
Introduction

A healthy ecosystem provides various ecological 
services for human beings and it is the foundation for 

the sustainable development of human society. However, 
human activities and natural disasters inevitably 
interfere with the evolution of an ecosystem at different 
scales [1-2]. Ecological risk refers to the possibility 
that the ecosystem structure and function will be 
degenerated under external pressure [3]. Ecological risk 
assessment (ERA) is an effective method for quantifying 
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Abstract

The ecological environment of resource-based cities is threatened by multiple ecological risks.  
The main objective of this study is to investigate the dynamics of land use and landscape ecological 
risk in resource-based cities. Huaibei, a typical resource-based city in China, was taken as a case 
study. By using the Markov model and landscape metrics, this study first analysed the land use changes  
in 1989, 2002 and 2016. Then an assessment model was developed to examine the ecological risk caused 
by the land use changes. Additionally, a spatial autocorrelation analysis was adopted to reflect the spatial 
heterogeneity of the landscape ecological risk. The results showed that urbanization has a greater impact 
on land use than the mining activity in Huaibei. The level of landscape ecological risk showed a tendency 
to initially increase and then decrease. In 1989 and 2002, the extremely high and high-risk regions were 
concentrated in the northern mining area, but these regions were reduced and scattered throughout  
the northern and middle areas of Huaibei in 2016. The area of medium-risk regions continuously 
increased throughout the study period. The spatial autocorrelation of the landscape ecological risk was 
positive and was weakened in 2016. The results suggest that the pattern of land use and the landscape 
ecological risk in resource-based cities showed an obvious spatiotemporal variation. Understanding the 
phase characteristics is necessary for ecological restoration.
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the potential impacts and the cumulative effects of 
risk sources [4]. Landscape ecological risk assessment 
(LERA) which is an important branch of ERA focuses 
on the ecological risk caused by land use changes [5]. 
It aims to reveal the effect of landscape pattern change 
on the ecological process [6-7]. In recent years, LERA 
has been used to analyse the response of the regional 
ecological environment to human disturbance. It has 
been a powerful tool for balancing and managing 
ecological risk and could provide a reference for policy 
makers and land use planners. 

ERA has been proposed with the development and 
subdivision of environmental impact assessments. At 
first, it was popular in ecological toxicology and was 
useful for explaining the formation and diffusion of 
chemical pollution and the response of the regional 
ecological system [8]. In the 1990s, the research 
objective, content and method of ERA were greatly 
extended [9-10]. Some scholars began to pay attention 
to the ecological risk caused by land use changes. 
Compared with the traditional ERA, LERA provided a 
special focus on spatial heterogeneity. So far, research 
on various landscapes, such as forests [11], coastal areas 
[4], arid desert areas [12], national parks [13], cities  
[14-15] and mining areas [16], have been performed.  
The key step of a LERA is to establish the ecological 
risk index (ERI). There are two methods that are 
currently widely used. The first is based on the model 
of ‘stressor-receptor-response’ [17] and a hazard analysis 
chain of ecological risks. This method is usually used 
to analyse the ecological effect of specific stressors or 
disturbances. The second method regards the ecological 
effect of landscape mosaic deviating from the optimal 
pattern as a risk source [7]. The entire ecosystem, 
rather than the specific ecological components, is 
considered to be the receptor. In the second method, 
the ERI is determined by ecological risk probability 
and landscape ecological loss index. In some studies, 
landscape ecological loss index was calculated by the 
analytic hierarchy process (AHP) or the Delphi method. 
However, most studies used landscape disturbance 
index and landscape fragility index to calculate the 
landscape ecological loss index [4]. The landscape 
disturbance index was calculated by landscape metrics. 
The landscape fragility index was usually obtained 
by artificial assignment or the normalization method, 
while some studies calculated it by using the index, 
which could quantitatively describe the ecological 
characteristics of the risk receptor, such as vegetation 
index, wetness index and topographic index [18]. Either 
way, both the selection of the assessment method and 
the construction of ecological risk index should be in 
accordance with the research purpose and the ecological 
characteristics of the research object.

Resource-based cities are those cities in which the 
exploits and processes local natural resources is the 
dominant industry. Compared with other types of cities, 
resource-based cities are characterized by the life cycle 
[19]. The development could be divided into four phases: 

initial period, rapid development period, mature period 
and recession period. Generally, the city will be deemed 
to be in the recession period when the mining activity 
lasts for more than 50 years or the remaining reserves 
can be mined within 10 years [20]. With the profound 
change of land use, the ecological environment will be 
seriously damaged, and the risk grade will sharply rise 
when a resource-based city is in the recession period. 
Therefore, the resource-based cities have become  
a hot issue for the research of restoration ecology  
[21-22]. Many experts called for a mechanism by  
which environmental monitoring, risk assessments and 
policy decision making should be developed [11]. Based 
on this background, some studies paid attention to the 
ERA for resource-based cities [23]. At first, most of 
the previous works focused on the ecological risks that 
were caused by chemical pollution, such as threats from 
heavy metal and acid mine drainage. However, there 
is a very limited number of papers that have assessed 
the landscape ecological risk in resource-based cities. 
Most of the previous studies only assessed the landscape 
ecological risk in a single period, which led to confusion 
about the spatiotemporal evolution of ecological risk.  
In Addition, an inadequate analysis of the land use 
changes resulted in difficulty for most studies to explain 
the evolutionary mechanism of landscape ecological 
risks in different grades.

In resource-based cities, the mining industry drives 
the land use changes directly or indirectly. Taking 
Huaibei as an example, this study has shown the phase 
characteristics of land use and landscape ecological  
risk from the rapid developed period to the recession 
period. The land use conversion was demonstrated 
by the Markov model and landscape metrics. On  
this basis, an ERI was established to evaluate the 
landscape ecological risk of Huaibei in different 
periods. Moreover, the conversion of different risk 
grades was calculated. At last, the spatial correlation 
for the landscape ecological risk in different years was 
calculated.

