
Introduction

Prolonged drought is one of the possible causes 
of famine, an extreme condition shortage of food. 
Also, droughts have been blamed for environmental 
degradation and desertification. Given the threats of 
drought, it is critical to forecast drought accurately 

with sufficient lead time to mitigate some consequences 
– especially in developing countries where farmer 
activities primarily depend on rain-fed agriculture 
[1]. It often requires a considerable amount of time 
(e.g., a few months) to recognize drought impact on 
socioeconomic systems. Taking this advantageous 
feature, a prediction of the onset of drought conditions 
in advance can mitigate the most adverse consequences 
of drought rather than other extreme events such as 
flooding and hurricanes [2]. The drought forecasting 
model can be a foundation for an effective monitoring 
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system that can support water managers, characterize 
droughts, and determine risk scenarios [3]. Common 
meteorological drought indices selected for forecasting 
are the standard precipitation index (SPI) [4-6] and the 
standard precipitation evapotranspiration index (SPEI) 
[7-10]. In this study, SPEI was selected since this index 
considers both important factors affecting droughts (i.e., 
rainfall and temperature) [11], and the SPEI is proved to 
be better than SPI in the south-central Vietnam [12]. 

Traditional multi-linear regression (MLR) or 
autoregressive integrated moving average (ARIMA) 
has been widely applied in predicting the drought index 
[13]. In 2005, Vietnam’s Thuyloi University (formerly 
Water Resources University) developed the MeDF2005 
(meteorological drought forecasting) software package to 
apply to Vietnam’s Central Highlands and south-central 
region [14]. This software used the MLR technique 
with four NINO regions (NINOW, NINO3, NINO4, 
and NINO12) as predictors to build forecasting models 
of each month and season (three months) at 24 stations 
and 7 zones. The shortcoming of the linear model lies 
in it may be not a suitable model for long-lead-time 
forecasting due to its assumption of linearity between 
predictor and predict and [15]. Recently, data-driven 
modeling has been paying more attention because it is 
built based on finding connections between the system 
state variables (input, internal and output variables) 
without explicit knowledge of the physical behavior of 
the system [16]. The usefulness of data-driven modeling 
in drought forecasting is clear, since variables that 
trigger a drought may not be well understood. One of 
the long standing, well-known data-driven models is 
the artificial neural network (ANN), which has been 
used extensively for various hydrological application 
purposes [17-20]. Therefore, the capability of ANN for 
a complex problem such as a prediction of the onset of 
drought is not new but still attracts numerous studies 
[15,21].

Input variable selection (IVS) is a crucial step in the 
succession of the application of data-driven modeling. 
The challenge of IVS is to select the fewest input 
variables that best characterize the relationship of input-
output while minimizing variable redundancy [22]. 
Predictors for drought forecasting can be divided into 
two groups: local variables and climate indices. Local 
variables are often lagged observations of quantifying 
drought indices or rainfall. The climate indices that 
measure the large scale of the ocean and atmospheric 
circulation are associated with the rainfall variation at 
distant continents across the world, inducing periods 
of moderate to extreme drought. Therefore, those low-
frequency variation indices could become potential 
predictors of drought onset [17]. Selecting the best 
input set for drought forecasting is a challenge, since 
many input combinations could be created [23], and 
the success of implication often depends on subjective 
judgment or expert knowledge [24]. To overcome 
this shortcoming, May et al. (2005) [25] adopted 
iteration input variable selection based on partial 

correlation coefficient and partial mutual information 
algorithm. Although it is shown practically in several 
environmental issues [26,27], there is still little research 
on drought forecasting.

This study selected the south-central region of 
Vietnam as a case study since this region is one of 
the most severe drought-prone areas in Vietnam. The 
objectives of the study are: (1) To examine the capacity 
of two filter algorithms (partial correlation input 
selection and partial mutual information selection) for 
selecting suitable input parameters to predict drought 
index using the ANN model and (2) To investigate which 
climate indices are important inputs for improving 
drought forecasting in the case study.

