
Introduction

Massive demand for energy caused by economic 
growth has led to a substantial increase in carbon 

dioxide emissions. The International Energy Agency 
(IEA) announced that global carbon dioxide emissions 
reached 325 billion tons in 2017. Accumulated global 
carbon dioxide emissions have brought about a series 
of environmental problems, such as global warming 
and the frequent emergence of extreme weather [1]. 
Owing to huge industrial scale and long-term extensive 
economic growth, China has become the largest carbon 
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emitting country in the world [2]. With reference to 
the data in the China Statistical Yearbook, energy 
consumption in China was about 4.30 billion standard 
coal equivalent (tce) in 2017, accounting for about 23.2% 
of world energy consumption. To respond to the climate 
crisis caused by the large amount of greenhouse gas 
(GHG), our government proposed to reach peak carbon 
dioxide emissions by 2030 and increase the share of  
non-fossil energy consumption to about 20% 
[3]. However, China remains in the process of 
industrialization and urbanization for a long time [4], 
and continues to require a large amount of energy. Thus, 
server carbon reduction task is a difficult challenge 
faced by the Chinese government.

It is generally recognized that the construction 
sector is one of the main sources of economic growth 
and energy consumption either in China, or other 
countries in the world [5]. The IPCC’s fifth assessment 
report showed that construction terminal product 
accounted for 32% of global energy consumption. The 
construction sector has become an important industry in 
China’s economy and an important force for stimulating 
economic growth. Simultaneously, the construction 
industry in China, an energy-intensive and high-
emission industry, consumes a large number of building 
materials: about 70% of cement products and 25% of 
steel products [6]. The energy consumption relevant to 
the construction industry increased from 13.345 million 
tons of standard coal equivalent (tce) increased to 
79.91 million thousand tons of standard coal equivalent 
from 1995-2016, which averaged growth rate of up to 
22.7%. Therefore, the construction sector has not only 
contributed substantially to China’s economic growth, 
but also resulted in environmental degradation [7]. 
According to data in the China Statistical Yearbook, CO2 
emissions from the construction industry contributed 
to about 27.9~34.3% of the total CO2 emissions during 

the period of 1995-2016. Consequently, it is urgent to 
investigate the main driving forces of CO2 emissions in 
the construction sector for protecting the environment 
and mitigating China’s total emissions.

At present, the unbalanced China’s construction 
industry development leads to huge differences in 
CO2 emissions characteristics and emission reduction 
policies among China’s provinces  [8,9]. Fig. 1 shows 
the energy and CO2 emissions statistics of China’s 
30 provinces in 2016. GuangXi province has the lowest 
energy consumption at only 0.35 million tonnes of 
standard coal. In contrast, Shandong province has the 
highest energy consumption at 9.7 million tonnes of 
standard coal, which is more than twenty-eight times 
the energy consumption of Guangxi. Jiangsu has the 
lowest energy intensity at about 0.02 tonne/ten thousand 
yuan, and Neimenggu has the highest energy intensity 
at about 2.19 tonne/ten thousand yuan, which is more 
than ten times the former. The difference in total energy 
consumption and energy intensity are the major cause 
of the difference in CO2 emissions  [10]. According to 
our calculation, in 2016, the highest energy-related CO2 
emissions are recorded in Zhejiang province, emitting 
about 310.03 million tonnes. This is nearly 28 times 
the emissions of Hainan province at only 3.84 million 
tonnes CO2. Thus, it is necessary to conduct thorough 
study on the spatial differences of carbon emissions in 
China’s construction industry.

The construction industry is a resource-intensive 
industry with high-energy consumption and heavy-
emissions, attracting numerous scholars to quantify 
the driving factors affecting CO2 emissions 
from construction sector. There are two kinds of 
CO2 emissions in the construction industry: direct and 
indirect CO2 emissions [11]. The direct CO2 emissions 
are the CO2 emissions caused by energy consumption 
[12]. The indirect CO2 emissions, accounted for a large 

Fig. 1. Energy and CO2 emissions in China’s 30 provinces in 2016.
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proportion of total CO2 emissions in the construction 
industry, refer to those occurred in the upstream 
activities [13], such as the production of brick and 
cement.

At present, most research is based on decomposition 
methods, including index decomposition analysis (IDA) 
and structural decomposition analysis (SDA) – two 
popular methods. Chen and Shi et al. applied the SDA to 
reveal the drivers contributing to the carbon emissions 
difference in the context of construction industry 
between USA and China [14]. The results demonstrated 
that the total final demand effect contributed most to 
narrowing the emissions difference, while the final 
demand ratio effect had the largest enlarging impact 
on the difference. Hong et al. applied SDA to quantify 
the effects of driving factors and declared that the 
energy consumption trajectory of China’s construction 
industry is the result of competition between the effect 
of increasing final demand and improvement in energy 
efficiency [15]. Moreover, it is appreciated that most 
studies prefer to adopt the logarithmic mean divisia 
index (LMDI) [16], one kind of the IDA, to analyze 
the driving factors of carbon emissions, which can be 
formulated more flexibly and requires less data than 
the SDA [17]. Lin and Liu adopted the LMDI model 
to survey the changes of CO2 emissions from China’s 
building construction industry during 1991-2010 into 
five driving factors [18], namely emission-factor effect, 
structure effect, intensity effect, profit effect, and 
activity effect. The results found that CO2 emissions 
were closely related to electricity consumption.  
Lu et al. employed the LMDI method to identify the 
longitudinal impact of seven key driving factors [19] 
involved in energy intensity, machinery efficiency, 
energy structure, building material consumption, 
automation level by area, unit cost, and a summary of 
emission influences on construction carbon emissions 
in China from 1994 to 2012. The results suggest that 
the consumption of building materials was the largest 
contributor to the total increase of carbon emissions. 
Using the LMDI method, Li and Cai et al. calculated 
the contributions of energy structure, energy intensity, 
industrial structure, land economic output, population 
density, and area of construction land area to carbon 
emissions from the construction land in Shanghai  
[20], and confirmed land economic output as being  
the main driving factor. Ma and Cai et al. [21] employed 
the LMDI to decompose five driving forces from  
the Kaya identity to assess carbon mitigation  
in Chinese commercial building values in 2001-
2015. The results indicated that only the reciprocal of  
GDP per capita of tertiary industry in China and  
the intensity two driving forces contributed negatively. 
Jiang et al. [22], Li et al. [23], and Lu et al. [24]  
also applied the LMDI method to examine the driving 
factors on carbon emissions from the construction 
sector.