Study Area and Data

Study Area

Huaibei (33°16′ to 34°14′N, 116°23′ to 117°02′E) 
lies in northern Anhui Province in China. It consists 
of four administrative parts, namely Duji, Xiangshan, 
and Lieshan Districts and Suixi County, together with  
11 towns. The total area of Huaibei is 2741 km2, 
in which plains account for 85.3% and hills account 
for only 14.7% (Fig. 1). The plain grows in the altitude 
ranging from 22.5 m to 37 m. The average altitude of the 
hilly area is above 200 m. Huaibei belongs to the sub-
humid warm temperate continental monsoon climate. 
In the plain area, the level of shallow groundwater is 
relatively high, so it easily forms waterlogged subsidence 
basins after mining [24].
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Huaibei is an important part of the Lianghuai energy 
base, which is nearest to the Yangtze River Delta 
region. In 1960, Huaibei was established because of the 
exploitation of coal. By the end of 2016, the cumulative 
production of coal was nearly 1 billion tons. It once had 
an important impact on the energy supply for eastern 
China. In the 1980s, Huaibei was in a rapid development 
period. The late 1990s to the early 21st century was the 
mature period of Huaibei’s mining industry. Later, due 
to the decline of coal reserves, Huaibei stepped into 
the recession period and it was identified as a resource-
exhausted city by China’s State Council in 2009. After 
nearly 60 years of mining, there are still 29 coal mines, 
most of which are close to closure. The long-term 
mining of coal posed a serious threat to ecological 
security and restricted the sustainable development of 
the city. Influenced by deep coal mining, a large amount 
of subsidence basins emerged, which has become the 
most prominent problem of ecological restoration in the 
mining areas. By 2015, a total of 166.8 km2 of land sank 
and the subsidence area still increased by 1.1 km2 per 
year. 

Since the 21st century, the urbanization rate of 
Huaibei increased from 37.9% in 2001 to 62.1% in  
2016. The rapid urbanization caused an obvious 
change in the land use [25], especially the growth 
of construction land which resulted in higher 

landscape fragmentation [26]. Currently, the impact of  
urbanization on the landscape pattern has become 
stronger.

Data Source

This study was conducted mainly based on the 
following sources: the administrative district map, 
the land use maps, the maps of the mining area and 
statistical data on social and economic development. 
The land use maps were made from Landsat TM and 
ETM images in 1989 (the rapid development period), 
2002 (the mature period) and 2016 (the recession 
period), which were obtained from USGS. Every image 
is a summer scene that was acquired from June to 
August. Image data preprocessing and interpretation 
was performed by ERDAS IMAGINE2014 and Arc  
GIS 10.2 [27]. According to previous studies and the 
Chinese national land use classification criteria, the 
landscape of Huaibei was classified into cultivated 
land, forest, grass land, water area, construction land 
and unused land (Table 1 and Fig. 2). The maps of the 
mining area were used to identify the risk source and 
to optimize the land use classification result, including 
the distribution maps of coal mines and subsidence 
basins in different years. All of these data and maps 
above were derived from the Huaibei land bureau. The 

Fig. 1. Location of Huaibei in China and the distribution of coal mines.
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DEM dataset (30×30 m) came from the ‘Geospatial data 
cloud’ provided by the Chinese Academy of Sciences.

Sampling Method

Dividing the landscape ecological risk unit is 
necessary for calculating the ERI and the spatial 
statistical analysis. According to the previous studies, 
the variation coefficient model was used to decide  
the size of the sampling unit [28]. After comparing 
10 sizes of sampling units, the results show that 
1.5×1.5 km is the optimal grid size. Therefore, the 
study area was divided into 1339 risk units using  
the equidistance sampling method (Fig. 3). It is 
necessary to calculate the ERI of each sampling unit  
to quantitatively describe the spatial distribution and  
the changes in the landscape ecological risk. Meanwhile, 
the centre points of sampling units are the basis of 
spatial interpolation. 

Methods

Land Use Dynamic Change

In this study, the phase characteristics of land use 
were reflected by the Markov transition matrix [29]. As 
a densely populated district, the land use intensity of 
Huaibei is very high. Therefore, the Markov transition 
matrix largely reflects the disturbance manner and 
intensity of human activities at the regional scale. This 
study analyses the land use changes of Huaibei from 
1989 to 2016. The conversion of different land use types 
was analysed by the intersect tool of Arc GIS 10.2:

Table 1. Classification of land use of Huaibei.

Code Land Use Type Details

1 Cultivated land Irrigated land, Paddy field.

2 Forest Wildwood mainly in hilly areas of the prohibition of development, plantation mainly on the plain, 
shrubs.

3 Grass land Natural grassland in hilly area, cultivated grassland for pasture.

4 Water area River, lake, reservoir, the waterlogged subsidence basin.

5 Construction land Build-up area of urban and town, rural, industrial and mining areas.

6 Unused land Abandoned mine land, sand, bare land.

Fig. 2. Land use distribution in Huaibei from 1989 to 2016.
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…where Sij is the changing area from land use i to j 
between two time points, and m and n are the number of 
land use types.

Landscape Ecological Risk Assessment Model

Landscape Ecological Risk Index (ERI)

The level of landscape ecological risk is determined 
by the integrity of landscape structure and the loss 
degree of the ecosystem. The ERI was established to 
quantify the risk level of each unit. It was constructed 
by combining the land use structure of each risk unit 
and the landscape ecological loss degree of each land 
use type, which was calculated by the landscape 
disturbance index (Ei) and the landscape fragility index 
(Fi). The assessment formula is expressed as Eq. 2 [12]:

…where Aki is the area of the ith land use in the kth risk 
unit, Ak is the total area of the kth risk unit, and n is the 
number of land use types. 

