foundation of national 
economic and social development, has undergone a 
dramatic change since 2001 in China. According to 
China Statistical Yearbooks, the length of railways 
in operation increased from 7.01 ten thousand km in 
2001 to 12.40 ten thousand km in 2016; the length of 
expressway increased by an average annual growth 
of 13.58%, from 1.94 ten thousand km to 13.10 ten 
thousand km during the same period. The dramatic 
development was not only reflected in the construction 
of transportation infrastructure, but also in the economic 
activities of transportation. The added value of China’s 
transport sector has increased steadily during the period 
2001-2016, from 0.69 trillion yuan to 3.31 trillion yuan 
(at current values), for an average annual growth of 
11.04%. However, we must consciously realize that 
the rapid development of China’s transport sector has 
also resulted in some environmental pressures, such as 
energy consumption and CO2 emissions [1]. According to 
the estimates of the International Energy Agency (IEA, 
2012) [2], the transport sector approximately accounts 
for 19% and 23% of global energy consumption and 
related CO2 emissions, respectively. Furthermore, China 
will account for more than one-third of global energy 
consumption in 2035 in the field of transportation [3]. 
As a basis fact, China has been the largest greenhouse 
gas emitter since 2007, and surpassed the United 
States in 2010 to become the largest energy consumer 
in the world (with 3079 million ton standard coal 
equivalent (Mtce)) [4]. The transport sector, as a high 
energy consuming sector, is a major contributor of CO2 
emissions in China [5, 6]. The resulting environmental 
deterioration not only affects the health of the people, 
but also threatens the sustainable development of China 
in the future.

As a result, environmental pressures have drawn 
nationwide concern in China. In order to save energy 
and conduct CO2 emissions abatement, the Chinese 
government has implemented a series of relevant 
policies [7]. For example, in 2009 China promised 
to reduce the carbon intensity by 40-45% in 2020 
compared to the level of 2005. In addition, through 
the 12th Five-Year Plan, China planned to reduce the 
energy intensity by 16% compared to the level of 2010. 
Objectively, the efforts of the Chinese government have 
been remarkable [8]. However, it is worth noting that 
the provinces in China have remarkable inequality, such 
as geographical characteristics, the scale of population, 
the level of national economic and social development, 

and the structure of energy consumption. As pointed 
out by Wang et al. [9], in order to effectively control the 
CO2 emissions in China, it is necessary to understand 
the spatial distribution characteristics of CO2 emissions 
due to the noticeable differences among the provinces 
and regions. This not only applies to China’s overall 
situation, but also to transportation CO2 emissions 
in China. Moreover, the policies on CO2 emissions 
reduction of the Chinese government mainly focus on 
energy conservation and efficiency, and there are some 
driving factors that do affect the increase in China’s 
transport CO2 emissions. However, more influencing 
factors may exist. Therefore, it is necessary to establish 
the analytical framework with key impact factors to 
analyze the CO2 emissions in China’s transport sector.

At present, most existing studies have analyzed the 
distribution characteristics of transport CO2 emissions 
from the perspective of descriptive statistics analysis. 
For example, Alonso et al. [10] investigated the 
distribution of air transport traffic and CO2 emissions 
within the European Union. Yuan et al. [11] found 
that the distribution of CO2 emissions in China’s 
transport sector were significantly directly related to 
the level of economic development, and presented 
the characteristics of “high in eastern region and low 
in the western region”. Song et al. [12] confirmed the 
above findings, and further found that the distribution 
characteristics of north-south direction showed an 
inverted-U curve. However, as far as we know, there 
is little literature that considers the spatial effects in 
transport CO2 emissions. By regarding the research units 
as the independent individuals, the existing studies have 
ignored the spatial autocorrelation and agglomeration 
characteristics of geographic data. Namely, the spatial 
distribution characteristics of transport CO2 emissions 
are seldom discussed in existing literature. As pointed 
out by LeSage et al. [13], the characteristics of a local 
region will be affected by the adjacent regions to some 
extent. In other words, the spatial autocorrelation theory 
shows that the interaction obviously exists among the 
different research units; the transport CO2 emissions 
in different research units are not independent of each 
other. Furthermore, according to the study of Dhakal 
[14], the 35% cities with 18% of the total population 
in China approximately accounted for 40% of the 
total amount of CO2 emissions. This finding indicates 
that CO2 emissions in China has obvious tendency to 
aggregate together. The same characteristics also are 
reflected in China’s transport CO2 emissions. As pointed 
out by Li et al. [15], the provinces in China with high 
transport CO2 emissions were mainly distributed in 

efficiency, strengthen passenger transportation decarburization policy, and highlight the model shift  
of fuel consumption.

Keywords: transport CO2 emissions, spatial distribution characteristics, STIRPAT model, Sys-GMM 
regression, China
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the eastern economically developed areas. The 
geography is an important issue that cannot be 
neglected in the research of CO2 emissions in China’s 
transport sector. Therefore, in order to achieve the target 
of transport CO2 emission abatement, it is necessary to 
explore the spatial distribution patterns of transport CO2 
emissions among different research units. In this paper, 
we attempt to fill this research gap. This will help policy 
makers formulate the different transport CO2 emissions 
reduction policies in accordance with the spatial 
distribution characteristics of different regions.

