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Abstract

Our paper is focused on data evaluation about the full recycling of waste by special statistical
software and by using the principles of logistics. The paper goes further than the paper entitled
“Environmental assessment of waste recycling based on principles of logistics and computer simulation
design,” which outputs a number of data that need to be reviewed and evaluated separately. Data,
representing 15 types of waste for 5 years, enter the analysis. There were the types of waste that make
up the most important part of the total waste production by means of descriptive statistics. Thanks to
this, they were identified as the most important (from the production point of view) plastic granules
with an average of 755.05 t/month, glass with an average of 672.233 t/month and paper with the average
of 645.25 t/month. The persistence of particular waste type generation was examined by the variation
coefficient in order to reduce the risk of supply of these secondary raw materials in the downstream
supply chain. Selected waste elements can be considered relatively stable with a variation coefficient in

the range 2.4-4.1%; the least stable type is electronic dust with a coefficient of variation of up to almost

23%.
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Introduction

Application of the current logistics options for the
overall waste sorting gives an assumption of reducing
the overall environmental load. On the basis of the
information about the operation of such systems, it is
possible to create accurate computer simulation models
[1] where the outcomes of these models are several
numbers of other data and information that can be

*e-mail: martin.straka@tuke.sk

used to backward investigate systems with the aim to
improving our environment [2]. But the problem is
that the amount of data collected represents so much
information that it is problematic to evaluate effectively
in a standard way. For this reason, a statistical analysis
program is used to further understand the operation of
the overall waste separation system and to analyse data.
The aim of this paper is to point to an effective
analysis and evaluation of the data obtained from a
system that deals with the complete classification of
waste and to understand the behaviour of such a system
in order to make it more efficient and to determine the
possibilities for further development of the system.
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Theoretical Base

Logistics Approach and Computer Statistical
Analysis of Data

Using classical spreadsheet editors to analyse
acquired data is popular, but has significant limitations
that affect the quality of the data analysis itself. Quality
is related to the possibilities of table spreadsheet editors
as well as to the skills and knowledge of spreadsheet
editor users. For these reasons, the professional
statistical program has been used to comprehensively
analyse data of complete waste separation, and some
outputs will be shown in the other chapters of the paper.

Computer statistical analysis of data (CSAD) allows
for significant progress in data analysis obtained for
a wide research area. This also helps professionals
who do not specifically deal with statistical evaluation
and analysis. The use of such program resources
is widespread. Authors Tang and Zhang [3] use a
comprehensive but simple-to-use software package
called data processing system (DPS), which has been
developed to execute a range of standard numerical
analyses and operations used in experimental design,
statistics and data mining. DPS software provides
experimenters with the scientific and statistical
procedures needed to maximize the knowledge gained
from research data. These procedures include ANOVA
on sums of squares for balanced data and a GLM
approach to analyse any type of experimental design,
including unbalanced designs and experiments with
missing values. With DPS it is possible to fit statistical
models containing factors whether the data are
experimental or observational [3]. It is also important
to use CSAD for the analysis and evaluation of logistics
systems and their environmental aspects. Such an
application is included in an analytical and statistical
JMP program.

According to the authors Jones and Sall [4], IMP
is a statistical software environment that enables
scientists, engineers, and business analysts to make
discoveries through data exploration. One powerful
method for beginning the process of discovery employs
statistically designed experiments. A well-designed
experiment ensures that the resulting data have large
information content. We support this method with
custom design, an innovative approach to the statistical
design of experiments. But whether your results come
from designed experiments or from an observational
study, we provide analytical tools that put graphs up
front. JMP’s graphical user interface (GUI) makes
these plots interactive and dynamically linked to each
other and to the data [4]. According to the author Smith
et al. [5], the use of different statistical techniques
within the component parts of an ecosystem services
assessment framework are discussed, including data
availability and sampling strategies, statistical data
analysis, geography and spatial models, meta-analysis,
environmental models, societal models, feedbacks and

