
Introduction

The interaction between plants and climate is 
reflected in the adaptation of plants to climatic factors 
and the feedback of plants to climate [1-2]. Climate is 

the dominant factor affecting plant distribution. Climate 
is expressed in the fact that heat is the source of energy 
for plant life activities, and water is the basic component 
of plants and can affect plant physiological activities. 
Climate change will have a great impact on the growth, 
geographical distribution, diversity and richness of 
plants. In global climate change, the most important 
ecological factors influencing the plant-ecosystem are 
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The aim of this study was to conduct an ecological regionalization and suitability evaluation of 
Actinidia arguta in China. The methods of maximum entropy have been deployed for some years to 
address the problem of species abundance distributions. In this approach, the ecological niche modeling 
software MaxEnt (the maximum entropy model), combined with ArcGIS (geographic information 
system), was applied to predict the potential geographic distribution of A. arguta in China. Bioclimatic 
dominant factors and the appropriate ranges of their values were also investigated. Our results showed 
that training data AUC (Area area under the ROC curve) of the 10 replicates was 0.992, which indicated 
a better forecast. The highly suitable area of A. arguta in China can be divided into three parts: the 
southwest, northeast, central and eastern regions. The moderately suitable areas are distributed around 
the most suitable areas, and the total area is 178.59×104 km2, with a wider distribution than that of the 
most suitable areas. The important environmental factors affecting the distribution of A. arguta were 
Precipitation precipitation in July, temperature seasonality, altitude, mean temperature in April, and 
precipitation of the warmest quarter. The above results provide valuable references for wildlife tending, 
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enhanced air temperature, changed precipitation and 
elevated atmospheric carbon dioxide, which are mainly 
exerted on the physiological processes of water transport, 
photosynthesis, respiration and substance metabolism in 
plants [3-4]. Previous studies have shown that for every 
1ºC increase in temperature during crop growth, the 
growth period of rice will be shortened by 7-8 days, 
and the growth period of winter wheat will be shortened 
by 17 days, which reduces the time for photosynthesis 
to accumulate dry matter [5]. Temperature is the main 
ecological factor limiting the distribution of plants, 
and climate warming has changed the distribution 
boundaries of plants. Lucht et al’s [6] model shows that 
vegetation in the northern hemisphere tends to move to 
higher latitudes, which indicates the response of plant 
growth to temperature rise. The increase or decrease of 
precipitation will change the evaporation of water in the 
soil and the transpiration of water in the plant canopy, 
which in turn will affect the function of the plant [7]. 
Many studies have proved that under drought stress, 
plants would transport more assimilation products to 
the root system, resulting in an increase in root biomass 
[8-9]. The increase in atmospheric carbon dioxide has 
significant effects on the photosynthesis of different 
types of plants. C3 plants are generally more sensitive 
to the increase in carbon dioxide than C4 plants [10-11].

Systematically analyzing the relationship between 
plants and climatic factors and accurately predicting 
the impacts of climate change on plant distribution 
will be of great theoretical and practical significance 
to scientifically understand the impacts of climate 
change on biodiversity and to formulate effective 
countermeasures [12-13].

The geographical distribution and spatial distribution 
of species are closely related to changes in the climate 
and the environment, and they have a profound impact on 
the distribution and reproductive development of species 
[14]. Therefore, the biological climate demand and its 
relationship with the geographical distribution of species 
have become an important basis for the development 
of species introduction strategies. At present, a model 
analysis is widely used in species distribution prediction 
[15], in which the MaxEnt model can be used to reveal 
the distribution of species or unknown populations and 
has been widely used in the prediction of endangered 
species, climate and environment suitability, and the 
evaluation of species conservation priority, for species 
such as Bretschneidera sinensis [16], Amygdalus 
mongolica [17], Abies chensiensis [18], Canacomyrica 
monticola [19], and Thuja sutchuenensis [20].

Actinidia arguta (Sieb. And Zucc), which belongs 
to the Actinidiaceae family and the genus Actinidia, 
is a perennial deciduous vine [21]. A. arguta is one 
of kiwifruit’s widespread cultivars in China and is 
suitable for growing in cool, moist and fertile soil. It is 
an ideal healthcare fruit because it is rich in nutritious 
and healthy functional ingredients, and its fruits, seeds 
and roots can be used as medicine [22-23]. Hou’s 
experimental results indicate that AASP extracted 

from A. arguta can stimulate significantly the immune 
functions in mice, and thus can be used as an effective 
immunological regulator [24]. Liu’s study confirmed 
that alkaloids extracted from A. arguta serve as a 
novel anti-fatigue and exercise performance agent with 
physiological benefits [25].