Study Area and Materials

Study Area

The South Central Region of Vietnam (SCR) has a 
total of 27500 km2, stretching from 10°50’N - 14°50’N 
and 107°50’E - 109°20’ E (Fig. 1). The topography of 
the SCR has a west-east gradient with high elevation in 
the west and narrow flat plains along the coastal east. 
The average annual temperature ranges 26-27.3ºC, 
with maximum temperature of up to 40-42ºC [28].  
The temperature resource in the SCR is equal to the 
Central Highlands of Vietnam, less than the southern 
region, but much higher than the northern regions of 
Vietnam. The annual rainfall is typical in a range from 
1200-1600 mm. However, some micro-climate areas at 
the narrow plains to the south of the SCR have less than 
800 mm annual rainfall [28]. 

Fig. 1. Distribution of meteorological stations in south-central 
Vietnam.
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Data

Meteorological Data

In this study, 30 monthly rainfall and 13 monthly 
temperature datasets were collected from the Vietnam 
Meteorological and Hydrological Administration 
from 1977 to 2014. For a consistent data length for 

all datasets, missing values were filled using inverse 
distance weighting [28]. The SCR has two distinct 
seasons: dry and wet. The wet season varies along 
the latitude (Fig. 2). At 12° northward, a high rainfall 
amount is observed from September to December while 
below that degree, the rainfall season is from May to 
October. Similarly, monthly temperature value reaches 
their maximumsin June at stations above 12°N and in 
May at stations below 12°N.

Climate Indices (CIs)

Table 1 lists eight climate indices (CIs) used as 
potential candidates for input variables of the drought 
forecasting model. In a similar region, the use of ENSO 
indices as input for drought forecasting are common in 
previous studies [14, 29, 30]. The use of PDO as one of 
CIs’ candidate input variables for drought forecasting 
is new for the study area. The PDO index represents 
a spatial pattern of sea surface temperature anomalies 
(SSTA) of the North Pacific Ocean (poleward 20°N). 
Although the PDO index is not an ENSO index, it 
reflects the impact of El Niño and La Niña on spatial 
patternsin the North Pacific. The main difference 
between ENSO and PDO indices lies in their time 
scales: while ENSO is a typical interannual event, the 
time scale of the PDO is decadal. 

Methods

Drought Index: Standardized Precipitation 
Evapotranspiration Index

The multiple-month scales SPEI drought index (3, 
6, 9, and 12 months) were calculated and considered as 
observational data for the drought forecasting model. 
The SPEI index was calculated as the desired time series 
(e.g., time series) fitted to a probability distribution, 
which is then transformed into a normal distribution, 
leading to a zero mean of SPEI value. The more negative 
the SPEI value, the drier the condition. -1.0, -1.5, and 
-2.0 are thresholds that represent starts of dry, severely 
dry, and extremely dry conditions, respectively.

Three steps of SPEI calculation [11] are described as 
below:

Fig. 2. Average monthly a) rainfall at 30 rainfall stations and b) 
temperature at 13 temperature stations over the SCR.

Table 1. CIs used as potential input variables for drought forecasting. 

No. Index Abbr. No. Index Abbr.

1 El Niño Modoki Index EMI 5 Southern Oscillation Index SOI

2 West Tropical Pacific Index NINOW 6 Bivariate ENSO time series BEST

3 Central Tropical Pacific Index NINO4 7 Multivariate ENSO Index MEI

4 East Central Tropical Pacific Index NINO34 8 Pacific Decadal Oscillation PDO

Note: NINOW was obtained from NOAA Asia-Pacific Data Research Center website (http://apdrc.soest.hawaii.edu/las/v6/
constrain?var=287), the remaining indices were obtained from the NOAA Earth System Research Laboratory Physical Sciences 
Division website (http://www.esrl.noaa.gov/psd/data/climateindices/list/).
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Step 1: Fitting distribution for time series G

     (1)

With:

               (2)

…where k is time scale (i.e.,3, 6, 9, and 12 months), m and 
y represent month and year respectively, and P and PET 
represent precipitation and potential evapotranspiration 
respectively. In this study, the Thornthwaite method was 
used to calculate PET since this method requires only 
temperature. The fitting function of time series G is 
usually a three-parameter log-logistic distribution. The 
cumulative probability distribution function is calculated 
as below:

              (3)

…where α, β, and γ are shape, scale, and original 
parameter.