Landscape Disturbance Index (Ei)

Human activities and natural disasters changed the 
land use structure and the landscape ecological process, 
such as mining, urbanization, farming, flood or drought, 
etc. Therefore, comparing the landscape metrics in 
different periods would effectively reflect the manner 
and process of disturbance [30]. Considering the land 
use characteristics of Huaibei, class landscape metrics 
with different ecological significances were selected 
to establish the landscape disturbance index (Table 2). 
The landscape disturbance index could quantify the 
resistance of landscape pattern to external disturbances. 
Generally, Ei was built by using the fragmentation 
index (Ci), segmentation index (Si) and dominant index 

Fig. 3. Division of the landscape ecological risk unit.

Table 2. Indices of landscape disturbance.

Index Equation Expression

Ci ni is the patch number of landscape i; Ai is the total area of landscape i.

Si A is the total area of landscape.

Doi

Qi is the number of risk units with the patch i divided by the total 
number of risk units; Mi is the number of patch of landscape i divided 
by the total number of patches in the risk units; Li is the area of land-

scape i divided by total area of risk units.

RPi
aij is the area of patch ij;

Pij equals perimeter of patch ij; 

Ni
ei equals perimeter of landscape i; minei equals minimum perimeter of 

landscape i; max ei equals maximum perimeter of landscape i.

Ei
a, b, c, d, e represent the weights of Ci, Si, Doi, RPi, Ni. a+ b  + c + d 

+ e = 1
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(Doi) [31]. The Ci is an important index for describing 
landscape heterogeneity. The extent of fragmentation 
has an important impact on maintaining the ecological 
function of habitats. The Si stands for the separation 
degree of ith land use. The higher Si means the greater 
conversion probability between different landscape 
types. The Doi shows the dominance of ith land use 
in the whole area, which also reflects the deviation 
between landscape diversity and maximum diversity. 
These class landscape metrics can measure the stability 
of spatial structure of a certain land use type in response 
to external disturbances. However, the disturbance 
effects on the stability of patch shape of a land use type 
cannot be fully reflected in these indices. By referring 
to the latest studies, this study adds the reciprocal of 
perimeter-area fractal dimension index (RPi) [32-33] 
and the normalized landscape shape index (Ni) [12] to 
the formula. PAFRACi, which has a range from 1 to 2, 
describes the path shape complexity and stability at the 
class level. The value of PAFRACi approaches 1, which 
indicates that when the patch presents a simpler shape, 
the disturbance it suffered will be stronger. The Ni is the 
normalized version of the landscape shape index at the 
class level. The high Ni means that the interior area of 
the landscape unit is relatively small and the edge area 
is large. The landscape ecological process is more easily 
influenced by external disturbances.

Disturbance is dynamic, and its influence on the 
landscape pattern shows an obvious temporal variation. 
Therefore, the weights of the landscape metrics for 
different periods should be modified. In this study, 
the entropy weight method is employed for allotting 
weights to the landscape metrics of different periods. 
This method is regarded as a relatively objective and 
effective method for obtaining the contribution of each 
index to the landscape disturbance indices [34-35].  
The weights of the landscape metrics in 1989 are  
a = 0.219, b = 0.244, c = 0.260, d = 0.114, and 
e = 0.164. The weights in 2002 are a = 0.232, b = 0.243, 
c = 0.294, d = 0.095, and e = 0.136. The weights in 
2016 are a = 0.204, b = 0.250, c = 0.287, d = 0.095, and 
e = 0.164.

Landscape Fragility Index (Fi)

Different landscape types stand for different 
ecosystems, which have different abilities to maintain 
the stability of the ecological process. Fi is the 
sensitivity of ith land use to external disturbances [12]. 
The higher Fi means that the landscape stability is lower 
and the ecosystem is more vulnerable. The results of 
previous studies generally proved that the landscape 
fragility of unused land, water area and cultivated 
land were very high [4]. These landscape types easily 
lost the original landscape structure and the ecological 
function under external disturbances. The landscape 
fragility of grassland and forest is relatively low [35]. 
It is usually believed that the construction land was the 
most stable landscape [18]. When compared with other 

study areas, the landscape fragility of the construction 
land in resource-based cities was relatively higher [36]. 
On the one hand, after the closure of coal mines, the 
economic recession and the loss of the employment 
population resulted in a large amount of construction 
land being abandoned and changed to unused land. On 
the other hand, many villages disappeared because of 
mining subsidence. By 2016, there was still more than 
87 km2 of construction land located in the coal fields 
(excepting the closed coal mines), most of which was 
rural settlement. With the further exploitation of coal, 
many villages had to move. Therefore, the AHP method 
was used to calculate the Fi of each landscape by using 
IDRISI Selva17.2 [37]. The final Fi values for unused 
land, water area, cultivated land, grass land, forest and 
construction land were 0.283, 0.229, 0.142, 0.123, 0.115 
and 0.108, respectively. The conformance index was 
0.0288(<0.05).

Spatial Statistical Analysis

Semivariance Analysis

As a spatial variable, the spatial variability of the 
landscape ecological risk is structural and random. The 
semivariance function (Eq. 5), which is an important 
method of geostatistics, is very useful for measuring 
the continuity of the adjacent space variables [38]. 
Therefore, it was performed to simulate the gradient 
change of the landscape ecological risk, especially for 
local optimization spatial interpolation, namely Kriging 
interpolation. The experimental semivariance function 
was calculated by using the GS+ 7.0 tool and then fitted 
by an appropriate theoretical model determined mainly 
by the determination coefficient (R2) and the residual 
sum of squares (RSS) [39]. Then the results would 
provide semivariance values for any h that are necessary 
for Kriging interpolation. The landscape ecological risk 
maps in 1989, 2002 and 2016 were created with the help 
of geostatistics analysist tools of Arc GIS 10.2.

( ) ( ) ( ) ( )[ ]
( )

∑
=

+−=
hN

1i

2
ii hxZxZ

hN2
1hγ

…where γ( h) is the experimental semivariance value at 
the distance interval h, which describes the degree of 
autocorrelation that is present; N(h) is the number of risk 
units at lag distance h; Z(xi) and Z(xi + h) are the sample 
values at location xi and xi + h (i = 1,2,…,N(h)).

Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is used to describe 
the correlation of the ERI in adjacent locations. It 
is helpful to observe the spatial heterogeneity of 
landscape ecological risk [39]. It includes global spatial 
autocorrelation and local spatial autocorrelation, which 
were calculated by Moran’s I and LISA, using Geo 
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Da 1.12 [40]. The value of Moran’s I varied between 
-1 to 1. Positive, negative or near-zero indicate that 
the distribution of risk units with similar values has a 
clustering, dispersion or random pattern, respectively 
[41]. In this case, Moran’s I for the ERI was calculated 
in 6 distance classes from 1989 to 2016 in order to show 
the change trend of the landscape ecological risk spatial 
clustering characteristics. 

LISA could measure the local spatial association of 
the landscape ecological risk. According to the z score 
significance, the clustering pattern of the landscape 
ecological risk was categorized into five types: H-H 
(hot-spot), H-L, L-H, L-L (cold-spot) and not significant. 
H-H signifies that the agglomeration consisted of 
higher ecological risk units, whereas L-L represents the 
contrary. The neighbouring risk units interact with each 
other and the change trend of risk is consistent. In the 
areas covered by H-H clusters, the probability of the risk 
rising is higher. Comparing the change of H-H clusters 
is helpful to reflect the spread direction of ecological risk 
and to identify the key areas for ecological restoration. 
This could provide a warning about the safety of an 
important ecological patch by comparing the change 

of the L-L clusters. H-L indicates that the statistically 
significant regions in high risk are surrounded by low 
risk regions. L-H refers to the contrary. Both H-L and 
L-H indicate that there is a great difference among 
the neighbouring risk units in the ERI. Not significant 
signifies that the ERI is randomly distributed, and there 
is no obvious relationship among neighbouring risk 
units. As a result, the local spatial cluster maps of the 
landscape ecological risk in Huaibei were generated.

Results

Land Use Conversion Analysis

The excessive exploitation of land is an important 
cause of rising ecological risk. Therefore, the land use 
composition and landscape pattern in different periods 
were analysed first. Land use maps in 1989, 2002 and 
2016 are shown in Fig. 2. The proportions of different 
land use types in three years are shown in Fig. 4. By 
using the Markov model, the land use transition matrices 
of Huaibei were generated, namely Tables 3 and 4.

Fig. 4. Land use proportions of Huaibei in 1989, 2002 and 2016.

Table 3. Land use transition matrix of Huaibei from 1989 to 2002 (km2).

1989/2002 Water area Cultivated Land Forest Grass Land Unused Land Construction Land

Water area 50.89 20.07 1.18 0.29 4.45 8.91

Cultivated land 26.16 2038.10 6.33 14.03 7.51 109.36

Forest 0.63 2.37 18.63 2.81 0.12 1.58

Grass land 1.52 3.03 6.93 64.20 0.10 4.16

Unused land 1.89 2.94 0.19 1.23 1.20 2.76

Construction land 9.71 2.80 0.43 0.83 5.10 319.15
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Except for cultivated land, the other land use  
types increased differently during 1989 to 2002  
(Fig. 4). Cultivated land decreased the most, by 
132.18 km2. While construction land (which increased 
by 107.89 km2) was the fastest growing land use type 
between 1989 and 2002. Unused land, forest, water 
area and grassland increased by 8.29 km2, 7.55 km2, 
5.02 km2 and 3.44 km2, respectively. Table 3 showed that 
109.36 km2 of cultivated land changed into construction 
land, which was the largest change from 1989 to 2002. 
The mutual conversions between cultivated land and 
water area were also prominent. By comparing the land 
use maps and the mining subsidence maps, it could 
be found that under the influence of mining activity, 
9.71 km2 of construction land sank and changed into 
water area over 13 years. While 8.91 km2 of water area 
changed into construction land, especially around the 
central city.

The trend of land use changes became more 
complicated during 2002 to 2016. Cultivated land, 
unused land and grassland decreased in the 14 
years. However, construction land, water area and 
forest still kept increasing. In the aspect of land use 
composition, cultivated land decreased by 117.79 km2, 

with a proportion of 71.18% in 2016. At the same 
time, construction land increased by 110.64 km2, with 
a proportion of 20.3% in 2016. The proportions of 
water area and forest increased to 3.41% and 1.71%. 
Grass land and unused land decreased to 2.75% and 
0.67%, respectively. As Table 4 shows, 120.18 km2 of 
cultivated land changed into construction land, which 
represents 90.67% of new construction land between 
2002 and 2016. The transition area between water area 
and cultivated land were also notable for 26.89 km2 and 
25.23 km2, respectively. Over 14 years, many mines 
were closed but there was still 8.91 km2 of construction 
land that had sunk and changed into water area, because 
the process of mining subsidence was very slow. From 
2002 to 2016, 6.44 km2 of water area changed into 
construction land, which was less than that from 1989 
to 2002.

In the whole period, only cultivated land constantly 
decreased, and it was the main source of the increased 
construction land and water area. During 1989 to 2016, 
a total of 229.54 km2 cultivated land was converted 
into construction land, which took up 69.14% of  

the loss area of cultivated land from 1989 to 2002, and 
71% from 2002 to 2016. The opposite change occurred 
in construction land, which in 2016 was 1.65 times 
larger than that of 1989. These changes indicated that 
urbanization was the primary driving force for the land 
use changes in Huaibei. Mining activity had an obvious 
impact on cultivated land, construction land, water area 
and unused land. During 27 years, a total of 51.39 km2 
of cultivated land changed into water area, of which 
38.47 km2 was caused by mining subsidence. A total of 
40.8 km2 of construction land changed into other land 
use types, mostly occurring in the mining areas. As the 
ecological restoration in the mining areas, 13.08 km2 of 
waterlogged subsidence basin was reclaimed. Otherwise, 
unused land, which has an obvious characteristic of the 
life cycle, increased by 81.25% from 1989 to 2002 but 
then decreased by 3.67% from 2002 to 2016. It kept pace 
with the development of the mining industry. 