loop analysis, and graphical models including Bayesian
belief networks. Statistics has an underpinning role by
providing tools to link together the component elements
along with their uncertainties for a thorough ecosystem
services assessment, and should be an integral part of
this developing inter-disciplinary research area [5].
According to the author Wang Y. et al. [6] and Bohacs
et al. [7], a data quality parameter is a qualitative or
subjective dimension by which a user evaluates data
quality. Source credibility and timeliness are examples.
The value is directly or indirectly based on underlying
quality indicator values. User defined functions may
be used to map quality indicator values to quality
parameter values. Author Wang G. et al. [8] wrote that
the amount of data produced is significantly increasing,
thereby creating challenges for the organizations that
would like to reap the benefits from analysing this
massive influx of big data. This is because big data can
provide unique insights into, inter alia, market trends,
customer buying patterns, and maintenance cycles, as
well as into ways of lowering costs and enabling more
targeted business decisions. Big data analytics (BDA)
in logistics and supply chain management (LSCM) has
received increasing attention because of its complexity
and the prominent role of LSCM in improving overall
business performance. LSCM faces the most significant
challenges that can potentially result in inefficiencies
and wastage in supply chains, such as delayed
shipments, rising fuel costs, inconsistent suppliers, and
ever-increasing customer expectations, among others
[9]. Companies highly expect to capitalize on BDA in
logistics and supply chain operations to improve the
visibility, flexibility, and integration of global supply
chains and logistics processes, effectively manage
demand volatility, and handle cost fluctuations [10].
In the strategic phase of supply chain planning, BDA
plays a vital role. It has been applied to help companies
make strategic decisions on sourcing and supply chain
network design, as well as on product design and
development. In the operational planning phase, BDBA
has been used to assist management in making supply
chain operation decisions, which often include demand
planning, procurement, production, inventory, and
logistics. According to the authors Little and Rubin
[11], most statistical software packages allow for the
identification of nonrespondents by creating one or more
special codes for those entries of the data matrix that
are not observed. More than one code might be used
to identify particular types of nonresponse, such as
“don’t know” or “refuse to answer” or “out of legitimate
range.” Some statistical packages typically exclude units
that have missing value codes for any of the variables
involved in an analysis. This strategy is generally
inappropriate, since the investigator is usually interested
in making inferences about the entire target population
rather than the portion of the target population that
would provide responses on all relevant variables in the
analysis. Straka et al. [12] write that logistics systems
consist of a finite number of active elements that create
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the networks in which the logistics flows occur. These
systems have a stochastic and probabilistic character.
Before the design of the simulation model, it is necessary
to determine whether it is possible to design the model
as one system or a collection of several individual parts.
Many types of simulation software allow for the design
of models according to a hierarchical structure in which
the whole large-scale logistics system is represented
by one hierarchical block. This gives the possibility
of simplifying the entire examined logistics system
(including a complete waste recycling system) for
simulation and modelling purposes, as well as making
it possible to obtain valuable data that is suitable for
detailed software analysis.

Possibilities and Outputs of Statistical
Software Analysis

The rapid development of information technologies
and the considerable increase of their performance
gives space for the development and application of
specialized software tools, and for the needs of expert
activities in the field of statistics. According to Beller
et al. and Cheba et al. [13, 14], the use of automatic
statical analysis has been a software engineering best
practice for decades. However, we still do not know a
lot about its use in real-world software projects. Many
authors [15-18] write that very often, models are only
valid for one particular point in space. This type of
model describes a process such as nitrogen leaching in
a detailed way for this single point. For such a model,
many parameters must be determined (measured or
estimated) because the model reacts very sensitively to