Summarizing the previous literature, we find that 
although much important research has been carried out 

to investigate the driving factor of carbon emissions 
in the construction sector, some omissions still exist. 
Firstly, most existing studies don’t take regional 
differences into account, resulting in low applicability 
and practicality. Second, most researchers used the 
LMDI, SDA to investigate the driving forces of CO2 
emissions, rarely based on econometric models. Third, 
most scholars use mean regression analysis (i.e., 
ordinary least squares method) to estimate the impact 
of the main impact factors of CO2 emissions based on 
the assumption that the data of economic variables 
follows normal distribution. However, the realistic data 
distribution of socio-economic variables is skewed due 
to the complexity and variability of socioeconomic 
phenomena, implying important information. Xu and 
Lin et al. applied the quantile regression to explore the 
impact of driving factors in China [25-27]. Compared 
with the traditional OLS, quantile regression can fully 
reveal the heterogeneous influence of explanatory 
variables on the different quantiles in the explained 
variable.

This paper uses the different quantiles regression 
to explore the impacts of the driving forces on the CO2 
emissions in the construction sector, with a panel data 
of China’s 30 provinces during the period 2001 to 2016. 
This paper is composed of five sections, the remaining 
sections are as follows: Section 2 comprehensively 
reviews the related literature on CO2 emissions. Section 
3 is related to the econometric model establishment and 
the data description. At the same time, the abbreviations 
used in this paper and their explanations are shown 
as Table 1. Section 4 presents the estimation results. 
Section 5 implements an in-depth discussion on quantile 
regression results. Conclusions and policy suggestions 
are placed in Section 6.

Symbol Description

CO2dirand CO2ind
Direct CO2 emissions and Indirect CO2 

emissions, respectively

I The pollution intensity of a pollutant

P The total population

A The degree of economic development

T Energy efficiency

CO2
Carbon dioxide emissions (10,000 

tons)

POP Total population (10,000 people)

GDP Economic growth

EI Energy intensity

URB Urbanization

ENS Energy structure

CA The development level of the construc-
tion industry

Table 1. The list of abbreviations and their explanations.
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Experimental  

Estimating CO2

In this paper, estimating CO2 in the construction 
industry is divided into two parts: direct and indirect 
emissions. The direct CO2 emissions are calculated by 
the consumption of various fossil fuels (e.g., raw coal, 
briquette, coke, gasoline, diesel, kerosene, fuel oil, 
lubricating oil, liquefied petroleum gas, natural gas, 
heat and electricity) multiplied by their CO2 emission 
factors. Indirect carbon dioxide emissions are produced  
from the consumption of different building materials 
(e.g., cement, steel, glass, wood and aluminum). 
Based on the CO2 emissions coefficients published by 
IPCC (2006) [28], we establish Eq. (1) to obtain the 
construction industry’s total CO2 emissions for the 
30 provinces:

10 5

2 2 2
1 1

12* * * * * *(1 )
44dir ind i i i i j j j

i j
CO CO CO C f e Mα β ε

= =

= + = + −∑ ∑

(1)

…where CO2 indicates the total CO2 emissions, CO2dir 
and CO2ind represent direct CO2 emissions and indirect 
CO2 emissions, respectively, i and j depict the primary 
fossil energy and building materials, respectively. 
Ci represents the consumption of different kinds of 
energy, αi, fi and ei describe low calorific value, carbon 
content, and carbon oxidation rate of fossil fuel type i, 
respectively. Mj depicts the usage of various building 
materials, βj and εj  refer to the CO2 emission coefficient 
(Table 2) and recovery coefficient of building materials, 
respectively.

Considering the building materials’ recycling, the 
calculation of CO2 emissions of recyclable materials 
should be based on the amount of non-recycled 
consumption. Among which, the recovery coefficient 
of steel and aluminum material are 0.8 and 0.85, 
respectively. In addition, wood is an environment-
contributor, absorbing a large amount of CO2. 
Consequently, the carbon dioxide emission coefficient of 
wood is negative. Therefore, the CO2 emissions from the 
construction industry calculated by Eq. (1) from 2004 to 
2016 for the 30 provinces are shown in Table 3.