At present, the research on A. arguta mainly focuses 
on genetic breeding, cultivation techniques, composition 
analysis, health care, storage and processing, etc., but 
the research on its geographical distribution pattern has 
not been reported [26-272829]. Therefore, for the first 
time, MaxEnt was used to predict the potential natural 
distribution of A. arguta to reveal habitat needs and to 
identify suitable growing areas. The results can provide 
a scientific basis for the rational introduction and 
cultivation of A. arguta in the future.

Materials and Methods

Species Data

To obtain the occurrence records of A. arguta in the 
world, we accessed the Global Biodiversity Information 
Facility (GBIF, https://www.gbif.org/) and consulted the 
literature [21, 30-313233]. According to Zhou’s method 
of filtering the distribution records, we used Google 
Earth to proofread the latitude and longitude [34]. In 
strict accordance with the requirements of MaxEnt, 
duplicate records, fuzzy records and neighboring records 
were removed. Finally, 785 valid records were retained 
for constructing the models (Fig. 1). Occurrence records 
were processed in Microsoft Excel and saved in CSV 
format.  

Environmental Variables

Plant growth is restricted by a variety of 
environmental factors, and climate factors are the main 
factors for determining the large-scale distribution of 
plants [35-36]. In this study, to analyze the climatic 
suitability regionalization of A. arguta in China, we 
chose climatic factors and altitude factors as initial 
environmental variables. Climate variables, including 
month-average meteorological data and bioclimatic data, 
as well as altitude data (Table S1), were downloaded 
from the official website of Worldclim. There may be 
multiple collinearity between environmental variables, 
which affect the model’s evaluation of response 
relationships and contribution rates, which in turn 
affect the accuracy of the simulation. Therefore, in 
this study importance analyses and multi-collinearity 
tests were used to screen key environmental variables 
based on Worthington’s method [37]. The impact of 
various environmental factors on the distribution should 
be considered as comprehensively as possible, and the 
most relevant variable factors should be selected for 
prediction and evaluation. Finally, 6 environmental 
factors were retained to build the final model, including 
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altitude (Alt), precipitation in July (Prec7), temperature 
seasonality (Bio4), precipitation of the warmest quarter 
(Bio18), mean temperature in March (Tmean3) and 
mean temperature in April (Tmean4). 

Modeling Method and Statistical Analysis

MaxEnt, based on the maximum entropy theory, 
uses species distribution data and environmental  
data to analyze the distribution of species when 
maximum entropy occurs. MaxEnt is an ideal tool for 
studying the geographical distribution of species and has 
unique advantages. For example, Petitpierre et al. [38] 
applied MaxEnt to verify the niche conservativeness of 
invasive organisms, which suggests that MaxEnt is an 
effective tool for this study and is suitable for analyzing 
the relationship between species geographic distribution 
and climate; Elith et al. [15] compared the accuracy  
of 16 niche models, and the results showed that  
MaxEnt had a higher prediction accuracy than other 
models; Zhang et al. [39] used several niche models 
to predict the potential suitable habitats of Pomacea 
canaliculata in China. The results showed that the 
simulation accuracy of MaxEnt was higher than  
GARP, BIOCLIM and DOMAIN. Therefore, MaxEnt  
is selected as a simulation software to predict the 
potential distribution of A. arguta in China and to 
analyze the impact of environmental variables on its 
distribution.

MaxEnt mines the relationship between a set of 
sample locations and the corresponding grid cell of 
climatic layers based on climatological resemblance 
and then assumes the probability of the presence 
of the species in other cells of the study area [40-
41]. MaxEnt software (Version 3.4.1), which is now 
open source and was downloaded from the website 
of the American Museum of Natural History (http://
biodiversityinformat ics.amnh.org /open_source/
maxent/), has excellent predictive performance for 
plants [42].

The specific operational steps of MaxEnt are as 
follows: First, we import the occurrence points of 

Fig. 1. Spatial distribution of occurrence records of A. arguta. 