small changes in these parameters, in landscape studies.
Most elementary general purpose data analysis makes
the fundamental assumption that the observational
units analysed represent independent pieces of evidence
about the relationship under study [19, 20]. According
to Bazeley and Jackson [21], there is a widely held
perception that use of a computer helps to ensure rigour
in the analysis process. Insofar as computer software
will find and include a query procedure, for example,
every recorded use of a term or every coded instance
of a concept, it ensures a more complete set of data for
interpretation than might occur when working manually.
There are procedures that can be used, too, to check for
completeness, and use of a computer makes it possible to
test for negative cases (where concepts are not related).
Perhaps using a computer simply ensures that the user is
working more methodically, more thoroughly, and more
attentively. In this sense, then, it can be claimed that the
use of a computer for qualitative analysis can contribute
to a more rigorous analysis. Computer simulation is also
based on the same principles and its quality depends
on the qualitative processing of input data and the
ability of authors to create a formalized scheme with
its parameters for the creation of a certain computer
simulation model [22-26].

The need for continuity of production is gaining
ground for activity of individual departments to ensure
an undisturbed operation of the company at a minimum
cost. The increase in the production capacity is one of
the possibilities for achieving a higher profit by fixed
cost reduction. The process simulation models are very
efficient tools for detecting the bottlenecks in the process
course and for improving the process parameters. To

Table 1. Initial analysis of numerical variables: mean, standard deviation, minimum, maximum, sum within 5 years per group of waste.

Coefficient
Type of waste N DF Mean | Std Dev Sum |Minimum|Maximumfof variation
[%]

Waste t/month &0 58| 670721 48,8033 402432 6529 ﬁQdZI 0,73%
Plastics granules t/month 60 59 755,05| 26,2778 45303 696 823' 3,48%
Bi_ogas m3/month 80 59| 352383 7001,3| 2,11E+07| 341999 369000' 1,99%
Digestate m3/month 60 59| 352383| 95,2455 211430 3210 3%0' 2.70%
Paper t/month 60 59| ©4525| 15,7605 38715 807 678 2,44%
Glass t/month 60 59| 672,233| 26,9327 40334 601 724 401%
Textile t/month 60 59 271 17,0145 16260 218 302 6,28%
Iron t/month &0 59| 293,633| 15,1869 17618 256 331 517%
Nonferro us t/month 80 59 1248 11,2216 7488 103 152 B,99%
Wood peletst/maonth &0 59| 230,967 16,2366 13858 184 274 7.03%
Rubber granules t/month &0 59| 100433 89,3235 6026 Bl 126 8,28%
Dangerous waste t/mo nth 80 59 67,65 85,4829 4059 43 91 12,54%
Electronic dust t/month 60 59| 20,8833| 4,7838 1253 12 33 22,91%
Gravelt/month 60 59| 184,717 13,4934 11083 155 217 7.30%
Sand t/month &0 89| 779167 96679 4675 53 1004 12,41%
Nonrecyclable t/month 60 59 268.2| 14,9947 16092 239 313' 5,59%'
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develop the proper simulation model, both theoretical
knowledge (technique of simulation, specific simulation
systems) and practical experience (description of the
system, its elements and their mutual interactions and
links) are necessary. The course of the simulation is to
be monitored in every phase. It is possible to determine
impacts on total function of the system from the changes
that occur at the output of the simulation model [27].

From everything mentioned above, the specialized
software can be considered as an important element
in the solution of a project, scientific research and
theoretical tasks for the needs of practice and academic
environment.
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Fig. 1. Multidimensional analysis of all numerical data.
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Results and Discussion
Initial Analysis of Numerical Variables

The high value of the coefficient of variation
indicates that the type of waste reaches significantly
different values during the months of the year so that
there may be a seasonal impact. The low value of the
variation coefficient indicates that the type of waste
reaches relatively stable values for individual months
of the year, which can be positive when estimating the
production of recycled material components.

Interesting may be the type of waste that has the
highest and lowest average values and low or high
variability (standard deviation) (Table 1). The results of
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Table 2. Pair correlation analysis evaluates the relationship among all pairs of numerical variables.