Model Specification

Numerous scholars have used the STIRPAT model, 
a modification of the IPAT model proposed by Dietz 
and Rosa, to explore the influence of environmental 
pollution factors. The equation is represented as follows:

b c d
t t t t tI aP A T e=                       (2)

…where a represents the intercept term, I indicates the 
pollution intensity of a pollutant; P represents the total 
population; A depicts the prosperity of economics in a 
country; T is the level of technological development; 
b, c and d are the coefficients of environmental effects 
with correspond to P, A, and T; t means the year; and 
et expresses the random error term. Consistent with the 
environmental Kuznets curve, the hypothesis, the links 
between economic progress and pollutant emissions 
generally appears an inverted “U-shape” situation [29]. 
In contrast, technological progress is conducive to 
reducing the emission of environmental pollutants. 

Considering the logarithm of the variables is a 
simple and effective approach, all variables in this study 
are logarithmically processed in order to eliminate 
possible heteroscedasticity. Thus, Eq. (2) becomes the 
following form: 

( ) ( ) ( )it it it it itlnI lna b lnP c lnA d lnT e= + + + +   (3)

…where P represents total population, A is the degree 
of economic development, and T indicates energy 
efficiency and is calculated by dividing energy use by 
gross domestic product. Hence, Eq. (3) can be changed 
as:

2ln (ln ) (ln ) (ln )it it it it itCO lna b POP c GDP d EI e= + + + +  (4)

…where CO2 means carbon dioxide emissions (10,000 
tons), POP is total population (10,000 people), GDP 
indicates economic growth and is represented by GDP 
per capita, and EI represents energy intensity and is 
calculated as energy consumption divided by GDP 
(tce per 10,000 yuan). Many studies suggest that EI 
represents the impact of technological progress on 
carbon dioxide emissions [30], and a and e are the 
intercept and interference terms, respectively.

In order to comprehensively and accurately explore 
the main motivating factors of carbon dioxide emissions 
in the construction sector, we added several other 
important factors to the STIRPAT model according 
to China’s authentic situation. First of all, China is 
currently at the stage of rapid urbanization. The China 
Statistical Yearbook shows that the urbanization rate has 
increased from 26% in 1990 to 57% in 2016 in China. 
Urbanization does not only lead to rapid expansion 
of urban population, but also results in the significant 
demand of residence. On the one hand, increasing urban 
population will require lots of energy (e.g., electricity, 

Building materials Cement Steel Glass Wood Aluminum

CO2 emission coefficient ( kg/kg) 0.822 1.789 0.966 -824.8 2.6

Table 2.CO2 emission coefficient of different building materials.
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coal and natural gas) in the course of life and work, on 
the other hand, magnanimous residential buildings have 
tremendous demand for building materials. The Ministry 
of Housing and Construction of China forecasts that  
15-20 billion square meters of new buildings will need 
to be constructed for the sake of providing housing 
for the populatoin migrating to the city in 2005-2020 
[31]. Thus, urbanization is taken into accounted in the 
model in order to examine its impact on CO2 emissions 
in the construction sector. In addition, numerous 
new buildings will require the consumption of a lot 
of fossil energy and building materials, inevitably 
producing a large amount of carbon dioxide and 
accelerating the construction industry improvement. 
Consequently, the development level of the construction 
industry has been brought into the framework of this 
analysis. Finally, China’s construction industry has 
several deficiencies, such as high consumption, high 
pollution and low efficiency, which are mainly due 
to the large consumption of high-polluting coal. The 
annual average rate of coal consumption accounted for 
62.3% during 1980-2015. Excessive use of coal is the 
greatest contributor to massive carbon dioxide and has 
a negative impact on the environment. The proportion 
of coal consumption (i.e., energy structure) is therefore  
included in the econometric model. Based on the 
STIRPAT model and the above analysis, the econometric 
model of CO2 emissions in China’s construction sector 
is established as follows: 

2 1 2 3

4 5 6

( ) ( ) ( )
( )+ ( ) ( )

it it it it

it it it it

lnCO lna lnPOP lnGDP lnEI
LnURB LnENS lnCA

β β β
β β β ε

= + + +
+ + +

 (5)
…where CO2, POP, GDP and EI are the same as in Eq. 
(5), URB is urbanization and is calculated by dividing 
the urban population by the total population, and ENS 
denotes energy structure and is calculated by dividing 
coal consumption in the construction industry by its 
total energy consumption. CA indicates the development 
level of the construction industry and is calculated by 
construction added value divided by GDP. 

Quantile Regression Model

The quantile regression model was first proposed 
by Koenker and Bassett. The model compensates 
for the shortcomings of the OLS method, relaxes the 
random error term homoscedasticity assumptions, 
and allows for the existence of unobserved individual  
heterogeneity and heteroscedasticity in the data. Based 
on the different quantile points, the method makes full 
use of the sample data to perform regression analysis, 
and obtains all the quantile regression models between 
the conditional quantiles of the explained variable and 
the explanatory variables. Therefore, this method can 
more accurately and completely describe the effect 
of the interpreted variable on the interpreted variable 
at different specific points. Moreover, the quantile 

regression’s parameter estimate is more robust than 
that in the OLS regression. Therefore, we use the 
quantile regression method to explore the impact of 
different driving forces along the actual distribution 
of the construction sector’s CO2 emissions in different 
provinces. The mathematical formula of the quantile 
regression model based on the panel data is as follows:

'
, 0 1i i iy x θβ µθ θ= + < <

             (6)

( | )i i iQuant y x xθ θβ=               (7)

…where x represents the vector of the explanatory 
variables, y denotes the explained variable, β is the 
coefficient vector, and μ indicates random error term 
(whose conditional quantile distribution is equal to zero). 
Quantθ(yi|xi) is the θth quantile of the explained variable. 
βθ indicates the θth quantile regression estimator, and is 
the solution of the following formula:

' '
' 'min (1 )

i i i i
i i i iy x y x

y x y x
β β
θ β θ β

≥ <
− + − −∑ ∑

 (8)

This above equation will obtain different  
parameter estimates with different quantiles 
distribution. In order to effectively investigate the 
impact of explanatory variables on interpreted  
variables under different distribution situations, we set 
up the 10th, 25th, 50th, 75th, 90th quantile regressions, 
respectively. In this study, we use the bootstrap method 
proposed by Buchinsky to estimate the confidence 
interval of quantile regression coefficients. Different 
from the traditional piecewise regression model, the 
quantile regression model observed all sample values 
to estimate the parameters and fit different quantiles, 
especially when the error term has heteroskedasticity 
and is not a normal distribution. In order to investigate 
the complication impact of the influencing factors 
on different quantiles in the dependent variables, we 
transform Equation (5) as follows:

 
(9)

…where Qt and (lna)τ represent the regression parameter 
of τth quantile in the dependent variable and constant 
term, respectively. β1τ, β2τ, β3τ, β4τ, β5τ indicate the 
regression parameters of τth quantile in the explanatory 
variables.

Results 

Summary Statistics

The definitions and statistical descriptions of the 
explanatory and dependent variables in this study are 
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shown in Table 4. Before the regression analysis, we 
describe the holistic change trend of all variables during 
the 2004 to 2016 period. As shown in Fig. 2, the CO2 
emission in China’s construction industry rapidly rose 
from 0.56 billion tons in 2004 to 2.91 billion tons in 
2012, with average annual growth rate of 13%. Since 
2012, CO2 emissions have begun to show a downward 
trend in China’s construction industry owing to the 
government’s emphasis on carbon reduction. Firstly, 
population size: since relaxing the two-children policy 
in 2016, population growth has to some extent 
rebounded. Secondly, urbanization level: the 
urbanization rate increased from 41.8% in 2004 to 57.3% 
in 2016. Thirdly, economic growth: with an increasing 
trend, GDP per capita increased from 12,418 yuan in 
2004 to 18,055 yuan in 2015. Fourthly, construction 
development. Real estate construction has made the 
gross output improve continuously in the construction 
industry. Fifthly, energy structure: in the period of 
2004-2016, coal consumption accounted for 63.2%  
of total energy consumption in the construction industry. 
Finally, energy intensity. With the advanced energy-
saving technologies, energy consumption gradually 
declined from 0.073 tce per 10,000 yuan output in 2006 
to 0.067 tce per 10,000 yuan output in 2016.

The vast land and natural resources have led to the 
differentiation of regional resources endowment and 
development level, which has also caused significant 
regional differences in CO2 emissions across China. 
So, what are the aggregation characteristics of carbon 
dioxide emissions in spatial distribution? Besides, in 
terms of Tobler’s first law, there is a general connection 
between any spatial unit, which means that spatial data 
can interact because of their geographical location. On 
the basis of the above assumptions, we preliminarily 
analyzed the quantile distribution of CO2 emissions 
from the construction industry in China. To make a 
thorough inquiry for the distribution characteristics 
in CO2 emissions at the provincial level, we divide the 
30 provinces into four groups by using the quartile 
distribution method in light of the construction sector’s 
CO2 emissions in 2004 (Fig. 3a), in 2008 (Fig. 3b), in 
2012 (Fig. 3c) and in 2016 (Fig. 3d). During the period 
of 2004-2016, CO2 emissions are increasing year by 

year in various provinces’ construction sectors. In 2000, 
four provinces ranked in the highest carbon emissions 
range. However, by 2012, ten provinces were ranked 
in the highest emissions range. The number of carbon 
emissions in the first grade increased significantly. By 
2016, the number of the highest level provinces has 
declined. Moreover, Zhejiang and Jiangsu provinces 
retained their positions in the highest CO2 emissions 
group. This is because Zhejiang and Jiangsu provinces 
have been at the forefront of the whole country. The 
changes in the numbers of provinces in the 2nd and 
3rd groups are not obvious. However, the number 
of provinces in the 4th groups decreased sharply. In 
2000, twelve provinces divided into the lowest carbon 
emissions range. Nevertheless, by 2012, only five 
provinces were ranked in the lowest emissions range. 
Merely Hainan, Qinghai, Ningxia and Heilongjiang 
provinces have maintained their respective status in the 
lowest CO2 emissions group. In a word, the construction 
industry’s CO2 emissions are evident distinctions in in 
the different provinces.

Multicollinearity Test 

Generally speaking, the explanatory variables 
may be completely collinear or approximately 
multicollinearity, producing some adverse consequences. 
In the case of complete multicollinearity, the estimation 
of parameters does not exist, or the significance tests of 
variables are ineffective. Therefore, before estimating 
model regression, we urgently need to conduct an 
examination of the issue of multicollinearity in the 
econometric model. This paper applies Klein to 
realize the multicollinearity test. The concrete steps of 
multicollinearity test are as follows: (1) We compute the 
correlation coefficient between the explanatory variables 
in this model and acquire the correlation coefficient 
matrix. (2) On account of the fixed effect panel model, 
this paper performed a regression estimation and got 
the determination coefficient (R2 = 0.9131). As shown 
in Table 5, it is apparent that all correlation coefficients’ 
absolute values are significantly less than R2, suggesting 
that multiple collinearity between explanatory variables 
can be omitted.