Step 2: The cumulative probability of time series  is 
computed relative to the fitting distribution function.

                         (4)

…where H(g) is the cumulative probability of time series 
G.

Step 3: The cumulative probability is transformed 
into the standard normal variable, and the SPEI is 
estimated (Z value).

 
(5)

…where:

 (6)
…and:

Drought Forecasting Flowchart

The flowchart of drought forecasting is presented in 
Fig. 3a). We divided input data into two groups. Group 
1 was a set of models in which the input variable was 
local variables (lagged observation of drought index and 
rainfall). Group 2 was a set of models in which the input 
variable included local variables and CIs. After creating 
an initial candidates (ICi) set, two filter algorithms – 
partial correlation input selection (PCIS) and partial 
mutual information selection (PMIS) procedures – were 
chosen to reduce input variables to form reduction 
candidates (RCi). Both of those follow a forward 
selection strategy in which one variable is selected at 
each iteration. Details for each step of the flowchart can 
be described as below.

The SPEI drought index can be predicted from initial 
candidates ICi as follows:

                    (7)

Fig. 3. a) Flowchart of drought forecasting and b) scheme of multilayer perceptron neural network; S1, S2, …Sn are rank selected input 
variables using PCIS or PMIS filters.

a)

b)
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…where F(.) is a data-driven model such as ANN; ICi 
is formed by a number of input candidate pools  
Xn(t – 1, t – 2,..., t – i) where Xn generally indicates 
previous observation of SPEI, rainfall or CIs, and t – i 
indicates lagged time of the above-mentioned variables. 
We selected i = 3 as maximum lagged time for local 
candidates [31] and i = 12 as maximum lagged time for 
CIs [32].

The Pearson linear correlation coefficient measures 
the strength and direction of the linear relationship 
between each input variable and the output. While 
this coefficient is useful to illustrate linear dependence 
between the independent variable ICi and the dependent 
variable SPEIt, this relationship cannot account for 
redundancy in the candidate pool ICi. To consider this 
redundancy, the partial correlation coefficient is used 
instead. This algorithm is a coefficient to describe the 
relationship, for example between X1,t – i and SPEIt while 
eliminating the effect of a set of reduction candidates 
RCk{S1,t–i, S2,t–i}. The computation of the partial 
correlation coefficient is defined as a Pearson correlation 
coefficient between two residuals – linear regression of 
X1,t–i with S1,t–i, S2,t–i, and linear regression of SPEIt with 
S1,t–i, S2,t–i, as formulas (8) – (11):

     (8)

 (9)

  (10)

 (11)

…where axy are regression coefficients, ε is error term,  
rX1,t–1

 and rSPEIt
 are residuals in multi-linear regression 

models for X1,t–i and SPEIt respectively on other variables.
Mutual information measures a reduction of 

uncertainty in knowing from gaining knowledge of each 
input variable. However, MI raises the same problem 
as the Pearson linear correlation coefficient in a matter 
of redundancy. To address this issue, partial mutual 
information is developed to reveal a true relationship 
between SPEIt and Xn,t–i while taking away the effect 
of other interactive factors such as formulas (12) – (14) 
[33]:

 
(12)

                      (13)

              (14)

…where E[.] denotes an expectation operation and, fX',  
fSPEI' and fX'SPEI' represent marginal and joint distribution 
functions. As suggested from Galelli et. al. (2014) [34], 

the Gaussian density function was applied to estimate 
density function. The PMI criterion is analogous as 
a partial correlation coefficient since X' and SPEI' 
generally represent the residual information of Xn,t–i and  
SPEIt on the conditional S, which is a set of reduction 
candidates RCi.

In short, PCIS or PMIS algorithms can follow as 
below [25].
 – At the first iteration, the partial correlation (PC) 

or partial mutual information (PMI) value were 
calculated for each candidate input variable from 
ICi using Eq. (8) - (14) with an empty reduction 
candidate set RCi. The input variable with the highest 
PC or PMI was added to RCi. It is noticed that there 
are two sets, one for PCIS algorithm and another for 
PMIS algorithm.