Pairwise Correlations

Variable by Variable Correlation Count Lower 95% Upper95% Signif Prob -8-6-4-20 .2 4 6 .8

ass ymantn Bicgas m3/month -0,2682 50 -0,3588 U053 | : o
Sand t/month Gravel t/menth -0,2778 60 -0,4967 -0,0257 N N
Electronic dust t/month  Wood pelets t/month 0,3052 60 0,0556 05189 ; — P
Nonrecyclable t/month  Dangerous waste t/month -0,3062 60 -0,5197 -0,0567 | |
Nonrecyclable t/month Gravel t/menth -0,3753 60 -0,5744 -0,1341 N P
Glass t/month Paper t/month -0,3913 60 -0,5869 -0,1526 =]
Biegas m3/month Waste t/month 0468 60 0,2433 06454 : .
Digestate m3/month Biogas m3/month 0,8024 60 0,6868 08775 <,0001* B
Digestate m3/month Waste t/month 0,8071 60 0,6958 0,8806 <,0001" ]

the analysis ranked plastics granules with an average
of 755.05 t/month as being among the most productive
types of waste, followed by glass with the average
of 672.233 t/month and paper with the average of
645.25 t/month. These types of waste can be considered
relatively stable, from the point of their production, with
a coefficient of variation in the range 2.4-4.1%.

The multidimensional analysis of all numerical
data points to a significant positive correlation
between the month indicators of WASTE/DIGESTATE
with the correlation coefficient r = + 0.8071 and
BIOGAS/DIGESTATE with the correlation coefficient
r=+ 0.8024 (Fig. 1).

The relationship among all pairs of numerical
variables was judged through pair correlation analysis.
The results of the analysis point to pairs where the
correlation is statistically significant. In addition to the
aforementioned types of waste in the previous analysis,
other pair indicators are included (Table 2):

— GLASS/BIOGAS correlation NEGATIVE

— SAND/GRAVEL correlation NEGATIVE

— NONRECYCLABLET/DANGEROUS WASTE
correlation NEGATIVE

Bivariate Fit of Glass t/month By Paper t/month
T40 ixn
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Bivariate Fit of Nonrecyclable t/month By Gravel t/month

— NONRECYCLABLET/GRAVEL
correlation NEGATIVE
— GLASS/PAPER correlation NEGATIVE
— ELECTRONIC DUST/WOOD PELETS
correlation NEGATIVE
— BIOGAS/WASTE correlation NEGATIVE
— WASTE/DIGESTATE correlation NEGATIVE
— BIOGAS/DIGESTATE correlation NEGATIVE
There emerged much higher dependence among
variables by repeating the multidimensional analysis
of the dependence among the types of waste and the
filtering according to the seasons: spring / summer /
autumn / winter. The impact of seasonality is evident
for some types of waste, which is worth further
research for reducing the risk of using individual
components of waste as a secondary raw material
(Table 3).

Regression and Cluster Analysis of Selected Types
of Sorted Waste

Although regression analysis was performed in
all pairs (Fig. 2), the result is a statistically significant

Bivariate Fit of Electronic dust t/month By Wood pelets t/month

Electronic dust t/month

0 0 220
Paper t/month Gravel t'menth
— Linear fit — Lineer Fit e s i By o
T3 T Quantile Density Contours T2 3 Quantile Density Contours 4.2 SISO DR Fontore
Linear Fit Linear Fit -Lum:ar Fit : -
Glass t/month = 1103,7355 - 0,6687365"Paper t/month Nonrecyclable t/month = 345,22873 - 0,4170102"Gravel t/mon Fiespvnic st moni =B TRATIR SR D020 ot pelcs
L = menth
Summary of Fit Summary of Fit Summary of Fit
RSquare 0, RSquare RSquare
RSquare Adj RSquare Adj RSquare Adj
Root Mean Square Ermor ean Square Erro. = 5
Mean of Response M nse eal
Observations (or Sum Wgts) Observations (or Sum Wgts) Observations (or Sum Wats)
Analysis of Variance Analysis of Variance Analysis of Variance
Sum of Sum of Sum of
Source DF F Ratio Source DF s Mean 5 F Ratio Source DF  Squares MeanSquare F Ratio
Madel 10,4884 Medel ] 18 9,5061 Moded 1 125792 125791 59588
Eror Prob > F Emor 58 Prob > F Errer 58

42796733

C Tetal 59

Quantile Density Contours

Variable Kernel Std Variable Kernel 5td
Paper t/manth 1 Gravel t'month 3 2
Glass t/menth 6,8059€. Nenrecyclable t/menth

C. Total 50 1

Quantile Density Contours

Fig. 2. Regression analysis of selected pairs of sorted waste.