Meanwhile, the existing studies have paid extensive 
attention to the transport CO2 emissions, and the 
relevant research methods can be divided into four 
categories. [16]. The first research method is the 
index decomposition method, which is also the most 
commonly used. Mazzarino [17] found that growth in 
the economy was the main driving factor for Italy’s 
transport CO2 emissions during the period 1970-1993. 
Achour and Belloumi [18] found that the scale of 
economy and population, transportation intensity, and 
energy intensity played a positive effect on Tunisia’s 
transport CO2 emissions growth. Timilsina and 
Shrestha [19] found that economic development and  
the transportation energy intensity played a dominant 
role in 20 Latin American and Caribbean (LAC) 
countries’ transport CO2 emissions during the period 
1980-2005. Andreoni and Galmarini [20] come to a 
similar conclusion in European water and aviation 
transport CO2 emissions. Solaymani [21] found that 
electricity structure and economic output were the 
main drivers of transport CO2 emissions in 7 top 
transport CO2 emitter countries. The second research 
method is the bottom-up sector-based analysis. Sanjuan-
Delmás et al. [22] proposed a top-down approach to 
evaluate waterway transport CO2 emissions in Spain. 
Tarancón Morán and Del Río González [23] proposed 
an input-output methodology to analyze the structural 
factors affecting the land-transport CO2 emissions in 
Europe. The third method is system optimization and 
is commonly used to forecast the demand of energy 
consumption and CO2 emissions [24, 25] in analyzing 
the policy effect of transport CO2 emissions reduction 
[26]. The fourth method is econometric estimation 
techniques. Liao et al. [27] found that the economic 
growth and oil price were responsible for carbon 
emissions growth for the inland container transport by 
using the multiple regression models. With the increase 
of environmental problem from the transport sector and 
the improvement of environmental awareness, transport 
CO2 emissions abatement has attracted growing 
attention in mainland China. Using index decomposition 
analysis, Wang et al. [28] found that the per-capita GDP 
and transport modal shifts were the main driving factors 
for China’s transport CO2 emission during the period 
1985–2009. Loo and Li [29] analyzed the influencing 
factor in passenger transportation carbon emissions in 
China since 1949; they found that per-capita income 
level was, firstly, responsible for carbon emissions 

growth. Using the bottom-up methods, He et al. [30] 
estimated the energy consumption and CO2 emissions 
from China’s urban passenger transportation sector. Ou 
et al. [31], using the method of system optimization, 
analyzed the future trends of energy demand and 
greenhouse gas emissions in China’s road transport 
sector. Using the method of econometric estimation 
techniques, Zhang and Ning [3] and Xu and Lin [16] 
analyzed the influencing factors of China’s transport 
CO2 emissions. Wu et al. [32] analyzed the main driving 
factors of transport CO2 emissions in Gansu, China. 
Previous studies have enriched our understanding of 
the main influencing factors of transport CO2 emissions. 
However, there may be two main shortcomings in the 
above studies. On the one hand, most models used to 
study transport CO2 emissions were based on the time 
series or cross-sectional data. As pointed out by Du et 
al. [33], the panel data sets have significant advantages 
compared to the pure time series or cross-sectional 
data. On the other hand, we noted that most models 
used in the previous studies mainly focused on the 
linear relationship between the influencing factors. By 
regarding the relationship between economic variables 
as linear and monotonic, the existing studies have 
ignored the non-linear and non-monotonic relationships. 
For example, the environmental Kuznets curve (EKC) 
hypothesis points out that the relationship between per 
capita income and environmental pressures is non-linear 
and non-monotonic, but rather an inverted U-shaped 
curve.

Based on the above analysis, this study first 
estimated the CO2 emissions from energy consumption 
in China’s transport sector covering the 30 provinces 
during the period 2001-2016. Secondly, based on the 
method of exploratory spatial data analysis (ESDA), 
this study attempted to analyze the spatial distribution 
characteristics of province-level transport CO2 
emissions. Thirdly, based on an extended STIRPAT 
model, we investigated the main influencing factors of 
CO2 emissions in China’s transport sector. Finally, we 
further examined the existence of EKC hypothesis, 
which describes the relationship between environmental 
pressure and economic development. It is expected 
that the results of this study can provide the scientific 
references for the Chinese government to formulate 
the reasonable and specific environmental policies in 
transport sector to a certain extent.

Materials and Methods

Study Areas

The study areas of this paper contain 22 provinces, 
4 municipalities and 4 special administrative regions 
in mainland China (excluding Tibet, which belongs  
to the special administrative region, due to the absence 
of energy data). While according to the level of 
economic development and geographical characteristics, 
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the 30 provincial regions can also be divided into three 
major regions: Eastern China, Central China, and 
Western China, and the provinces in the three major 
regions are shown in Fig. 1.

Methods

Estimating CO2 Emissions from Energy Consumption 
in the Transport Sector

At present, the measurement of transport CO2 
emissions mainly adopts the bottom-up and top-down 
approach proposed by IPCC [34, 35]. Due to China’s 
energy statistical department having adopted the  
top-down statistical system, from the availability of 
data we employed the top-down approach to estimate 
the energy-related CO2 emissions in China’s transport 
sector. Concretely, the top-down approach can be 
expressed as follows:
 

t
it mi m

i
C E K= ×∑

                     (1)

…where Cit refers to the transport CO2 emissions for 
province i at year t; Et

mij refers to the amount of m th 
energy consumption in transport sector for province i 
at year t; and Km refers to the CO2 emissions coefficient 
of m th energy type. Meanwhile, this study mainly 
chose eight energy types as the energy input: raw 
coal, gasoline, kerosene, diesel oil, fuel oil, liquefied 
petroleum gas, natural gas and electricity. The chosen 
energy types not only include the primary energies, 
but also the secondary energies. Meanwhile, the energy 
consumption for all energy types are converted into 
standard coal equivalent (CE), and the conversion 
coefficients derive from the China Energy Statistical 

Yearbook. Meanwhile, the CO2 emissions coefficients 
of different energy types derive from the references [36, 
37]. The corresponding conversion coefficients and the 
CO2 emissions coefficients are shown in Table 1.