Spatial Distribution Characteristics 
of Landscape Ecological Risk

Dynamics of Landscape Metrics

The landscape metrics at class level are the essential 
components of LERA and they were used to measure 
the spatial pattern changes of each land use type in 
different periods (Table 5). In Huaibei, cultivated 
land and construction land are the main types of land 
use. From 1989 to 2016, the C and S of cultivated 
land remained the minimum, but presented a trend of 
accelerated increase. By contrast, the dominance of 
cultivated land was gradually decreasing. The minimum 
of PAFRAC and the maximum of N occurred in 2002, 
which indicated that the stabilization of cultivated land 
patch was the worst when mining activity was in the 
mature period. With the expansion of the central city 
and villages, the C and S of construction land constantly 
decreased, but the Do gradually increased across the 
whole period. This is mainly because the growth of the 
central city occurred in an aggregation way. The patch 
of construction land was more unstable with a lower 
PAFRAC and a higher N. From 1989 to 2016, the C and 
S of unused land were the highest. The values of C, S, 
Do and N of unused land increased in 1989 to 2002, 
but dropped in 2002 to 2016, which indicated that the 

Table 4. Land use transition matrix of Huaibei from 2002 to 2016 (km2).

2002/2016 Water area Cultivated Land Forest Grass Land Unused Land Construction Land

Water area 55.35 26.89 0.38 0.17 1.59 6.44

Cultivated land 25.23 1900.70 10.51 5.00 7.69 120.18

Forest 0.21 3.79 27.23 1.48 0.50 0.48

Grass land 0.10 7.02 4.76 67.22 2.17 2.11

Unused land 3.62 7.10 2.58 0.95 0.89 3.34

Construction land 8.91 6.03 1.35 0.66 4.97 424
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disturbance on unused land was up to its highest in 
2002. The changes of the water area landscape metrics 
also took on an obvious periodicity. The values of C, S 
and Do declined after 2002, which suggested that the 
ecological risk affecting the water area was similar to 
the unused land suffered. The decrease of PAFRAC and 
the increase of N reflected the decline of the stability of 
the water area patch.

During 1989 to 2016, the area of forest nearly 
doubled and the value of Do obviously increased. While 
the C and S of the forest initially increased and then 
gradually decreased. These changes meant that the forest 
expanded mainly in a scattered way during 1989 to 
2002, but then in a relative aggregation way. The C and 
S of grassland remained relatively low, but significantly 
increased from 1989 to 2016. Due to urbanization and 
quarrying, the area of grassland was smaller with a 
lower Do. The changes of PAFRAC and N mean that the 
patch of grassland became increasingly unstable.

According to the results of landscape metrics, the 
landscape disturbance indices of each land use type in 
different years were calculated. Then the ERI model 
was established to calculate the value of each risk 
unit. With the help of the natural breakpoint method in 
Arc GIS 10.2, the result of the ERI were divided into 
five grades: extremely high, high, medium, low and 
extremely low [15]. The assessment results showed that 
the average ERI values in 1989, 2002 and 2016 were as 
follows: 0.0438, 0.052 and 0.0501, which illustrated that 

the landscape ecological risk in 2002 was the highest 
and then declined slightly. 

The Distribution and Changes of Landscape 
Ecological Risk

The semi-variance function was conducted to obtain 
the result of spatial interpolation for the ERI. Spatial 
fitting is the key step of the semi-variance function, the 
result shows that the exponential model best satisfied 
for the experimental semivariance function of 1989 
and 2016, the spherical model best satisfied for that of 
2002 by comparing the results of R2 and RSS. Based 
on the results of the spatial fitting, the ordinary kriging 
interpolation method was adopted to generate the spatial 
interpolation maps of landscape ecological risk for each 
study year, as shown in Fig. 5.

The results of Fig. 5 show that the landscape 
ecological risk pattern in 1989 was similar to that in 
2002. The extremely low-risk regions were mostly 
distributed in the hilly areas of Huaibei. In 1989 and 
2002, the extremely high and high-risk regions were 
concentrated in northern Huaibei, which was more 
affected by human activities. These areas had the 
longest history of mining and the number of coal mines 
was the largest. From the overlaying analysis of the 
spatial interpolation maps for the ERI and the minefield 
map, it can be found that 81.14% of the extremely 
high-risk regions and 58.97% of the high-risk regions 

Table 5. Landscape metrics at class level in Huaibei from 1989 to 2016.

Year Type Ci Si Doi PAFRACi Ni

1989

Water area 0.0557 0.6672 0.1625 1.6288 0.1215

Cultivated land 0.0014 0.0209 0.6223 1.4083 0.0622

Forest 0.0624 1.2788 0.0639 1.3634 0.1169

Grassland 0.0230 0.4442 0.1214 1.3627 0.0537

Unused land 0.2167 3.4748 0.1003 1.2956 0.1226

Construction land 0.1187 0.4905 0.4909 1.2890 0.1639

2002

Water area 0.0675 0.7138 0.1699 1.4557 0.1416

Cultivated land 0.0016 0.0234 0.5925 1.3389 0.0763

Forest 0.0870 1.3303 0.0881 1.3439 0.1248

Grass land 0.0314 0.5082 0.0700 1.3109 0.0548

Unused land 0.3510 3.6075 0.1173 1.3019 0.1823

Construction land 0.1111 0.4132 0.5006 1.2557 0.1739

2016

Water area 0.0617 0.6725 0.1645 1.4904 0.1628

Cultivated land 0.0022 0.0278 0.5672 1.3726 0.0749

Forest 0.0771 1.0628 0.0998 1.4266 0.1265

Grassland 0.0366 0.5762 0.0573 1.3236 0.0689

Unused land 0.3234 3.5279 0.1040 1.3187 0.1436

Construction land 0.1003 0.3515 0.5274 1.2745 0.1863
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distributed in the mining areas in 1989. The proportions 
in 2002 were 90.15% and 75.5%, which illustrated that 
mining was the main factor that affected the distribution  
of the extremely high and high-risk regions in Huaibei. 
As Fig. 5 shows, the expansion of the medium and  
high-risk regions were closely related to construction 
land.