 – At the next iteration, the PC value was calculated by 
formulas (8) - (11), and PMI value was calculated by 
formulas (12) - (14) on condition of selected input 
variables in the corresponding RCi. The variable with 
the highest value PC or PMI was added for each RCi. 
The stopping criteria are determined based on the 

coefficient of determination R2 when the new adding 
input variable could not be improved or even reduced, 
or the maximum iteration is reached. PCIS and PMIS 
algorithms use a program running on R software 
provided by Galelli et. al. (2014) [34]. This program is 
available online at http://ivs4em.deib.polimi.it/?page_
id=7.

The reduction candidates set RCk{S1,t–i, S2,t–i} then 
comprised overlapping sets (i.e., nested subset) by 
incrementally adding variables. Those were then fed 
into the artificial neural network (ANN) model to select 
the optimal subset using statistical evaluation. 

ANN is one of the most widely used artificial 
intelligence techniques because such a model could 
be built based on a highly nonlinear relationship 
without any prior knowledge. Among a pool of ANN 
approaches, a multilayer perceptron feed-forward neural 
network was used in this study due to its popularity. 
The architecture of the model includes three layers: 
input, hidden and output layer (Fig. 3b). Weights and 
bias connect each layer, but no weight is assigned 
between nodes within layers. The multilayer perceptron 
is worked in such a wayto minimize the error between 
output values of model and target values by updating the 
weights between each node.

An activation function of a node is used to determine 
the output of that node on giving a set of input. The φ(x)
is a common activation function used in ANN [35], with 
an output between -1 and 1. This function is described 
as follows:

                      (15)

Before running the ANN model, all data series was 
rescaled to the range of [a, b] by the following formula:
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       (16)

…where xrescaled is the rescaled value of x, and xmax and 
xmin are maximum and minimum values of original time 
series respectively. A range [-0.9, +0.9] was selected 
since we can extrapolate unseen data that may have 
larger values than the available data.

To validate the ANN model, we split data into two 
subsets: training and verification. The training data was 
from 1977 to 2000 while the verification data was from 
2001 to 2014. Additionally, the number of hidden nodes 
affects model performance [17]. Therefore, the optimal 
hidden node is found by trial and error procedure, which 
varies the hidden node number in a certain range.

Error Evaluation

To compare observed SPEI and predicted SPEI 
we used coefficient of determination () and root mean 
square error (RMSE) [32, 36]. The formulas for those 
statistical metrics are:

 
(17)

       (18)

…where N is the total number of samples; SPEIo,j and  
SPEIp,j represent monthly SPEI values for the observed 
data and the predicted data, respectively; and SPEIo and 
SPEIo represent the mean of the corresponding variables. 
R2 score ranges from 0 to 1, R2 is closer to 1, more fit 
between observation and prediction. RMSE score reflects 
deviations of the predictions from observation with 
perfect value as 0.

Results and Discussion

Performance of PCIS and PMIS 
Filter Algorithms

There is a total of 8640 ANN models (1440 models 
for Group 1 input set and 7200 models for Group 2 input 
set)run to find the optimal input sets (Table 2). Group 1 
initial input set has six variables on which we ran six 
nested models for each station. The Group 2 initial 
input set has 102 variables (six local variables + 8x12 
CIs). However, to reduce the running workload, we only 
selected the first 30 input variables after filtering to run 
the nested models. 

Performance of two filter algorithms (PCIS, PMIS) 
on the verification set is presented in Table 3. To 
examine the efficiency of two filter algorithms, Table 3 
also included performances of models using maximum 
input parameters for each group. The advantage of PCIS 
and PMIS filter algorithms is clear. Both algorithms 
not only provided a reduction in the input dimension 
solution but also increased the performance of the ANN 
model. While there was a slight increase in performance 
before and after using filter algorithms for Group 1, a 
significant enhancement performance was observed 
before and after using filter algorithms for Group 2. 
The reason seems to be that full input set of Group 2 
had a high degree of redundancy or irrelevant variables, 
serving as adding noise and complexity during the 
training period, leading to poor performance for the 
verification set. On the other hand, a large portion of 
potential candidates had a chance to find more relevant 
input variables to better explain the variation of output 
target. In inter-comparison between two filters, PCIS 
was slightly better to find optimal input sets than PMIS. 
The average  scores of PCIS filter with Group 2 input set 
regarding SPEI3, SPEI6, SPEI9, and SPEI12 prediction 
were 0.55, 0.75, 0.82, and 0.89 respectively; while those 
figures of PMIS filter were 0.54, 0.74, 0.82, and 0.88 
respectively. Similarity, the RMSE score was slightly 
lower with PCIS filter as compared to the PMIS filter. 
The average RMSE scores of PCIS filter with Group 2 
input set regarding SPEI3, SPEI6, SPEI9, and SPEI12 