Spatial Autocorrelation Analysis Method

In this paper, we employed the exploratory spatial 
data analysis (ESDA) method to analyze the spatial 
autocorrelation of transport CO2 emissions in China. 
Spatial autocorrelation is used to analyze the degree 
of dependency among the adjacent geographical units 
(the provincial regions), which reveals the phenomena 
of spatial correlation and heterogeneity for relevant 
elements in a geographic space [38]. Generally, spatial 
autocorrelation mainly includes the global and local 
spatial autocorrelation, and in practice, the spatial 
autocorrelation is commonly examined using Moran’s 

Fig. 1. Provinces in the three major regions.

Table 1. Conversion coefficient and CO2 emissions coefficients.

Type 
of energy

Conversion coefficients to
standard coal equivalent

CO2 emissions 
coefficients

Raw coal 0.7143 kg of CE/kg 1.9003 kg/kg

Gasoline 1.4714 kg of CE/kg 2.9251 kg/kg

Kerosene 1.4714 kg of CE/kg 3.0334 kg/kg

Diesel oil 1.4571 kg of CE/kg 3.0959 kg/kg

Fuel oil 1.4286 kg of CE/kg 3.1705 kg/kg

Liquefied 
petroleum gas 1.7143 kg of CE/kg 3.1013 kg/kg

Natural gas 12.143 t of CE/104 m3 2.1322 kg/m3

Electricity 1.229 t of CE/104 kWh 9.7402 t/104 
kWh
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I index method [39]. Concretely, the global Moran’s I 
index can be given as follows:
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…where ωij refers to the spatial weight matrix and 
describes the spatial relationship corresponding to the 
geographic districts (i, j), and Follow Long et al. [40] 
ωij can be described in equation (3). Namely, for 
provinces i and j, which are adjacent to each other, then 
the spatial weight matrix element ωij will be assigned a 
weight of 1, otherwise ωij will be assigned a weight of 
0. Meanwhile, the global Moran’s I index has values in 
the range [-1, 1], If 0<Moran's I≤1, it denotes that there 
is a positive spatial dependence; if –1<Moran's I<0, 
it denotes that there is a negative spatial dependence; 
and if Moran's I = 0, it denotes that there is no spatial 
dependence.

The local Moran’s I index is the local indicator 
of spatial association (LISA) to reflect the spatial 
clustering. It makes up for the shortcomings of the 
overgeneralization of global spatial autocorrelation 
analysis [41]. Concretely, the local Moran’s I index can 
be given as follows:

1

n

i i ij j
j

Z z zω
=

= ∑
                    (4)

2( ) / ( )i i i
i

z x x x x= − −∑ , ( )j jz x x= − . 
According to the value of Zi and zi, we can divided 
each province into four agglomeration areas: HH (high-
high), LH (low-high), and LL (low-low) HL (high-low) 
agglomeration areas [41]. If Zi>0 and zi>0, then the 

provincial region i belongs to HH agglomeration area 
(located in quadrant I in the Moran I scatter plot); if 
Zi<0 and zi>0, then the provincial region i belongs to 
the LH agglomeration area (locating in the quadrant II); 
if Zi>0 and zi<0, then the provincial region i belongs to 
LL agglomeration area (located in quadrant III); and if 
Zi<0 and zi<0, then the provincial region i belong to HL 
agglomeration area (locating in the quadrant IV). The 
specific meaning of four agglomeration areas is shown 
in Fig. 2 [41].

STIRPAT Model

Due to the simplicity of the IPAT (I = PAT) model, 
it has been widely used as an analytical framework for 
analyzing the driving forces of environmental change 
[42]. However, the application of the IPAT models is 
greatly limited because the model does not allow for 
the non-monotonic changes in influencing factors [43]. 
In order to overcome the limitation, Dietz and Rosa 
proposed the STIRPAT model [44]. Concretely, the 
STIRPAT model can be expressed as: 

b c d
it it it it itI aP A T e=                      (5)

…where I, P, A, T refers to the environmental pressure, 
the scale of population, affluence degree and technology 
level, respectively; a refers to the coefficient of the 
model; b, c, d refers to the corresponding undetermined 
parameters of P, A and T, respectively; and eit refers to 
the error term. Meanwhile, the base STIRPAT model 
can be improved or extended according to the respective 
research characteristics [45]. In this paper, we also 
eatablish an extended STIRPAT model to analyze the 
driving forces in transport CO2 emissions.

(1) We regard the amount of CO2 emissions in 
China’s transport sector as environmental pressure. 
The affluence degree is represented by the per capita 
GDP. The technology level is represented by the 
energy intensity [1]. Meanwhile, we introduce transport 
activities (represented by passenger turnover and freight 
turnover) and the proportion of electricity consumption 

Fig. 2. Agglomeration areas parsing of Moran’s I scatter plot.
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as the key variables affecting transport CO2 emissions.
(2) Importantly, in order to fully depict the 

relationship between transport CO2 emissions and 
economic development, and validate the EKC 
hypothesis, we decomposed per capita GDP into linear, 
quadratic, and cubic terms in the extended STIRPAT 
model.