The distribution gradient of the landscape ecological 
risk in 2016 was different from that in 1989 and 2002, 
which mainly signifies that the expansion of the 
extremely high and high-risk regions was characterized 
by continuity during 1989 to 2002. Since 2002, the 

regions have expanded in a scattered way, which is 
mainly because most coal mines located in northern 
Huaibei have since closed. Due to the ecological 
restoration in the mining areas, the area of extremely 
high-risk regions in northern Huaibei obviously 
decreased. However, the impact of mining subsidence 
on the landscape ecological risk pattern still cannot 
be ignored. In 2016, 92.23% of the extremely high-
risk regions and 71.16% of the high-risk regions were 
distributed in the mining areas. It should be noted that 
the ecological risk grade of mid-Huaibei will rise further 
as a result of the development of the mining industry. 

Fig. 5. Spatial interpolation maps for the ERI in Huaibei from 1989 to 2016.

Fig. 6. Land use composition in various risk regions in 1989 a), 2002 b), 2016 c).
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In northern Huaibei, the medium-risk regions sprawled 
towards the southeast and east, which was consistent 
with construction land. 

Meanwhile, in mid-Huaibei, the medium-risk 
regions increased around the new mines and along the 
Kuaihe River, which was surrounded by a number of 
villages. By using the overlaying analysis tools of Arc 
GIS 10.2, we summarized the land use composition of 
the ecological risk regions in different grades (Fig. 6). 
The largest land use types in the extremely low-risk 
regions were grassland, forest and cultivated land, the 
mean ratios of these land use types across the three 
years were 54.54%, 20.64% and 17.62%. The low-risk 
regions were largely covered by cultivated land, which 
accounted for more than 80% in all of the years. The 
medium-risk regions largely consisted of construction 
land and cultivated land, the mean ratios of these  
land use types across the three years were 60.88%  
and 28.89%. In the high-risk regions, the proportions  
of cultivated land, construction land and water area  
were high, and the mean ratios of these land use types 
across the three years were 43.07%, 26.08%, and 
22.18%. From 1989 to 2016, the land use composition 
of the extremely high-risk regions was relatively 
complex. The water area, cultivated land, unused land 
and construction land were the important components, 
and the mean ratios of these land use types across the 
three years were 35.57%, 29.22%, 18.94% and 13.65%, 
respectively.

Landscape Ecological Risk 
Conversion Analysis

Table 6 shows the statistical results of different 
ecological risk grades in each year. In the observed  
27 years, the area of the extremely high- and the 
extremely low-risk regions initially increased and 
decreased afterward. Both the high- and medium-

risk regions increased constantly. However, the area of  
low-risk regions decreased constantly. From 1989  
to 2016, the area of low-risk regions decreased by 
347.16 km2 with a reduction rate of 15.02%, which was 
the largest change. The medium- and high-risk regions 
increased by 334.19 km2 and 37.51 km2, with growth 
rates of 160.7% and 43.05%, respectively. The extremely 
high-risk regions increased by 22.64 km2 during 
1989 to 2002 and then decreased by 21.16 km2 during 
2002 to 2016. Eventually, it increased by 4.46% 
compared with that in 1989. The extremely low-risk 
regions, which increased by 5.3 km2, were relatively 
stable in the first phase, whereas they rapidly decreased 
by 31.33 km2 during 2002 to 2016. Finally, the extremely 
low-risk regions decreased by 25.38% compared with 
1989.

Table 7 describes the conversions among different 
ecological risk grades from 1989 to 2002. Due to 
urbanization, the transition area from low risk grade 
to medium risk grade was 109.25 km2, with an annual 
growth of 8.4 km2, which was the largest variable. The 
mining industry was still developing over 13 years. As 
new mines come online and large mines offer continuous 
mining, the disturbance intensity of human activities 
obviously strengthens. As the results show, the extremely 
high-risk regions spread rapidly. By 2002, 36.36 km2 
of medium-risk regions were converted into high-risk 
regions, and 21.16 km2 of high risk-regions changed into 
extremely high-risk regions. Other significant changes 
include the conversion of 54.62 km2 of the medium-risk 
regions into low-risk regions, and the conversion of 25.38 
km2 of the high-risk regions into medium-risk regions. 
The changing areas are mostly distributed in the old and 
small mining areas. In this phase, some abandoned mine 
land and waterlogged subsidence basins were reclaimed 
to farmland and plantations. In addition, the closure of 
small coal mines has also lowered the local ecological 
risk grade. Overall, the total area of extremely low and 

Table 6. The changes of landscape ecological risk in Huaibei from 1989 to 2016 (km2).

Table 7. Ecological risk transition matrix of Huaibei from 1989 to 2002 (km2).

Year Extremely Low Low Medium High Extremely High

1989 102.54 2310.73 207.96 87.12 33.25 

2002 107.84 2233.60 241.57 102.70 55.89 

2016 76.51 1963.57 542.16 124.63 34.73 

1989 to 2002 Extremely Low Low Medium High Extremely High

Extremely Low 95.92 6.62 0 0 0

Low 11.92 2170.21 109.25 11.33 8.03 

Medium 0 54.62 104.84 36.36 12.14 

High 0 2.14 25.38 38.45 21.16 

Extremely High 0 0.02 2.11 16.56 14.56 
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low-risk regions slightly increased by 3% during 1989  
to 2002. Meanwhile, the total area of extremely high  
and high-risk regions increased by 31.75%. The  
medium-risk regions increased by 16.16%. Consequently, 
the risk grade of Huaibei presents an uptrend over 13 
years.