Table 2. Description of ANN models to predict four different SPEI time scales.

Input variables Group 1 Group 2

Stations 30 30

SPEI time scales (SPEI3, SPEI6, SPEI9, SPEI12) 4 4

Filter Algorithms (PCIS, PMIS) 2 2

Maximum input variables 6 102

Nested models 6 30

Total running models 1440 7200
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prediction were 0.66, 0.52, 0.43, and 0.35 respectively 
while those figures of PMIS filter were 0.68, 0.51, 
0.44, and 0.35 respectively. Inter-comparison between 
different SPEI time scales prediction showed that 
long-term time scales (i.e., SPEI9, SPEI12) prediction 
achieved better accuracy than short-term time scales 
(i.e., SPEI3, SPEI6). This was likely because of the 
high variability of short-term time scales, which caused 
difficulty to predict from ANN models.

We averaged the SPEI time series for all stations at 
multiple time scales and did the ANN forecast for those 
time series using two filter algorithms. The time series 
plots and residual density (i.e., predicted SPEI minus 
observed SPEI) on verification period is presented in 
Fig. 4. All four predicted model SPEI values followed 
the observation SPEI values at four time scales: 
SPEI3, SPEI6, SPEI9, and SPEI12. The predicted SPEI 
using PMIS filter with the Group 1 input set seems 
to underestimate SPEI values, especially for SPEI6,  
and SPEI12 time series. The predicted SPEI using  
Group 2 input dataset was best for following the 
observations trend. Regarding residual density, both 
predicted SPEI values as input parameters were Group 2 
dataset, and the maximum density values were closest to 
zero values, with a slightly better density of error shape 
from the PCIS filter.

Analysis of Input Parameters

Figs 5-6 present the frequency appearances of 10 
input parameters in optimal input sets. Both filters 
always selected lagged SPEI as important input 
parameters regardless of time scales. It was likely that 
lagged SPEI always had the highest correlation with 
current SPEI compared to other inputs. Lagged rainfall 
seems to be important for long-rather than short-
term time scales. For example, 20% and 5% were the 
frequency appearance of lagged rainfall as in optimal 
input set to predict SPEI3 and SPEI6 using the PCIS 
filter respectively. Similarity, those figures for PMIS 
filter were only 10% and 45%. Regarding SPEI9 and 
SPEI12, the frequency appearance of lagged rainfall in 
the optimal input set was higher with values larger than 
50% for both filters. Regarding CI variables, NINOW, 
NINO34, and SOI were important input parameters 
using PCIS filters as each had higher than 50%  
optimal input set. Similarly, using the PMIS filter, 
NINOW and NINO34 were also important input 
parameters, but for medium- to long-term time scales 
(SPEI6, SPEI9, and SPEI12). It is noticed that SOI was 
the most important CI among others as the frequency of 
this index in the optimal input set was very high with 
both filters, with frequency appearances larger than 
60%. Typically, for SPEI6, SPEI9, and SPEI12 prediction 