Based on the above analysis, the extended STIRPAT 
model in this paper can be expressed as: 

2 3
1 1 2 3 4

5 6 7 8

ln (ln ) ln(ln ) ln
       ln ln ln ln

it it it it it it

it it it it it

I I PGDP PGDP PGDP PO
EI PT FT EL e

α β β β β
β β β β

−= + + + + +
+ + + +  

(6)

…where Iit refers to the amount of transport CO2 
emissions; Iit–1 refers to the one-period lagged term of 
transport CO2 emissions and reflects the continuous 
and dynamic adjustment process of transport CO2 
emissions;  PGDP refers to the per capita GDP; PO 
refers to the scale of population; EI refers to the energy 
intensity in transport sector (the ratio of the energy 
consumption and the actual added value of transport 
sector); PT refers to passenger turnover (including 
railway, highway, waterway); FT refers to freight 
turnover (including railway, highway, waterway); and 
EL refers to the proportion of electricity consumption to 
the total energy consumption. Meanwhile, according to 
the value of β1 , β2 and β3, we can validate the existence 
of the environmental Kuznets hypothesis based on 
the relationship between economic development and 
transport CO2 emissions (Table 2) [46].

Data Sources

The annual data of terminal energy consumption in 
the transport sector is derived from the China Energy 
Statistical Yearbooks (2002-2017). The annual data of 
added value of transport sector, per capita GDP, the scale 
of population, passenger turnover and freight turnover 
derive from China Statistical Yearbooks (2002-20017). 
Note that, according to China Statistical Yearbooks and 
China Energy Statistical Yearbooks, the data sources 
of the transport sector in China derive from the data 
of transport, storage, and post, so we will follow the 
method to collect the relevant data as most scholars 
did [4, 47, 48]. Meanwhile, the monetary indicators, 
including the GDP and added value of transport sector, 
are converted into 2001 constant price by using gross 
domestic product deflator and the third industry added 
value deflator, respectively. Table 3 shows the descriptive 
statistics of the variables in 30 provincial regions during 
the period 2001-2016.

Results and Discussion

General Trend of CO2 Emissions in China’s 
Transport Sector

Based on the above calculation method (formula 1) 
and energy consumption statistics, the transport CO2 
emissions in China from 2001 to 2016 were measured 
(Fig. 3). It can be seen that the amount of transport 
CO2 emissions has increased steadily during the 
observation period, from 200.42 million tons in 2001 to  
814.10 million tons in 2016, for an average annual growth 
of 8.37%. Meanwhile, according to the CO2 emissions 
in transport sector by energy type (Fig. 4), petroleum 
products were the leading contributor to energy 
consumption and CO2 emissions during the period 
2001-2016, which is in line with the characteristics of 
energy consumption in transport activities.

Similarly, as shown in Fig. 3, the amount of 
transport CO2 emissions for each province also 
was found to increase steadily from 2001 to 2016. 
However, there was a noticeable disparity in CO2 
emissions during the observation period. For example, 

Table 2. Judgment criteria for the relationship between transport 
CO2 emissions and economic development.

β1 β2 β3 Relationship

β1>0 β2 = 0 β3 = 0 Monotonically increasing relationship

β1<0 β2 = 0 β3 = 0 Monotonically decreasing relationship

β1>0 β2<0 β3 = 0 Inverted U-shape relationship

β1<0 β2<0 β3 = 0 U-shape relationship

β1>0 β2<0 β3>0 N-shape relationship

β1<0 β2>0 β3<0 Inverted N-shape relationship

Table 3. Descriptive statistics of the variables.

Variables Unit Min Max Mean Std. dev.

PGDP 104 Yuan/person 0.2983 9.1979 2.2650 1.6184

PO 104 persons 523 10999 4391 2642.2

EI Ton/104 Yuan 0.2669 6.3561 1.7465 0.854324

PT 100 million passenger-km 32.95 2998.23 654.98 489.17

FT 100 million ton-km 97.50 21801.65 3589.09 3947.51

EL Percent 0.0077 0.1560 0.0438 0.028187
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in 2016 the five provincial regions with the highest 
transport CO2 emissions were Guangdong, Shanghai, 
Liaoning, Shandong, and Jiangsu. These provinces are 
mainly located in the eastern economically developed  
areas of China, and the corresponding transport CO2 
emissions in the transport sector were 70.15 Mt, 
51.11Mt, 48.59 Mt, 48.20 Mt and 47.13 Mt, respectively. 
Conversely, the five provincial regions with the lowest 
transport CO2 emissions were Qinghai, Ningxia, Hainan, 
Tianjin, Gansu, and the corresponding CO2 emissions 
in the transport sector were 4.15 Mt, 4.43 Mt, 6.18 Mt, 
12.24 Mt and 13.55 Mt, respectively. The results showed 
that the transport CO2 emission in Guangdong were 
16.90 times that of Qinghai in 2016.

Meanwhile, CO2 emissions in the transport sector 
were also noticeably unequal across the three major 
regions. Eastern China accounted for approximately 

average 51.86% (the largest portion) of the total 
transport CO2 emissions during the period 2001-2016, 
and followed by Western China and Central China, 
average accounted for 24.25% and 23.89%, respectively. 
Moreover, the average amount of CO2 emissions in 
Eastern China was consistently above the national 
average, but province-level differences in Eastern China 
were large (according to the coefficient of variation 
(CV) index, the CV index is widely employed to analyze 
regional inequality [49]) (Fig. 5). The main reason was 
that there were not only high CO2 emissions provinces 
such as Guangdong, Shanghai, and Liaoning, but also 
the low CO2 emissions provinces such as Hainan and 
Tianjin. The average transport CO2 emissions in Central 
China and Western China were consistently below the 
national average level, and the average amount of CO2 
emissions in Central China was larger than in Western 

Fig. 3. Annual total CO2 emissions in China’s transport sector.

Fig. 4. Annual energy consumption and CO2 emissions by energy types in China’s transport sector.
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China, but the province-level difference in Central 
China was smaller than Western China. The main reason 
was that in Western China there were not only the low 
CO2 emissions provinces such as Qinghai, Ningxia, 
and Gansu, but also the high CO2 emissions provinces 
such as Sichuan and Yunnan. Therefore, according to 
descriptive statistics analysis and the CV index, it can be 
seen that there was the great heterogeneity of transport 
CO2 emissions among the provinces and regions during 
the study period.