Variable Definition Units of measurement Mean Std. dev Min Max

CO2 Carbon dioxide emissions 10,000 tons 5144.6 8384.9 86.1 95278.7

POP Total population 10,000 people 4427.1 2659.1 539 10999

GDP GDP per capita Yuan 16383.2 8452.5 6644.9 44040.9

URB Urbanization level Percent 0.512 0.145 0.164 0.896

ENS Energy structure Percent 0.578 0.167 0.062 0.991

EI Energy intensity Tce per 104 yuan 0.074 0.061 0.006 0.494

CA Construction development Percent 0.118 0.083 0.014 0.780

Table 4. The summary statistical of all the variables in the study.
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Unit Root Test

The complicated and changeable economic 
phenomenon makes the sequences of numerous 
economic variables non-stationary. If the non-stationary 
sequences are not transformed into steady sequence 
before operating regression estimation, the estimation 
result will deviate from the actual economic situations. 
For the sake of precisely telling the stationariness of 
these variable sequences, we use three extensive test 
measures (Fisher-ADF, Fisher-PP and IPS) to implement 
panel unit root tests. Table 6 intuitively provides the 

stationarity test results for the explanatory variables 
and explained variables. It can be seen that the results 
of the ADF, PP and IPS tests are basically maintenance 
consistent. The result suggests that the level variable 
sequences are nonstationary, but their first-order 
difference sequences are stationary.

Test of Normal Distribution 

The normal distribution of sample data strongly 
affects the robustness of regression estimation results. 
Therefore, before regression estimation analysis, we 

Fig. 2. The trends of the CO2 emission, population size, urbanization level, per capita GDP, energy intensity, construction development, 
energy structure in the construction sector during the period of 2004-2016.
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conducted a normality test for all variables (LnCO2, 
LnPOP, LnURB, LnGDP, LnEI, LnENS, LnCA), 
including graphic and numerical two methods.

In this paper, we carry out statistical tests for 
all logarithmic variables. As shown in Table 7, the 
results indicate that all the variables are not normally 
distributed. (1) Skewness is used to measure the 
symmetry of data distribution. Only if the skewness 
coefficient is equal to 0, which demonstrates the data 
distribution is the same as of normal distribution. From 
Table 7, it can clearly perform all variables skewness 
coefficients that are not equal to zero. (2) Kurtosis is the 
measurement of dispersion of sample data. Only when 
kurtosis is equal to 3 can data distribution be considered 
normal. The results declare that the kurtosis coefficients 
of all variables are not equal to 3, suggesting that the 
distributions of all variables are not normal. (3) The 
Shapiro-Wilk is commonly applied into small sample 
normal distribution tests. The probability p values are 
less than the 5% significance level in the Shapiro-Wilk 
test, which demonstrates that all the variables do not 
follow normal distribution.

This paper also adopts the graphical method to 
intuitively display the variables distribution. We 
employ the Q-Q test plot to implement a normality test.  
Fig. 4 indicates that the observed values of all variables 
deviate from the red line. This result declares these 
variables are not normally distributed, and the degree  
of deviation has increased gradually in recent years.

Quantile Regression Results

Not only can each quantile roundly describe 
the distinct distribution characteristics for CO2 
emissions, but also different quantile equations can 
directly promulgate the marginal effects of variables 
on CO2 emissions. In this paper, five representative 
quantiles (i.e., 10th, 25th, 50th, 75th and 90th) are chosen 
to implement quantile regression. As shown in  
Table 8, in light of the annual average CO2 emissions 
from different region construction industries, we 
separate the 30 provinces into six groups. Table 9 
provides the estimation results of the quantile regression 
of CO2 emissions from the construction industry. To 
facilitate comparative analysis, the data OLS regression 
results are listed in the last column of Table 9. It can be 

seen that all the independent variables were significantly 
tested at 10% or higher by significance test.

Table 9 shows that quantile regression can give a 
comprehensive impact coefficient of each factor on 
CO2 emissions in different quantiles. Specifically, the 
impact coefficients of population size on CO2 emissions 
in the 10th, 25th, 50th, 75th and 90th quantiles are 1.1372, 
1.1252, 1.2006, 1.3109, 1.3915, respectively. Obviously, 
the influence coefficient in the 75th and 90th quantiles 
was the greatest. However, the OLS estimated value is 
2.2472, which is higher than those in all quantiles. By 
comparison, other variables have similar situations. 
Consequently, quantile regression can bring to light the 
integrated effects of driving factors on CO2 emissions 
in different quantiles. While OLS estimation can only 
provide the average effect. In a word, it is feasible and 
reasonable to explore the diverse effect of driving force 
on CO2 emissions by quantile regression model.