The results in Table 8 show that during 2002 to 
2016, 321.78 km2 of low-risk regions changed into 
medium-risk regions with an annual growth of 8.4 km2, 
which was faster than the growth during 1989 to 2002. 
Compared with the land ecological risk distribution 
maps in 2002 and 2016, the changing areas were mostly 
located in the north and middle of Huaibei. In the 
northern area, urbanization was the important driving 
force for the increase of the medium-risk regions. 
In the middle area, the increase of the medium-risk 
region was mainly because of the construction of new 
mines and the expansion of surrounding towns. Other 
obvious risk upgrades included the conversion of 34.11 
km2 of low-risk regions and 36.42 km2 of medium-risk 
regions into high-risk regions, which was largely due 
to the expansion of subsidence basin. The exploitation 
of hilly areas in the east area destroyed some forest and 
grassland, which caused the conversion of 29.81 km2 of 
extremely low-risk regions into low-risk regions. The 
obvious risk of downgrading includes the conversion of 
54.97 km2 of medium-risk regions into low-risk regions. 
Meanwhile, 48.86 km2 of high-risk regions and 22.90 
km2 of extremely high-risk regions degraded to medium-
risk regions mainly because of ecological restoration in 
the mining areas. Overall, the total area of extremely 
low and low-risk regions decreased by 12.98%, while 
the medium-risk regions increased by 124.43% from 
2002 to 2016. The total area of extremely high and high-
risk regions was relatively stable, which just increased 
by 0.49%. Consequently, although the higher-grade risk 
regions were controlled effectively, the medium-risk 
regions increased rapidly.

Spatial Autocorrelation of Ecological 
Risk Index

The global spatial autocorrelation for landscape 
ecological risk is closely related to spatial gain. Fig. 7 
shows the calculation results of Moran’s I at different 
distance classes within the range of 1.5 to 20 km. It 
is clear that all Moran’s I values were greater than 0, 

which implied that the spatial autocorrelation of the ERI 
was positive. Moran’s I at the distance class of 1.5 km 
was the largest and declined with the increase of spatial 
distance. This indicated the higher spatial distance and 
lower spatial autocorrelation. When the spatial distance 
was beyond 15 km the spatial pattern of the ERI 
approached random distribution in 1989 and 2002, and 
it was 10 km in 2016. Moran’s I increased at the same 
gain level from 1989 to 2002 but significantly declined 
in 2016, which implied that the spatial autocorrelation 
of the ERI was the highest in the mature period, and 
lowest in the recession period. As shown in Fig. 5, the 
extremely low, extremely high and high-risk regions 
were continuously distributed with a few patches in 
2002. However, these regions were fragmented into 
small pieces in 2016.

Fig. 8 shows the results of local spatial autocorrelation 
for the ERI. The spatial distribution of H-H and L-L 
clusters in 1989 were similar to that in 2002. In these 
two years, the H-H clusters concentrated in northern 
Huaibei and the area in 2002 was larger. In that area, 
the central city was built up beside mining areas, which 
resulted in the main risk sources, urbanization and 
mining being closely adjacent. Therefore, the ecological 
environment of the northern region was exposed to 
a higher ecological risk. L-L clusters were mostly 
located in the east and north of central city where they 
were occupied by grassland and forest, implying that 
the probability of ecological risk rising was low. In 
2016, the spatial distribution patterns of H-H clusters 
obviously changed. The H-H clusters in the north were 

Table 8. Ecological risk transition matrix of Huaibei from 2002 to 2016 (km2).

2002 to 2016 Extremely Low Low Medium High Extremely High

Extremely Low 70.46 29.81 5.54 1.79 0.23 

Low 6.05 1867 321.78 34.11 4.68 

Medium 0 54.97 143.04 36.42 7.13 

High 0 6.52 48.86 33.60 13.71 

Extremely High 0.02 5.29 22.90 18.71 8.97 

Fig. 7. Moran’s I value for the ERI under different granularities.
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divided into small pieces, indicating that the distribution 
of H-H clusters became scattered in 2016. This signified 
that the ecological environment in the northern region 
had been effectively improved, since the mining activity 
declined. In the middle of Huaibei, the formation of new 
H-H clusters indicated that the probability of ecological 
risk was rising. In addition, the L-H clusters increased 
around the H-H clusters, which indicated that the level 
of ecological risk was very unstable in the periphery of 
mining areas.

Discussion

Mining activity is a serious means of human 
disturbance [42]. Both opencast mining and underground 
mining will inevitably result in significant changes in the 
land use structures. The ecological security of resource-
based cities is directly threatened by land use changes 
[43]. Moreover, the mining industry has promoted the 
development of cities, which has indirectly affects the 
landscape pattern on a larger scale. LERA provides a 
holistic view for understanding the effects of the mining 
industry on regional landscape patterns. As a typical 
resource-based city, Huaibei has experienced a rapid 
development period, a mature period and a recession 
period since the 1980s. The evolution of land use and 
landscape ecological risk is representative.

Urbanization was the primary driving force of 
land use changes throughout the whole study period. 
As a result, construction land was the fastest-growing 
land use type. The land use transition matrices showed 
that a total of 229.54 km2 of cultivated land has been 
converted into construction land, which was the main 
source of the increase of construction land during 1989 

to 2016. Influenced by economic factors and government 
policies, especially for urban planning, the construction 
land sprawled along the railway lines to the northeast, 
southwest and southeast. Residential, administration 
and public service land and urban green space played 
a role in filling and linking. In recent years, with the 
recession of the mining industry, industrial abandoned 
land has sharply increased. The future of urban 
planning should aim at smart growth, which includes 
controlling the growth of construction land and paying 
more attention to the renewal of industrial abandoned 
land and the old community. LERA results showed that 
the increase of construction land had an obvious impact 
on the medium-risk regions. Therefore, the medium-risk 
regions constantly increased over the 27-year period. 
By 2016, the area of medium-risk regions was 3.4 times 
larger than the total area of extremely high and high-risk 
regions. Due to the recession of the mining industry, 
controlling the ecological risk caused by urbanization 
will become the focus of ecological restoration in the 
future. Therefore, Huaibei should take action to limit 
the growth of construction land and to optimize the 
distribution of cities and towns.