Analysis of Spatial Agglomeration Characteristics 
in China’s Transport Sector

As shown in Fig. 6, global Moran’s I index indicated 
that the transport CO2 emissions in China presented 
a significant positive spatial dependence during 
the period 2001-2016. Recalling that transport CO2 
emissions are calculated by a top-down approach, the 
significant positive spatial dependence refers to the 
spatial autocorrelation of energy consumption to some 
extent. This indicated that the geographic distribution of 
the transport CO2 emissions tended to cluster together. 
Meanwhile, the value of global Moran’s I index overall 
showed an increasing trend, from 0.0214 in 2001 to 
0.1685 in 2016 (with large fluctuations), which indicated 
that the spatial clustering degree had an increasing 
tendency. However, the global Moran’s I index can 

just be used to examine the average correlation degree 
overall [40]. When some provinces show the positive 
effects, whereas the others present negative effects, 
the global Moran’s index may reveal non-spatial 
autocorrelation because the spatial effects may offset 
each other [50]. Therefore, we employ the method of 
local Moran’s I index (Moran’s I scatter plot) to further 
examine the spatial clustering characteristics of the CO2 
emissions in the transport sector in 2001, 2006, 2011, 
and 2016.

According to the local Moran’s I index, Fig. 7 plots 
the distribution of Moran scatter of CO2 emissions 
in China’s transport sector. The left section of Fig. 7 
presents the local spatial agglomeration patterns, and 
the right section presents the corresponding quadrant 
distributions. As shown in Fig. 7, in 2001, 2006, 
2011, and 2016, there were 4 provinces, 7 provinces,  
6 provinces, and 7 provinces located in quadrant I 
in Moran’s I scatter plot, respectively. Meanwhile, 
there were 10 provinces, 9 provinces, 9 provinces, and  
10 provinces located in quadrant III, respectively. 
In other words, approximately half of the provinces 
belonged to the HH agglomeration area and LL 
agglomeration area, and showed the positive spatial 
autocorrelation. Meanwhile, the results showed that 
the provinces in quadrant I were mainly distributed in 
Eastern China, whereas the provinces in quadrant III 
were mainly distributed in Western China. This result 
further indicated that energy-related CO2 emissions 
in China’s transport sector had a significant spatial 
clustering characteristic. Additionally, there were 
also some provinces that presented negative spatial 
autocorrelation during the observation period. For 
example, in 2016 Anhui, Jiangxi, Fujian, Guangxi, 
Jilin, Tianjin, and Chongqing belonged to the LH 
agglomeration area; and Hubei, Guangdong, Hainan, 
Liaoning, Beijing, and Sichuan belonged to the LH 
agglomeration area. Compared to 2001, in 2016 the 
number of provinces that belonged to quadrant I 
and quadrant III increased by 4, while the number of 
provinces that belonged to quadrant II and quadrant IV 

Fig. 5. CV index of CO2 emissions at regional level.

Fig. 6. Global Moran’s I index of CO2 emissions.
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Fig. 7. Moran’s I scatter plots of CO2 emissions in China’s transport sector.
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decreased by 2 and 2, respectively. This showed that 
the distribution of each agglomeration area of provinces 
presented the regional dynamic characteristics, and the 
spatial clustering degree of the transport CO2 emissions 
seemed to be strengthened during the period 2001-2016.

In order to further reveal the dynamic spatial 
distribution characteristics of transport CO2 emissions in 
China. We employ the space-time transition method [51] 
to depict the transfer of Moran I scatter plots between 
the different local agglomeration areas. Generally, based 
on the way in which transition occurs, the space–time 
transition can be divided into 4 types [40]:
 – Type I describes the transitions of the provincial  

unit itself, including HHt → LHt+1, HLt → LLt+1, 
LHt → HHt+1, and LLt → HLt+1.

 – Type II describes the transitions of the neighboring 
provinces, but the state of the local provincial unit 
does not change, including HHt → HLt+1, HLt → 
HHt+1, LHt → LLt+1, and LLt → LHt+1.

 – Type III includes Type IIIA and Type IIIB. Type 
IIIA describes the consistent direction of transition 
between the provincial unit itself and its neighboring 
provinces, including HHt → LLt+1, LLt → HHt+1. Type 
IIIB describes the opposite direction of the transition 
between the provincial unit itself and its neighboring 
provinces, including LHt → LHt+1, LHt → HLt+1.

 – Type 0 describes how the provincial unit and its 
neighboring provinces remain in the same quadrant 
without a transition, including HHt → HHt+1, 
HLt → HLt+1, LHt → LHt+1, and LLt → LLt+1.
According to the 4 types of classification, the spatial 

stability of Moran I scatter plots can be expressed as 
follows:

0,t
t

F
S

n
=

                             (7)

…where St refers to the spatial stability index, F0,t  
efers to the number of space–time transition of Type 0 
during the period t → t + 1, n refers to the number of 
all transitions during the period t → t + 1. As 0≤ St≤1, 

the value is closer to 1, the spatial stability of transport 
CO2 emissions will be stronger.