Code Environmental variables Unit

Bio1  Annual Mean Temperature ºC

Bio2 Mean Diurnal Range (Mean of monthly 
(max temp - min temp) ºC

Bio3 Isothermality (BIO2/BIO7) (* 100) -

Bio4 Temperature Seasonality (standard 
deviation *100) -

Bio5 Max Temperature of Warmest Month ºC

Bio6 Min Temperature of Coldest Month ºC

Bio7 Temperature Annual Range (BIO5-BIO6) ºC

Bio8 Mean Temperature of Wettest Quarter ºC

Bio9 Mean Temperature of Driest Quarter ºC

Bio10 Mean Temperature of Warmest Quarter ºC

Bio11 Mean Temperature of Coldest Quarter ºC

Bio12 Annual Precipitation mm

Bio13 Precipitation of Wettest Month mm

Bio14 Precipitation of Driest Month mm

Bio15  Precipitation Seasonality (Coefficient of 
Variation) mm

Bio16 Precipitation of Wettest Quarter mm

Bio17 Precipitation of Driest Quarter mm

Bio18 Precipitation of Warmest Quarter mm

Bio19 Precipitation of Coldest Quarter mm

Prec1, 
2,..... 12

Precipitation in January, 
February..... December mm

Tmax1, 
2..... 12

Maximum temperature in January, 
February..... December ºC

Tmin1, 
2,..... 12

Minimum temperature in January, 
February..... December ºC

Tmean1, 
2,..... 12

Mean temperature in January, 
February..... December ºC

Alt Altitude m

Table S1. List of environmental variables used for this study, 
with type and measurement unit.
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A. arguta and 67 climatic variables into the MaxEnt 
software to create the initial model, in which ‘random 
test percentage’ was set as 25; ‘make pictures of 
predictions’ and ‘do jackknife to measure variable 
importance’ were all chosen; and the remaining model 
values were set to default values. Then we evaluated the 
percentage contribution and permutation contribution 
of the environmental variables by using the jackknife 
test to select key environmental variables for modeling. 
Finally, the occurrence points and the key environmental 
variables were uploaded to MaxEnt to simulate the 
distribution of A. arguta in China. In the final model, 
‘random seed’ was chosen and 10 replicate models were 
run. We selected the best model with the highest AUC 
value. The remaining model settings were set to the 
same as those of the initial model [43-44].

The file output by the MaxEnt model is in ASCII 
format, and it cannot be visually displayed on the map. 
ArcGIS conversion tools were used to convert the file 
from ASCII to raster format, and the extraction function 
was used to extract the probability distribution map 
of A. arguta in China. We reclassified the distribution 
threshold and divided the suitable area into 4 categories 
and displayed them in different colors according to 
Wang’s method [45]. The specific description is shown 
in Table 1.

The receiver operating characteristic curve (ROC) is 
an effective method for evaluating the accuracy of the 
species distribution model. The method sets the area 
under curve (AUC) as the index to measure accuracy 
[46-47]. The theoretical value range of AUC is 0.5~1, 

and the closer the AUC value is to 1, the higher the 
prediction accuracy of the model. The evaluation 
criteria are: simulation failure (fail), 0.5≤AUC<0.6; poor 
simulation results (poor), 0.6≤AUC<0.7; the simulation 
results are generally (fair), 0.7≤AUC<0.8; the simulation 
results are good (good), 0.8≤AUC<0.9; the simulation 
result is excellent (excellent), 0.9≤AUC<1.

Results and Discussion

Model Performance of the Initial Model

Fig. 2a) shows the ROC curve of the initial model. 
The AUC values of the training data and the test data 
are 0.995 and 0.994, respectively. According to the 
evaluation criteria in 1.3, the accuracy of the initial 
model is “excellent”. 

Selecting Key Environmental Factors

MaxEnt is a mathematical model based on the 
principle of climate similarity to explore the correlation 
between geographical distribution and climatic factors. 
The choice of climatic factors is the key to determining 
the accuracy of the simulation. Therefore, referring to 
the method in the ‘materials and methods’ section, we 
screened the key environmental factors. The results 
showed that the percentage contribution of precipitation 
in July, mean temperature in April, temperature 
seasonality, mean temperature in March, precipitation 
of the warmest quarter and altitude were 29.1%, 25.4%, 
13.5%, 8.6%, 2.8% and 1.5% respectively, and the 
cumulative sum was 80.9%, which was significantly 
higher than the residual climatic factors (Table 2). 
Comparing the permutation importance, the values of 
precipitation in July, temperature seasonality, altitude, 
mean temperature in April, and precipitation of the 
warmest quarter were 24.1%, 16.4%, 10.5%, 9%, 8.7% 
(Table 2), which played a key role in the modeling 
process. 

Table 1. Standards of probability (P) in this research.