Discussion

The differences in the influencing factors affecting 
CO2 emissions deserve further exploration. Some 
extrusive issues in quantile regression are discussed as 
follows.
1) The impacts of economic growth on CO2 emissions 

in the 10th-25th, 50th-75th and 75th-90th quantile 
provinces are higher than those in the other quantile 
provinces.
The results show that there are significant 

discriminations in the effect of economic growth in 
different quantile provinces. This is mainly attributable 
to fixed asset investment activities – one of the 
important sources of China’s economic growth [32]. 
Fixed assets investment activities cover the construction 
of roads, housing and other buildings, rapidly promoting 
construction industry development and requiring 
plenty of building materials. However, the building 
materials industry is energy-intensive and high-
emission industries consume a lot of coal and result 
in discharging massive CO2 [33]. During the period of 
2004-2016, the average annual fixed assets investment 
in the 10th-25th, 50th-75th and 75th-90th quantile provinces 
were 15.57, 9.63 and 12.74 (billion yuan), respectively, 
which were much higher than those in the lower 10th 

LnPOP LnURB LnGDP LnCA LnES LnEI

LnPOP 1.0000

LnURB 0.7179 1.0000

LnGDP 0.2898 -0.1558 1.0000

LnCA 0.3176 -0.0543 0.7635 1.0000

LnES 0.0552 0.0491 -0.2184 0.1989 1.0000

LnEI -0.0067 0.2393 -0.3122 -0.2605 -0.0362 1.0000

Table 5. The correlation coefficient matrix.
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Fig. 3. Provincial distribution of CO2 emissions in China's construction industry (Unit: 10,000 tons). a) , b), c), d) indicates Provincial 
distribution of CO2 emissions in 2004, 2008, 2012, 2016, respectively.
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quantile provinces (2.95 billion yuan), 25th-50th quantile 
provinces (2.04 billion yuan), upper 90th quantile 
provinces (4.21 billion yuan). Due to the policy of 
“one belt and one way”, Xinjiang and Gansu provinces 
have significantly increased investment in fixed assets, 
resulting in a significant increase in carbon emissions. 
Therefore, the influences of economic growth on CO2 
emissions in the 10th-25th, 50th-75th and 75th-90th quantile 
provinces are stronger than in other quantile provinces.
2) The influences of urbanization on CO2 emissions 

in the upper 90th are stronger than those in other 
quantile provinces. 
This can be interpreted as the entire difference 

between housing demand and real estate investment. 
With comfortable living environment and sound 
infrastructure, urban areas attract a large number of 

rural residents migrating to urban areas, resulting 
in a significant increase in demand for ousting and 
rapid development of urban real estate [34]. Besides, 
the heterogeneity of urbanization level has caused 
different growth rates of the real estate industry. The 
prosperity of the real estate industry is bound to require 
more energy-intensive building materials such as steel 
and cement, producing substantial CO2. During the 
2004-2016 period, the annual average real estate 
investment in the upper 90th quantile provinces was 
438.9 billion yuan – far larger than those in the 75th-90th 
quantile provinces (311.6), 50th-75th quantile provinces 
(295.5), 25th-50th quantile provinces (186.1), 10th-25th 
quantile provinces (100.7) and lower 10th quantile 
provinces (45.5). Moreover, the superior environments 
in Jiangsu and Zhejiang have attracted massive talent, 

Series
Fisher ADF Fisher PP IPS

Constant Trend and intercept Constant Trendand intercept Constant Trend and intercept

Levels

CO2 48.57 90.398** 47.589 115.534** 1.62 -1.818**

POP 103.8*** 74.599* 107.2** 79.358** -0.12** 2.568

URB 174.94* 302.579 195.31 358.738 -10.4** -59.326

GDP 73.65* 15.863 115.4** 26.028 -2.08** 7.280

CA 147.79* 106.557 244.3** 178.66 -5.86 -3.626

ES 83.08** 79.07* 97.20 121.711 -1.91** -1.794*

EI 116.91** 107.912 160.06 188.836 -4.26* -3.058

First 
difference

CO2 257.2*** 178.860*** 353.1*** 327.538*** -13.5*** -8.761***

POP 135.40*** 138.358*** 162.9*** 210.554*** -5.0*** -5.467***

URB 363.7*** 301.301*** 435.3*** 406.817*** -65.5*** -53.963***

GDP 124.3*** 124.514*** 134.1*** 233.156*** -5.5*** -5.501***

CA 174.2*** 141.885*** 202.2*** 186.949*** -8.7*** -6.623***

ES 207.2*** 143.844*** 291.5*** 270.706*** -10.7*** -6.361***

EI 259.8*** 211.5*** 330.2*** 341.716*** -13.8*** -11.177***

Note: The optimal lag is chosen according to AKAIKE information criterion (AIC) and Schwartz information criterion (SC). 

Table 6.  Results of panel unit root tests.

Variable Skewness Kurtosis
Shapiro-Wilk test

Obs.
Statistics Sig.

LnCO2 -0.107 3.339 0.995 0.181 390

LnPOP -0.828 3.192 0.928 0.000 390

LnURB -0.108 3.627 0.983 0.000 390

LnGDP 0.659 2.763 0.949 0.000 390

LnCA 0.104 4.557 0.980 0.000 390

LnES -1.763 8.836 0.884 0.000 390

LnEI -0.017 2.771 0.997 0.008 390

Table 7. Res Tests of normal distribution.
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source of technology. From 2004 to 2016, the average 
annual growth rate of R&D personnel in the lower 10th 
and 10th-25th quantile provinces was 18.65% and 19.23%, 
respectively, much lower than that in the upper 90th 
quantile provinces (42.57%), 75th-90th quantile provinces 
(29.44%), 50th-75th quantile provinces (36.15%), and 
25th-50th quantile provinces (24.44%). Therefore, the 
energy intensity is smaller for the construction industry 
in the provinces below 0.1 and 0.1~0.25.
4) The effects of construction development on CO2 

emissions in the 25th-50th and upper 90th quantile 
provinces is greater than those in the other provinces. 
This is mainly attributed to significant differences in 

the scale of the construction industry. The differences  
in construction business scale cause significant 
differences in the demand for energy consumption 
[36]. The output value of the construction industry 
requires frequent construction activities to achieve, in 
which building materials and mechanical equipment 
are necessary. The annual average per capita output 
of construction sector in the upper 90th and 25th-50th 
quantile provinces were 15.7 and 11.1 (thousand yuan), 
respectively, between 2004 and 2016, which were much 
higher than in the upper 75th-90th quantile provinces 
(6.3), 50th-75th quantile provinces (7.6), 10th-25th quantile 
provinces (4.0), the lower 10th quantile provinces (3.9). 
Therefore, the impact of the construction industry 

promoting technological innovation in emissions 
reduction. Thus, the effect of urbanization in the upper 
90th quantile provinces is strongest in other quantile 
provinces.
3) The effects of energy intensity on CO2 in the lower 