10 Prob> F
C Total 59 135 1

‘Quantile Density Contours

Variable Kernel Std
Wood pelets t/month 4,103038
Electronic dust t/menth  1,208876
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Table 3. Pair correlation analysis evaluates the relationship among all pairs of numerical variables by season.
= Multivariate season=spring

A Pairwise Correlations
Variable by Variable C#mhﬂn Cm L«-erm D‘ppqr!?s% mﬂ‘l’m} .8-.6 -4 2 0 .2 .4 .6 rﬂ
laxnlz rmoanth l‘!p!l! manmn
Paper tmonth Digestate m3/month 10 432? l S r'D ?'-’35 0 1022 0 ll)?l
Paper tmonth Biogas m3month =0,4327 15 -0,7735 0,1022 0,1072
Nonrecvelable tmonth  Plastics granules tmonth 10.4 wm 15 r'U..? 40 0 1010 'U'. 1063
Electronicdusttmonth  Glass tmonth -0, 4428 15 0,7785 0,0895 10,0584
Gravel tmonth Dangerous waste tmonth 0,4603 15 -0,0680 0,7870 10,0842
Nonrecyclable tmomh  Dangerous waste tmonth 04778 15 0, 7954 00,0436 0,0717
Biogas m3/ month Waste tmonth 0,4886 15 -0,0316 0,8005 10,0646
Digestate m3/month Waste tmonth 0,4885 15 -0.0316 0,8005 0,0648
Sand tmonth Electronic dust tmonth -0,4911 15 -0,3017 0,0283 10,0630
Grave] tmonth Wood pelets tmonth -0,5408 15 -0,8246 -0,0395 0,0374*
Wood pelets tmonth Glass tmonth -0,5448 i35 -0,5264 -0,0451 10,0357
Electronic dusttmonth  Wood peletstmonth 0,5466 15 0,0476 03272 0,0350"
Nonrecvclable tmonh  Nonferrous tmonth 05™ 15 0.0930 03411 0,0241°
Sand vmomnth Rﬂhbﬂmnllles Umonth -0,6310 15 -0,3640 -0,1755 00117*
Digestate m3/month Biogas m 3 month 1.00:00 15 1,0000 1,0000 <,0001* |

» Multivariate season=summer

A Pairwise Correlations
Variable by Variable Correlation Count Lower$3% Upper 95% Signif Prob -8 -6-4 -2 0 2 4 6 8
Nonferrous vmonth Glass tmonth -0,4533 i5 -0,7836 06,0768 00887 | & : ior o
Dangerous waste tmonth Nonferrous vmonth 0,4549 15 40,7844 0,0748 0,0884
Electronic dusttmonth  Iron Umonth =0,4630 15 ), 7883 0,0646 0,0822
Nonrecyclabletmonth  Textile tmonth 04714 15 40,7923 0,0539 00761
Paper ymonth Waste tmonth -0,4506 15 -0,7567 0,040 0.0658
Paper tmonth Digestaie m3/'month -0,5035 15 -0,8075 0,0118 0.0557
Rubber granules tmomh Di te m3/'month =0, 5052 15 -0,810] 0,0ME 0,056
Nenrecyclable tmonth  Rubber granules tmonth 0,5163 15 10,0055 0,8134 0,0488"
Sand tmonth Gravel tmonth 0,554 15 40,5330 «0,0661 0,0301*
Rubber granules tmomth  Waste tmonth -0,5634 15 -0,8347 -0,0718 0,0288*
Textile tmonth Biogas m3/month -0.3846 15 -0,8441 -0,1032 0.0221*
Digestate m3 /month Biogas m3 month 0 N 7 15 0,1558 0,8588 0,013%*
Digestate m3 /menth Waste tmonth 15 10,8438 0,9825 <,0001* |