 IC.G1 IC.G2 G1.PCIS G1.PMIS G2.PCIS G2.PMIS

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

SPEI3

Max 0.68 0.85 0.58 1.03 0.68 0.81 0.68 0.81 0.67 0.80 0.67 0.80

Min 0.27 0.58 0.14 0.68 0.33 0.57 0.33 0.56 0.40 0.57 0.39 0.58

Mean 0.50 0.71 0.37 0.83 0.53 0.68 0.53 0.68 0.55 0.68 0.54 0.68

SPEI6

Max 0.82 0.61 0.74 1.16 0.85 0.63 0.85 0.65 0.85 0.73 0.85 0.65

Min 0.60 0.43 0.12 0.59 0.61 0.42 0.61 0.42 0.61 0.42 0.61 0.42

Mean 0.72 0.53 0.42 0.82 0.74 0.52 0.74 0.52 0.75 0.52 0.74 0.51

SPEI9

Max 0.90 0.60 0.85 1.33 0.90 0.53 0.90 0.53 0.90 0.56 0.90 0.59

Min 0.63 0.33 0.04 0.39 0.66 0.33 0.66 0.33 0.62 0.31 0.66 0.32

Mean 0.80 0.45 0.51 0.77 0.82 0.43 0.82 0.43 0.82 0.43 0.82 0.44

SPEI12

Max 0.93 0.76 0.93 1.02 0.93 0.49 0.93 0.48 0.93 0.47 0.93 0.50

Min 0.75 0.28 0.43 0.29 0.76 0.28 0.76 0.28 0.74 0.27 0.76 0.28

Mean 0.88 0.39 0.81 0.54 0.88 0.36 0.88 0.35 0.89 0.35 0.88 0.35

Note IC Initial input candidates; G1 Group 1; G2 Group 2.

Table 3. Performance of ANN models using two filters (PCIS and PMIS)on verification data set at four different SPEI time scales.



Nguyen L.B., Le M.H.1300

Fig. 4. Comparison average multiple-SPEI time series over the SCR between observations and predicted SPEI using PCIS and PMIS 
with different group input sets.
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using PCIS filter, SOI appeared in all optimal input sets.
The importance of NINO34 as the input of drought 
forecasting for the case study was confirmed in previous 
literature [14,30]. However, in this study the SOI  
index was a possible new input variable for drought 
prediction in Vietnam. In fact, previous studies showed 
that its role in drought conditions in Australia was 
claimed [37]. The distance from the region’s calculated 
climate indices to the case study might affect their 

appearances in the drought prediction models. For 
example, NINOW had more frequent appearance in 
the predicted models than PDO. NINOWis calculated 
as an average sea surface temperature in the Western 
Pacific region (0°N-15°N, 130°E-150°E), which is 
geographically closer to the case study than the region 
calculated Pacific decadal oscillation (20°N-65°N, 
120°E-105°W). On the other hand, some previous 
research confirmed the importance of PDO in predicting 

Fig. 5. Frequency appearance of different input variables in optimal input set using PCIS filter.

Fig. 6. Frequency appearance of different input variables in optimal input set using PMIS filter.
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drought for its neighbor areas such as the USA [38] or 
South Korea [17].

Conclusions

Climate indices such as ENSO indices are known 
as an important factor in triggering drought in many 
regions around the globe. This study aims to integrate 
eight climate indices (i.e., EMI, NINOW, NINO4, 
NINO34, SOI, BEST, MEI, and PDO) in the drought 
forecasting model for south-central Vietnam (SCR). 
The SPEI was selected as a predicted target drought 
index at four multiple time scales (3-month, 6-month, 
9-month, and 12-month) at 30 stations over the SCR 
during the period 1977-2014. Since the potential input 
variables were large (up to 102 inputs and 12 lagged 
times), input variable selection filters (partial correlation 
input selection – PCIS and partial mutual information 
selection – PMIS) were used to select the suitable 
climate indices as input variables, and artificial neural 
network was applied for the drought model.

By evaluating the performance of PCIS and PMIS 
filter algorithms on selecting the optimal input set, it 
seems to us that models using PCIS filter input data set 
achieve moderately better prediction than those using 
the PMIS filter. Moreover, the faster computation time 
of PCIS, compared with that of PMIS, suggested the 
recommendation about the use of PCIS rather PMIS. 
This finding is also like the same suggestion from the 
work of Tran et al. (2015) [39]. 

For analyzing the frequency appearance of input 
parameters in the optimal input set, NINOW, NINO34, 
and SOI were the climate indices that appeared most 
often. This means that including those indices could 
enhance prediction accuracy and assist in designing 
guidelines for drought mitigation plans.
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