Table 4 presents the space-time transition matrices 
of Moran’s I plot of transport CO2 emissions in 4 time 
periods. It can be seen that the space-time transition of 
provinces mainly occurred in Type I and Type II, and 
most of the provinces still remain in the previous state. 
Meanwhile, according to the calculation results of spatial 
stability index, the value of spatial stability of Moran’s 
I scatter plots during the period 2001-2006, 2006-2011, 
2011-2016 was 0.80, 0.90 and 0.80, respectively. Besides, 
throughout the research period, the value of spatial 
stability index in 2001-2016 was 0.90. These results 
indicate that the spatial distribution characteristics of 
transport CO2 emissions in China are highly stable, and 
show the characteristics of certain path-dependence or 
the spatial lock-in effect during the study period.

Factors Influencing CO2 Emissions 
in China’s Transport Sector

Due to the characteristics of our panel data and the 
introduction of one-period lagged term of the interpreted 
variable in the extended STIRPAT model, this may lead 
to the correlation between the explanatory variables 
and random disturbances. Meanwhile, the explanatory 
variables may also have endogeneity, and the random 
effect estimators and the fixed effect estimators may 
be biased, so we use the instrumental variables to 
estimate the model [52]. In this paper, we employ the 
method of Sys-GMM (system-generalized method 
of moments) [53] to estimate the extended STIRPAT 
model. When using the Sys-GMM estimation method, 
we employ the Hansen test to check the reliability of the 
instrumental variables. If the value of the Hansen test is 
small (corresponding to a large p value), we accept the 
null hypothesis suitable for the instrumental variables. 
Meanwhile, the important premise of the consistency of 
Sys-GMM estimators is that there is no second-order 
sequence correlation for the random disturbances after 
the first-order difference, but the first-order sequence 
correlation is allowed. Therefore, we use the first-order 

Table 4. Space-time transition matrices.

Type 2001-2006 2006-2011 2011-2016 2001-2016

Type I LH → HH: Shandong, Hebei
LL → HL: Inner Mongolia

HH → LH: Hunan
LL → HL: Shaanxi
HL → LL: Sichuan

HL → LL:Shanxi, Shaanxi, In-
ner Mongolia

LH → HH: Hunan
LL → HL: Sichuan

LH → HH: Shandong, Hebei

Type II
LL → LH: Shanxi
HL → HH: Henan

LH → LL: Chongqing
None LL → LH: Chongqing HL → HH: Henan

Type III None None None None

Type 0 The remaining 
24 provinces

The remaining 
24 provinces

The remaining 
24 provinces

The remaining 
24 provinces

St 0.80 0.90 0.80 0.90
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and second-order sequence correlation test (AR(1) and 
AR(2)) of the first-order difference conversion equation 
to check whether the sequence correlation existed 
among the random disturbances [54].

Moreover, in order to test whether the multi-
collinearity exists among the explanatory variables in the 
extended STIRPAT model, we calculated the correlation 
coefficients between the explanatory variables. The 
results show that the correlation coefficients were mostly 
relatively small, with only the coefficient between the 
freight turnover and per capita GDP, and the coefficient 
between the passenger turnover and the scale of 
population being relatively large. Besides, we further 
calculated the value of the variance inflation factors 
(VIFs); the results indicated that the average value of 
VIFs was below 10. Based on the above analysis, we can 
conclude that the problem of multi-collinearity among 
the explanatory variables was not serious.

By using the Stata software, Sys-GMM regressions 
analysis was performed, and the relevant results are 
presented in Table 5. As shown in Table 5, model I only 
presented the Sys-GMM regression results of the one-

period lagged term of the interpreted variable, per capita 
GDP (and its quadratic and cubic terms), the scale of 
population, and energy intensity. In order to check the 
robustness of Model I, we added three control variables 
(passenger turnover, freight turnover, and the proportion 
of electricity consumption) sequentially based on 
Model I, and the corresponding regression results were 
presented in Model II-IV, respectively. Based on the test 
results of AR(1) and AR(2) (Table 5), we concluded that 
the sequence correlation did not exist among the random 
disturbances. Besides, the results of Hansen test further 
indicated that we could not reject the null hypothesis. 
In other words, the choice of the instrumental variables 
was reliable, and the results of Sys-GMM regressions 
analysis were effective.

The empirical results of Sys-GMM regressions 
analysis showed that the coefficient of one-period 
lagged term of transport CO2 emissions was statistically 
significantly positive. In other words, the transport CO2 
emissions in the last period were significantly positively 
correlated with the transport CO2 emissions in the 
current period, which verified the hypothesis that CO2 

Explanatory variable Model I Model II Model III Model IV

Iit–1
0.1005908***

(0.0154021)
0.093592***

(0.0151754)
0.0890914***

(0.0151534)
0.0425376**

(0.0263652)

ln PGDP 0.5887155***

(0.0304105)
0.5652816***

(0.0349423)
0.5478433***

(0.0441239)
0.6166843***

(0.0601113)

(ln PGDP)2 0.0148425
(0.0188028)

0.0281959
(0.029436)

0.0149025
(0.0273373)

0.0131461
(0.0620558)

(ln PGDP)3 -0.0324697***

(0.008051)
-0.0340467***

(0.0109577)
-0.0245083***

(0.009508)
-0.0128936***

(0.0506497)

ln PO 0.6344935***

(0.0477226)
0.640722***

(0.031972)
0.6340494***

(0.0320871)
0.618423***

(0.0639586)

ln EI 0.6142654***

(0.0218544)
0.626373***

(0.0295703)
0.6258782***

(0.0283079)
0.4800601***

(0.0359693)

ln PT 0.023816**

(0.0110231)
0.052173

(0.0106865)
0.0445274**

(0.0211572)

ln FT 0.0300955**

(0.0136662)
0.0273227**

0.0137298

ln EL -0.1777859***

(0.0244016)

_cons 6.522483***

(0.1086485)
6.432531***

(0.146279)
6.354772***

(0.1925563)
5.896155***

(0.244775)

AR(1) -2.6768
(0.0074)

-2.6788
(0.0074)

-2.6662
(0.0077)

-1.1851
(0.0695)

AR(2) 1.8207
(0.0686)

1.775
(0.0759)

1.6291
(0.1033)

0.4141
(0.6788)

Hanse test (p) 28.0567
(0.9223)

27.6548
(0.9303)

28.1215
(0.9210)

25.67258
(0.9616)

Observations 450 450 450 450

Notes: The number in parentheses of factors represents the standard errors; the number in parentheses of AR and Hansen test  
represents the p value. 
The symbol * denotes P<0.1, ** denotes P<0.05, *** denotes P<0.01.