10th and 10th-25th quantile provinces are lower than 
in other quantile provinces. 
The results are mainly due to the difference 

between R&D funding and personnel investment. The 
positive coefficients of energy intensity in all quantile 
equations announces that energy savings and emission 
reduction technologies are not advanced in China, and 
haven’t played an important role in declining CO2. Only 
continuous R&D inputs can make it possible to acquire 
more advanced environmental technologies and achieve 
a substantial reduction in CO2. Firstly, R&D funding 
plays an irreplaceable role in the process of scientific 
research [35]. The huge difference in R&D investment 
causes a differentiation of the advanced technology. In 
the period 2012-2016, the annual average R&D funding 
investment in in the lower 10th and 10th-25th quantile 
provinces are 0.88 and 5.3 (billion yuan), respectively, 
far smaller than those in the upper 90th quantile 
provinces (30.4), 75th-90th quantile provinces (29.88) 
and 50th-75th quantile provinces (14.13). Secondly, R&D 
personnel are the core elements for acquiring advanced 
technologies. Without talent, there is no vigor and 

Quantile Province

The lower 10th  quantile group Hainan Qinghai Ningxia

The 10th-25th quantile group Heilongjiang Gansu Xinjiang Guangxi Neimenggu

The 25th-50th quantile group Guizhou Shanghai Tianjin Jiangxi Yunnan shanxi Beijing

The 50th-75th quantile group Shaanxi Chongqing Anhui Guangdong Hunan Liaoning Fujian

The 75th-90th  quantile group Henan Shangdong Hubei Sichuan Jilin

The upper 90th  quantile group Hebei Jiangsu Zhejiang

Table 8. Provincial distribution in term of total CO2 emissions in the construction sector.

Variables
Quantile regressions

OLS
10th quant 25th quant 50th quant 75th quant 90th quant

Intercept -5.6272*** -4.769*** -7.033*** -8.935*** -10.199*** -36.6839***

POP 1.1372*** 1.1252*** 1.2006*** 1.3109*** 1.3915*** 2.2472***

URB 0.1768*** 0.2961*** 0.1884*** 0.2327*** 0.2898*** 0.2710***

GDP 0.8193*** 0.7624*** 0.9678*** 1.0876*** 1.1562*** 2.8374***

CA 1.1309*** 1.1078*** 1.1482** 1.1681*** 1.0744*** 0.7683***

ES -0.0486** 0.0996 *** 0.0770*** -0.016** -0.0006*** -0.0466***

EI 0.3366*** 0.3621*** 0.3719*** 0.4617*** 0.4925*** 0.3286***

Pseudo R2 0.8546 0.8331 0.8670 0.8120 0.8420 0.9131 

Note: ***, ** indicate the parameters passed the significance test at the 1% level and the 5% level, respectively

Table 9. Estimation results: Quantile regression model and linear fixed effects model during the period from 2004-2016.
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consumption accounted for 67.9% of the total energy 
consumption in the 10th-25th quantile provinces, much 
higher than in the upper 90th quantile provinces (56.9%), 
75th-90th quantile provinces (58.2%), 50th-75th quantile 
provinces (56.3%), 25th-50th quantile provinces (56.1%), 
lower 10th quantile provinces (50.2%). At the same time, 
except for 25th quantile provinces, the energy structure 
has a negative correlation with CO2 emissions in other 
quantile provinces, stating clearly that energy structure 
optimization is helpful to reduce CO2 emissions. This 
is mainly due to the reduction in the consumption of 
high-polluting coal and the increase in the utilization 

expansion on CO2 emissions in the upper 90th and 
25th-50th quantile provinces is higher than those in other 
quantile provinces.
5) The impacts of energy structure on CO2 emissions in 

the 10th-25th quantile provinces are highest in all the 
quantile provinces.
As far as we are concerned, the different impact 

of energy structure on CO2 emissions mainly depends 
on the coal consumption in the construction industry. 
Rich reserves and low prices lead to coal being the 
main source of energy consumption in China for a long 
time [37]. During the period of 2012-2016, average coal 

Fig. 4. The normal Q-Q plot of LnCO2, LnGDP, LnURB, LnEI, LnCA, LnES and LnPOP.
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of clean energy. From 2012 to 2016 the proportion 
of coal consumption in the lower 10th, 10th-25th, 25th-
50th, 50th-75th, 75th-90th, upper 90th quantile provinces 
decreased from 51.4%, 73.8%, 52.4%, 51.5%, 62.6%, 

51.9% to 46.3%, 70.7%, 48.6%, 40.9%, 55.1%, 48.6%, 
respectively.  In summary, optimizing energy structure 
can play a significant role in reducing CO2 emissions in 
the construction industry.