w Multivariate seasom=autumn

4 Pairwise Correlations
Variable by Variable . Correlation Count Lower95% Upper 95% SignifProb -3 64 2 0 2 4 6 8
Dan; swaste Umonth Plastics granules Umonth 04610 13 -0 7873 0,0671 0,0837 = .
Sand tmonth Digestate m3/month -0,4630 15 -0, 7883 0,0646 0,0822
Nonferrous tmonth Digestate m3/month -0,4645 15 -0, 7890 0,0626 0.0811
Wood pelets tmonth  Papertmonth -0,4673 15 -0, 7904 0,0591 0,0790
Sand t month Biogas m3/month -0,4677 15 ), 7906 0,058 0,0787
Graveltmonth Glass tmonth 0,4769 15 40,0468 0,7949 0,0723
Sand t monih Texiile tmonth 04785 15 0047 0,797 0.0712
Glass tmonth Biogas m3/month -0 4951 15 -0, 8026 0,0257 0,0618
Rubber granules tmond  Paper Umonth 0,5415 15 10,0404 0,8249 0,0371*
Glass tmonth Waste Umonth -0,5513 15 £,8293 =0,0544 0,0332%
Elecronic dusttmonth  Papertmonth -0,5628 15 -0,8345 -0,0710 0,0250
Rubber granules tmonth  Glass tmonth =0,6058 i35 £0,8530 -0,1418 0,0158%|
Gravel tmonth Paper Ymonth -0,6791 15 -0,8839 -0,2559 0,0054%|
Electronic dustvmonth  'Wood pelets vmonth 0.6540 15 10,2820 0.885% 0.0041%| :
Glass vmonth Paper vmonth -0,7050 15 -,8943 -0,3017 0,0033*
Biogasm3.month Waste tmonth 0,7135 15 0,317 0.8977 0,0028"
Digestate m 3/ month Waste tmonth 0,7179 15 0,3253 0,8994 0,0026%| & | i
Digestate m3 month Biogas m3/'month 0,9659 15 ,8980 0,9889 S0001%| : :

w» Multivariate seasom=winter

A Pairwise Correlations
Variable by Variable Correlation Count Lower95% Upper 95% SignifProb -8 -6-4 -2 0 2 4 6 8
KuDDEr gramules Umonin | exfle Umonth NTE T 13 -0, 1373 0, 1303 U, 1355 e R Y
Iron tment Glass tmonth -0,4023 15 -0,7583 01,1385 0,1371 tlom Jimaa
Sand vmonth Electronic dust vmonth 0,3036 15 -0,1370 0,7589 10,1358
Rubber granules tmonth Iron tmonth -0,4063 15 -0,7603 0,1338 0,1329
Iron tmont Digestxle-mi."mamil =0,40%0 15 <0,7617 0,1306 0,1301
Paper tmonth Plastics granules tmonth 04112 15 -0,7628 0,1280 0,1278
Nonfemous tmaonth Plastics granules tmonth 0,4191 15 -0,1186 0,7665 0,115
Nonrecyclabletmen®h  Iron tmonth -0,4286 13 -0,171% 0,1073 0,1110
Dangerous waste tmonth Biogas m3/month -0,4602 13 -0,788% 01,0681 00843
Nonrecyclabletmenth  Papertmonth 0,462 135 -0,0656 0,7879 0,0828
Electronic dusttmonth  Waste Umonth -0,46% 15 -0,7915 0,0562 00774
Dangerous waste tmonth Digestate m3/month 04727 15 -0,792% 0,0522 0,0752
Nonfemous tmonth Textile tmonth -0,4981 15 -0.8050 0.01%0 0.0588
Dangerous waste tmonth Paper tmonth -0,504% 13 -0,8081 00100 00545
Electronic dusttmonts  Biogas m3/'month -0,5930 15 -0,8477 -0,1160 0.0198*
Elecuonic dusttmontt  Digestate m3/month -0.5972 15 -0,8456 -0,1224 00187
Glasstmonth ]'apﬂ{-nlnll!h -0,6036 15 0,851 -0,1322 00172
Nonrecyclabletmonth  Gravel tmonth -0,6057 15 -0,8548 01316 0,0158*
Textile t month Plastice granules tmonth 0,6112 15 -0,8556 -0,1440 0,0155*
Digestate m3/'month Waste tmonth 06873 15 0,2701 0,8872 01,0046
Biogas m3 month ‘Waste tmonth 06817 15 02778 0,5850 0,0043%
Elecwonic dusttmonth  Dangerous waste Umonith 0,7042 15 0,3002 0,8940 0,0034*