Table 5. Results of Sys-GMM regression analysis for different models.
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emissions in China’s transport sector were a continuous 
and dynamic adjustment process. Once we added the 
new control variable sequentially based on Model I, 
we found that the influence of the former combination 
of variables changed. This finding was consistent with 
the studies of Wang et al. [55] and Shi [56]. When we 
considered all the factors that affected transport CO2 
emissions (Model IV), we found that the most important 
influencing factor was the scale of population, followed 
by the per capita GDP (linear term). This result was 
consistent with the study of Zhang et al. [3]. The 
coefficients of passenger turnover and freight turnover 
were positive, and both passed the significance test at 
the 5% level. The coefficients of energy intensity and the 
proportion of electricity consumption were positive and 
negative, respectively, and both passed the significance 
test at the 1% level.

In addition to the above basic results, we still found 
some interesting and meaningful findings based on the 
results of Sys-GMM regressions analysis.

(1) The EKC hypothesis did not exist in China’s 
transport sector. The coefficient of linear term  
ln PGDP and cubic terms (ln PGDP)3 of per capita GDP 
was found to be positive and negative, respectively, 
and passed the significance test at the 1% level. The 
coefficient of quadratic term (ln PGDP)2 of per capita 
GDP was found to be positive (not significantly). 
According to the judgment criteria for the relationship 
between transport CO2 emissions and economic 
development, we did not find the traditional inverted 
U-shaped relationship or the N-shape (and the inverted 
N-shaped) relationship between per capita GDP and 
transport CO2 emissions. In other words, we could not 
support the existence of the EKC hypothesis in China’s 
transport sector during the period 2001-2016. This 
finding was consistent with the other relevant empirical 
studies. For example, Ben Abdallah et al. [57] found 
that the inverted U-shaped relationship between the 
transport CO2 emissions and economic development 
did not exist in Tunisia. Aslan et al. [58] found that the 
inverted U-shaped EKC hypothesis was not valid for the 
U.S. transport sector. Alshehry et al. [59] also found that 
the EKC hypothesis did not exist in in Saudi Arabia’s 
transport sector. Specific to our study, the main reason 

the EKC hypothesis did not exist in China’s transport 
sector during the observation period may lie in the fact 
that China is still a developing country, and the average 
per capita income is still relatively low. In other words, 
China was still on the left of the turning point of the 
EKC. Moreover, the relationship between transport CO2 
emissions and per capita GDP was very likely to show a 
monotonic and positive relationship in China. As shown 
in Fig. 8, there was a close relationship between the total 
amount of transport CO2 emissions and the average per 
capita GDP (R2 = 0.9431). The transport CO2 emission 
was positively proportional to the per capita GDP. 
Objectively, the relationship between the environmental 
pressure and economic development is complex. In 
different research regions and observation periods, 
according to the different measurement indicators 
(especially for the control variables), the relationship 
between environmental pressure and economic 
development may be different [43, 55]. However, in this 
study, we did not find enough evidence to support the 
existence of EKC hypothesis in China’s transport sector.

(2) The improvement of energy efficiency played 
a dominant role in transport CO2 emissions reduction. 
The energy intensity reflects the efficiency of energy 
utilization, a decrease in transport energy intensity 
indicates an improvement in the efficiency of energy 
utilization and the technological progress level in the 
transport sector [60]. As shown in Table 5 (Model 
IV), a 1% decrease of energy intensity would lead to a 
0.480% decrease in transport CO2 emissions when other 
variables remained unchanged. Meanwhile, the impact 
of energy intensity on transport CO2 emissions was only 
lower than the factors of scale of population and per 
capita GDP. However, during the period 2001-2016, the 
energy intensity generally showed an upward trend in 
China’s transport sector. That is, the efficiency of energy 
utilization in the transport sector had a downward trend 
during the observation period. This result may be due 
to the low level of low-carbon technology in China’s 
transport sector [48]. In the short and medium terms, 
the level of per capita income and the total scale of 
the population are expected to continue to grow in 
China. Therefore, the energy efficiency improvement 
will become more and more critical in transport CO2 

Fig. 8. Relationship between transport CO2 emissions and per capita GDP.
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emissions reduction.
(3) Compared to freight transportation, passenger 

transportation played a more important role in transport 
CO2 emissions reduction. This finding was consistent 
with the studies of Zhang et al. [3], Wang et al. [61], 
and Wu et al. [32]. The main reasons may include 
two aspects. On the one hand, during the observation 
period, approximately an average of 91.52% passengers 
were transported by highway and civil aviation 
transportation; and approximately an average of 74.93% 
of freight turnover was transported by railway and 
waterway transportation. In other words, passenger 
transport mainly relies on highway and civil aviation 
transportation, while freight transport mainly relies 
on railway and waterway transportation. However, 
compared to railway and waterway transportation, 
highway and civil aviation transportation have lower 
carbon emission efficiency [62] and fuel economy [29]. 
On the other hand, with the further development of 
China’s economy and urbanization, energy consumption 
and CO2 emissions in the transport sector are expected 
to continue to rise [3]. However, compared to freight 
transportation, passenger transportation is more affected 
by economic-social development and urbanization in 
China [32].