Compared with urbanization, the disturbance of 
mining on the landscape pattern is more complicated. 
During the rapid development period, a large amount of 
cultivated land, rural residential areas and plantations 
changed into industrial land, abandoned mine land and 
waterlogged subsidence basins, which led to higher 
fragmentation in the mining areas. From the results of 
the LERA, it could be found that mining activity was 
an important reason for the formation of the extremely 
high-risk regions and obviously affected the high-
risk regions. It was not until many coal mines closed 
that the extremely high and high-risk regions began 

Fig. 8. Spatial cluster maps using local spatial autocorrelation for ERI in Huaibei from 1989 to 2016.



Zhou S., et al.488

to decrease. In the process, land reclamation planning 
and ecological restoration planning played an important 
role. A total of 90.67 km2 of abandoned mine land 
and waterlogged subsidence basins were reclaimed by 
the end of 2015. However, the reclamation rate was 
just 42.11%. The reasons for the low reclamation rate 
in Huaibei are multifarious. Firstly, the amount of 
abandoned mine land formed decades ago and many 
coal mines have been closed, so it was hard to confirm 
the subject of responsibility. There are still large gaps 
between decision-making and planning implementation. 
Secondly, the scientific basis for ecological restoration 
planning is insufficient. Ecological restoration planning 
has rarely referenced the results of landscape ecological 
assessment on a regional scale. Some studies have 
indicated that the grade of landscape ecological risk in 
the local area did not decline after land reclamation. 
Therefore, it is necessary to improve the ecological 
restoration planning method and the planning 
mechanism. 

From 1989 to 2002, the mining industry was the 
most important economic activity in Huaibei, with 
a large employed population that affected economic 
and social development. The spatial distribution of 
construction land must adapt to the development of the 
mining industry, which means that spatial correlation 
between the two main risk sources was strong. In the 
periods when the mining industry was developed, the 
disturbance of urbanization on land use was also very 
significant. With the change of the industry structure, 
the correlation gradually declined. At the local scale, 
the distribution of H-H clusters and L-L clusters in 1989 
and 2002 was different from that in 2016. According to 
the spatial cluster maps for the ERI, the H-H clusters 
that were located in Lieshan, Xiangshan and Duji were 
reduced from 2002 to 2016, which illustrates that the 
probability of risk rising in these regions was declining. 
However, in Liuqiao, Baishan and Hancun, the H-H 
clusters increased rapidly, which indicates the ecological 
risk spread in these areas. Therefore, these regions 
should be regarded as the critical zones of ecological 
risk prevention. During 2002 to 2016, the L-L clusters 
in Lieshan obviously shrank. Hence, Huaibei should 
take action to limit the intensity of development in hills 
and in surrounding buffer zones. 

There have been some important discoveries about 
the phase characteristics of land use and the landscape 
ecological risk in resource-based cities, while there are 
also some limitations. The assessment method used in 
this study can show the impact of land use changes on 
the entire ecosystem. The results are more effective 
for regional planning. However, it is usually difficult 
to accurately reflect the ecological effect of a specific 
risk source. This study referenced detailed mining 
data and urban planning maps in different years. With 
the help of geographic information system (GIS), we 
partially identified the change process and influences 
of urbanization and mining activity. However, further 
analysis is still needed to reflect the disturbance process 

of a certain risk source to a single receptor in detail.
Conclusion

In this study, we analysed the spatiotemporal 
evolution of land use and landscape ecological risk in 
a resource-based city. The main conclusions are as 
follows: Firstly, from 1989 to 2016, the primary driving 
force of land use changes was urbanization, especially 
in the occupation of cultivated land. Mining activity 
resulted in the conversion of cultivated land into 
subsidence basins and abandoned mine lands. At the 
same time, many rural residential areas were damaged. 
Secondly, during the study period, the average landscape 
ecological risk first increased and then decreased. There 
was an obvious correlation between mining activity and 
the distribution of extremely high and high-risk regions. 
Meanwhile, the expansion of the medium-risk regions 
was significantly influenced by urbanization. Finally, the 
global spatial autocorrelation of the landscape ecological 
risk was higher during the rapid development period 
and the mature period, but obviously declined during 
the recession period. The results of LISA show that 
the pattern of H-H clusters and L-L clusters was quite 
different before and after the recession period. 

These findings could provide some suggestions for 
land use planning and the ecological risk management 
of resource-based cities. During the rapid development 
period, a large amount of abandoned mine lands were 
generated. If these abandoned mine lands are not 
reclaimed in time, the extremely high and high-risk 
regions will continuously increase. Unfortunately, this 
problem is widespread in the resource-based cities 
of China [21]. For the resource-based cities in the 
rapid development period, the emphasis of ecological 
risk management is to improve the monitoring and 
assessment mechanism and to establish a hierarchical 
risk management strategy. On the basis of scientific 
ecological restoration planning for mining areas, a 
sustainable mode of simultaneous mining and ecological 
restoration should be adopted to avoid the continuous 
increase of the abandoned mine land. In resource-based 
cities, the recession period is also a transition period for 
the economy and society, in which economic structure 
will become more pluralistic. The development of 
emerging industries will lead to the renewed growth 
of construction land and the loss of cultivated land, 
which will upgrade the ecological risk of the local area 
and cause new problems for sustainable development. 
Hence, the land use management policy should 
encourage the development of emerging industries by 
using abandoned mine land and protecting cultivated 
land from urbanization during the recession period in 
order to reduce the ecological risk probability.
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