Digestate m3/month Biogas m3/month 0.5586 15 0.9936 0,9%55 <0001* |



Big Data Analytics of a Waste Recycling...

2361

Table 4. Variable clustering method.

Cluster Summary

Most Representative
Variable

Digestate m3/month
Glass t/month
Nonrecyclable t/month
Rubber granules t/maonth
Plastics granules t/month
Nonferrous t/month
Sand t/month

Cluster of Memb

1
3
5
2
4
7

=2}

linear regression model in all cases. The descriptive
capability of the models is in the range of (7.1; 65)%.
We examined the common features of each type
of waste by cluster analysis, and these clusters were
formed on the basis of similar behaviour. The principle
of cluster analysis is to group variables so that
maximum homogeneity of variables is reached within
the cluster and maximum variability among clusters.
Variable clustering provides a method of grouping
similar variables into representative groups (Table 4).
Each cluster can be represented by one component or

Dendrogram

D G0 CaLD G b

LT — 0 L L 2 L P — LT T LY e o L P s L L

WD N = s U1

Fig. 3. Hierarchical clustering method.

Cluster Proportion Total Proportion of
of Variation Explained Variation Explained .2 .4 ,6 .8

0,611 0,153 [

0,696 0,087 N

0077 : G\
0,591 0074 : N
1 00630 : : }

a variable. Component is a linear combination of all
variables in a cluster. Alternatively, a cluster can be
represented by an identified variable that is the most
representative of a cluster. Cluster variables can be used
as a reduction method. Instead of using a large set of
variables in modelling, either the cluster components or
the most representative cluster variable can be used to
explain most variations in the data.

The hierarchical clustering method begins with
each observation of its own clustering. In each step, the
clustering process calculates the distance among all the

Waste Digestate Biogas Plastics
t/month m3/month m3/month granules {/month
6529 3210 3419589 696
65646 32723 344078 70781
66003 33355 346153 71962
E635,9 33983 343230 73143
66716 34611 350306 74324
67072 35233 352383 755,05
57542 3599,1 355707 763,64
6801,1 36743 359030 78223
58481 37485 362353 79582
6395 38243 365677 80941
6942 3900 369000 823
Rubber Monrecydable ‘Wood pelets Electronic
granules t/month t/month t/month dust t/month
a1 239 184 12
84,887 244384 19339 13777
83,773 250,68 202,79 15553
92,66 256,52 212,18 17,33
96,547 26236 22157 19,107
10043 2682 23097 20883
10555 27816 23957 23307
11066 288,12 24318 25,73
11577 203,08 256,79 28,153
120,89 308,04 26539 30577
126 318 274 33
Glass Constellation Plot
t/month -
601
615,25
62949
643,74
657,39 .
672,23 50
68259
692,94 . !
703.29 St
71365
T4 .
Textile By g U
e
t/month & \-.'-7__ o
219 .
2294 1
2398
2502 -
2606
27
2772
2834
2896
2958 .
302 e -8 & 8
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* Oneway Analysis of Plastics granules tmonth By Month * Anahysis of Means