(4) The improvement of the energy consumption 
structure had an important inhibitory effect on 
transport CO2 emissions in China. As shown in 
Fig. 2, the proportion of low-carbon content energy 
or clean energy, including natural gas and electricity, 
was gradually increasing during the period 2001-2016. 
Namely, energy consumption in China’s transport sector 
was constantly replacing high-carbon content energy 
with low-carbon content energy. As shown in Table 5 
(Model IV), electrification had a significant effect on 
reducing transport CO2 emissions, a 1% increase of 
electricity consumption to total energy consumption 
would decrease transport CO2 emissions by 0.178% 
when other variables remained unchanged. This finding 
was consistent with the study of [63]. The main reasons 
may include two aspects. Firstly, as point by Holmberg 
et al. [64], electric vehicles have a higher fuel efficiency 
compared to internal combustion vehicles. Under the 
same amount of energy consumption, the electric 
vehicles would emit fewer CO2 emissions. Secondly, 
as pointed by Ou et al. [63], even though the current 
power generation technologies remain unchanged, a 
3-36% reduction of CO2 emissions in different scenarios 
for electric vehicles could be achieved. When the 
technology of clear electricity production has great 
improvement, the space for CO2 emissions reduction 
will be further expanded [65].

Conclusions and Policy Implications

This paper investigated the spatial distribution 
characteristics and influencing factors of transport CO2 
emissions from energy consumption in China by using 

panel data covering the 30 provincial regions during the 
period 2001-2016. The empirical results are shown as 
follows.

The results indicated that the amount of transport 
CO2 emissions in China has increased steadily during 
the observation period, from 200.42 million tons in 2001 
to 814.10 million tons in 2016, for an average annual 
growth of 8.37%. Similarly, the amount of transport 
CO2 emissions for each province also was found to 
increase steadily from 2001 to 2016. The level of 
economic development and geographical characteristics 
for different provinces generated us to pay attention to 
the issue of the inequality in growth of transport CO2 
emissions. By using the coefficient of variation, we 
found that transport CO2 emissions existed in great 
heterogeneity among provinces and regions. However, 
the simple descriptive statistical analysis and the method 
of CV index are difficult to fully extract the different 
characteristics of CO2 emissions data, so we further 
employed the ESDA method to mine the distribution 
characteristics of transport CO2 emissions from the 
perspective of spatial dimension. The global Moran’s I 
index indicated that transport CO2 emissions in China 
presented a significant positive spatial dependence, and 
the spatial clustering degree had an increasing tendency 
during the observation period. The local Moran’s I 
index further indicated that approximately half of the 
provinces belonged to the HH agglomeration area and 
LL agglomeration area. Combined with the space-time 
transition matrices, the results indicated that the spatial 
distribution of CO2 emissions in China’s transport sector 
presented the characteristics of path-dependence effect 
to some extent.

The application of the extended STIRPAT model 
enabled us to better understand the influencing factors 
of the transport CO2 emissions. Based on the Sys-
GMM regressions analysis, we found some interesting 
and meaningful findings. The scale of population was 
the most important influencing factor and followed 
by the per capita GDP. Furthermore, under the 
conditions that the economic development and the 
scale of population are expect to continue to grow in 
China; improvement of energy efficiency would play 
a dominant role in transport CO2 emissions reduction. 
Compared to freight transportation, passenger 
transportation was more important in CO2 emissions 
reduction due to its low efficiency of energy utilization 
and rapid growth. Meanwhile, electrification played an 
important inhibitory effect on transport CO2 emissions 
because of its high fuel efficiency and less pollution. 
Importantly, we could not support the existence of the 
EKC hypothesis in China’s transport sector. Moreover,  
the relationship between transport CO2 emissions and 
per capita GDP was very likely to show a monotonic 
and positive relationship in China during the period 
2001-2016.

These findings not only contribute to the existing 
literature, but also contain some important and 
meaningful policy implications. Firstly, it is necessary  
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to confirm the priority transport CO2 emissions reduction 
areas. The spatial autocorrelation and agglomeration 
characteristics of province-level transport CO2 emissions 
presented a high degree of stability and tended to be 
strengthened. The distribution characteristics reflect the 
fact that it is difficult for most provinces to break away 
from the original agglomeration area. Therefore, there 
are some differences in the pressure of CO2 emissions 
reduction faced by China’s provincial transport 
sector. According to a study of Chen et al. [66], the 
quadrant I-IV in Moran’s I scatter plots belong to the 
“priority emission reduction area”, “emission reduction 
observation area”, “emission reduction buffer area”, and 
“key emission reduction area”, respectively. Therefore, 
it is necessary to set the priority CO2 emissions 
reduction areas in accordance with the situation of 
spatial agglomeration. Secondly, it is necessary to 
improve transport energy efficiency. As pointed out by 
Adom [67], the lower energy efficiency is inclined to 
increase CO2 emissions. The key to improving energy 
efficiency in China’s transport sector is to strengthen the 
development and application of low-carbon technologies 
in the transportation field [48]. Thirdly, it is necessary 
to strengthen passenger transportation decarburization 
policy. Owing to the great potential of market demand 
and the high pollutant intensity, passenger transport 
plays a more important role than freight transport in 
China’s transport sector. Finally, it is necessary to 
highlight the model shift of fuel consumption. Different 
fuels have different carbon content, which leads to 
a significant difference in the contribution of carbon 
emissions. Some related policies are important to 
further reduce petroleum consumption in the transport 
sector, such as developing low-displacement and electric 
vehicles.
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