Fig. 5. Quantile estimate: The effects of driving forces on the construction sector's CO2 emissions. Notes: Shaded areas represent 95% 
confidence band for the quantile regression estimates. The vertical axis indicates the elasticities of the explanatory variables. The red 
horizontal lines depict the conventional 95% confidence intervals for the OLS coefficient.



Which Influencing Factors Cause... 345

Conclusions and Policy

This paper analyzes the inter-provincial differences 
in china’s construction sector CO2 emssions from the 
perspectives of distribution and the driving factors. 
According to the annual CO2 emission distribution, 
30 provinces were divided into 6 groups, namely the 
lower 10th, 10th-25th, 25th-50th, 50th-75th,75th-90th and upper 
90th quantile provinces. Using panel data from 2004 to 
2015, this paper applies the quantile regression model 
to explore the main factors affecting CO2 emissions in 
the 30 provinces’ construction industries. Particularly, 
the dynamic varying process of their elastic coefficients 
at different quantiles is also presented. In addition, 
the results of OLS regression and quantile regression 
are compared to highlight the advantages of quantile 
regression. The main conclusions are as follows: (1) 
Results show that the construction industry is the main 
contributor to the national carbon emissions in China. 
CO2 emissions from the construction industry grew 
rapidly at an average annual growth rate of 13% between 
2004 and 2012, while it has begun to show a downward 
trend since 2012, which was developing toward benign 
direction. (2) Over the study period, the impact of six 
driving factors on CO2 emissions from the construction 
sector in different regions existed  with significant 
differentiations both in magnitude and in direction. (3) 
The results reveal that the elastic coefficient of each 
determinant differs distinctly at different quantiles, 
indicating that each factor has different effects on CO2 
emissions from the construction sector. According to 
the empirical results, the factors that drive the growth 
of CO2 emissions from the construction sector in all 
provinces were population size, economic growth, 
construction development, and urbanization. On the 
contrary, the factors that mainly inhibited carbon 
emissions were energy structure and energy intensity. 
(4) Finally, compared with the traditional OLS, quantile 
regression can fully reveal the heterogeneous influence 
of explanatory variables on the different quantiles in  
the explained variable. Based on the above empirical 
results, this study puts forward corresponding 
countermeasures.

(1) The 10th-25th, 50th-75th and 75th-90th quantile 
provinces should adjust economic structure and 
promote the  high technology industrial development. 
First, for a long time, economic structure is extremely 
unreasonable and excessive reliance on fixed asset 
investment, leading to the energy-intensive industries 
over-expanding. In order to effectively reduce CO2 
emissions from the construction industry, these 
quantile provinces are supposed to actively adjust 
their economic structures. Owing to the advantages of 
knowledge-intensive, innovative and low-carbon, the 
above provinces can vigorously promote the high-tech 
industrial development. Under serious environmental 
pollution, the high-tech industries can not only change 
the economic mode and promote sustainable growth, but 
also reduce energy consumption.

(2) The lower 10th and 10th-25th quantile provinces 
should further expand R&D expenditure and personnel 
investment in emission reduction technologies. 
Technological progress is the fundamental way to 
reduce CO2 emissions [38]. Large-scale R&D funds and 
personnel investment are two indispensable elements 
of technological innovation. At present, China’s R&D 
investment accounted for only 1.2% of GDP, which 
is much lower than in developed countries (5-10%). 
Therefore, local governments should set up special 
R&D investment funds to provide project funds for 
enterprises and institutions engaged in emission 
reduction technology research. At the same time, local 
governments should also encourage universities and 
research institutions to develop technicians. The main 
problem in the construction industry is the massive 
use of building materials. Local governments should 
encourage construction enterprises to adopt advanced 
technologies to reduce the use of high-energy building 
materials and accelerate the promotion of recyclable 
and renewable building materials. At the same time, it 
is necessary to strengthen the technology improvement 
in the production process of cement and steel. Steel 
enterprises should speed up the promotion and 
innovation of cinder circulation combustion technology, 
greatly improving the combustion efficiency of coal.

(3) The 25th-50th and upper 90th quantile provinces 
should optimize the construction structure and 
vigorously promote the utilization of composite 
materials. Reducing fixed assets investment to optimize 
the industrial structure, thereby reducing the demand 
on the building materials. Governments can formulate 
incentives and restrictive policies to slow down the 
population growth and housing demand, avoiding 
irreversible environmental damage in some provinces. 
Secondly, some foreign enterprises try to mix volcanic 
ash and slag with some additives to produce cement 
powder to replace the traditional cement clinker. 
Therefore, China’s cement production enterprises should 
improve energy-saving cement research, or directly 
import foreign advanced technology. In addition, the 
construction industry should accelerate promoting 
the high-performance composite materials application 
and vigorously promote the construction of green low-
carbon buildings.

(4) The 10th-25th quantile provinces should 
intensify efforts to optimize the energy structure. Coal 
dependence has led to massive CO2 emissions in the 
construction industry. Local governments should not 
only control coal consumption, but also actively develop 
other clean energy sources. First of all, the government 
should levy an environmental compensation tax on 
coal production and consumption. This will not only 
raise money to restore the natural environment, but 
also promote the use of alternative energy. Secondly, 
China is a large agricultural country and produces 
a large amount of crop straw every year. Using crop 
straw to generate electricity can generate large amounts 
of electricity to meet energy needs. Therefore, local 
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governments should promote clean energy and guide  
the energy structure adjustment.
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