Quantiles
Oneway Anova
= Analysis of Means for Variances
Summary of Fit ¥
Analysis of Variance
Sam of
Somrce DF  Squares MeanSquare FRatio Probo>F

Means for Oneway Anova
Means and Sid Deviations
Level Number  Mean SidDev Std Err Meanm Lowsr 95%

Fig. 4. Analysis of plastics granule variability.

pairs of clusters and connects the two closest clusters.
This process continues until all points are contained
in one cluster. Hierarchical clustering is also called
agglomerative clustering due to the combined approach
it uses. The agglomerative process is shown as a tree
called the dendrogram (Fig. 3).

Analysis of Variability by Months of Selected Types
of Sorted Waste

The variability of the quantity produced of a
particular type of waste in relation to each month
was analysed by the analysis of ANOVA, ANOM,

= Oneway Analysis of Paper tmonth By Month = Amalysis of Means

Quantiles
Ouneway Anova » Analysis of Means for Variances
Summary of Fit

Analysis of Variance

Sum ol

DF  Squares MeanSquare FRatio Prob>F

Means for Oneway Anova
Means and Std Deviations N
Level Number  Mean StdDev Std Err Mean Lower95% Upper 95% [ l J
836,000 14,6799 6,56 81 654,2 A

Fig. 5. Analysis of paper variability.

Proportion of Densities

Plastics granules tmoath

Compare Densities

ANOM for variances, graphical analysis of proportion
densities and compared densities. Our aim was to
exclude or confirm the impact of seasonality on waste
production. In most cases, the statistically significant
variability of the variable in relation to the calendar
month was not confirmed. We also examined the
variability of the standard deviation in particular
months, which represents the variance of the values,
in relation to the mean deviation for the type of waste.
The results notice the type of waste where statistically
significant deviations and certain months have been
recorded which are different from the rest of the year
(Figs. 4-6).

Proportion of Densities

Fapertmonth

Compare Densities
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» Analysis of Means

Quantiles
Oneway Anova
Summary of Fit
Analysis of Variamce
Sam of
Sourge DF  Squares MeamSquare FRatio Prob>F

Means for Oneway Amova
Means and Std Deviations I
Level Number  Mean SidDev Sd ErrMean Lower95% Upper 95% S J \ I

Fig. 6. Analysis of glass variability.

Conclusions

Data that represents 15 types of waste during 5
years was input for analysis. It defined types by means
of descriptive statistics: the average, the standard
deviation, the minimum, the maximum and the sum of
waste that forms the most important part of the total
waste production. Thanks to that fact, plastic granules
with an average of 755.05 t/month were identified as
the most important, followed by glass with an average
of 672.233 t/month and paper with an average of
645.25 t/month. The persistence of waste generation
was examined through the variation coefficient in order
to reduce the risk of supply of these secondary raw
materials in the downstream supply chain. From this
point of view, already selected waste components can be
considered relatively stable with a variation coefficient
in the range 2.4-4.1%) to the least stable types, like
electronic dust, with a coefficient of variation of almost
23%.

Linearity of the relationship among different
types of waste is determined by using multidimensional
pair correlation analysis. Five statistically significant
negative and four positive dependencies were identified
from the 15 types of waste. When repeating the analyses
by data filtering according to the seasons (spring /
summer / autumn / winter), there was a significantly
higher dependence that differs in each season. That is
why the analysed ANOVA and ANOM variability of
production of individual components of waste by months
was provided, but the results were not statistically
significant in most cases. It would be appropriate to
further explore this area by other data sorting, e.g.,
Vi year, Y5 year, etc. Finally, we found common features
of each type of waste by means of cluster analysis, and
clustering represented by one type of waste on the basis
of similar behaviour, which resulted in the reduction of

Propartion of Densities

Compare Densities

six waste components: digestate, glass, non-recyclable
waste, rubber granules, plastic granules and nonferrous
sand.
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