Habitat type Standards Colour

Unsuitable area P≤0.05 White

Lowly suitable area 0.05<P≤0.33 Yellow

Moderately suitable area 0.33<P≤0.66 Orange

Most suitable area P>0.66 Red

Fig. 2. ROC curve and AUC value for initial model a) and reconstruction model b). 

a) b)
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The correlation between the 6 environmental factors 
was calculated using Pearson’s correlation to eliminate 
the influence of collinearity on the modeling process. 
If the absolute value of the correlation coefficient 
between the two environmental variables is greater 
than 0.8, there is a strong correlation. It was shown that 
the correlation coefficients among the 6 environmental 
factors were all less than 0.8 and were selected as the 
dominant variables in this study. On this basis, the 
MaxEnt model of the distribution of A. arguta in China 
was reconstructed, and the accuracy of the simulation 
results was evaluated.

In this study, the geographic information data 
of A. arguta were screened by a query database 
and literature search. The occurrence records of 
the missing coordinate information needs to query  
the specific latitude and longitude through Google 
Earth, so it will produce a certain error. In the 
process of selecting environmental variables, the 
author uses Pearson’s correlation coefficient (r) to 
test the multicollinearity between climate variables. 
If the correlation coefficient is high (r>0.8), only one 
variable is selected for model prediction, which reduces  
the error caused by multicollinearity to some extent.  
The extensive application of the MexEnt model in 
ecology illustrates the effectiveness of the model 
algorithm. 

Due to the autocorrelation of the 19 bioclimatic 
variables provided by worldclim, to avoid the 
introduction of redundant information in the simulation 
process and to reduce the accuracy of the simulation, 
the environmental variables need to be effectively 
screened. To improve the accuracy of prediction, this 
study refers to the method of Zhang et al. [48], compares 
the percentage contribution rate of each variable  
to the modeling by using the knife-cut method, uses 
Pearson’s correlation coefficient to eliminate the 
collinearity effect, and, finally, retains six variables for 
modeling.

Model Performance of the Reconstruction 
Model

Fig. 2b) shows the ROC curve of the reconstruction 
model. The results showed that the mean AUC value 
was 0.992, which indicated that the prediction result 
was “excellent” and proves that the model can be  
used to study the potential distribution simulation of 
kiwifruit in China. The above results prove that the 
model can be used to study the potential distribution 
simulation of A. arguta in China.

Potential Distribution of A. arguta in China

Combining the selected 6 environmental variables, 
the MaxEnt model was used to obtain a suitable 
index distribution map of A. arguta in China. ArcGIS 
software was used to superimpose the index distribution 
map on China’s administrative division map to obtain 
the suitability regionalization map of A. arguta (Fig. 3 
and Table 3). 

The results showed that the highly suitable area of 
A. arguta in China can be divided into the following 
parts: the southwest, northeast, central and east regions. 
The southwest region includes central and northeastern 
Sichuan, most of the Guizhou, western Hubei,  
middle eastern Chongqing, southern Shaanxi and 
southeastern Tibet. The area reached 45.5×104 km2 
in this region. Among them, Sichuan has the largest  
area, 14.62×104 km2, and Tibet has the smallest at 
1.38×104 km2. The northeast region includes eastern 
Jilin, eastern and western Liaoning, and sporadic regions 
of Heilongjiang. The area is 12.64×104 km2 in this 
region. The area is 6.54×104 km2, 5.97×104 km2 and 
0.14×104 km2, respectively. The central region of 

Table 2. Percentage contribution and permutation importance of 
the environmental variables to the Maxent model.

Environmental variables Percent 
contribution

Permutation 
importance

Precipitation in July 29.1 24.1

Mean temperature 
in April 25.4 9

Temperature Seasonality 13.5 16.4

Mean Temperature 
in March 8.6 0.3

Precipitation of the Warmest 
Quarter 2.8 8.7

Altitude 1.5 10.5

Total 80.9 69

Fig. 3. Potential suitable distribution of Actinidia arguta in China 
based on the MaxEnt model.
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the highly suitable area includes northeast Hebei, 
southeastern Shanxi, western Henan and southern 
Anhui, with an area of 4.85×104 km2, 4.73×104 km2, 
2.65×104 km2 and 2.29×104 km2, respectively. The eastern 
region includes central Shandong, most of Zhejiang, 
northern Fujian and sporadic regions of Jiangsu, and 
the area is 3.73×104 km2, 3.3×104 km2, 1.84×104 km2 
and 0.05×104 km2, respectively. The total area of 
the highly suitable areas of China is 92.87×104 km2, 
which occupied 9.67% of the national territory area. 
The moderately suitable areas are distributed around 
the most suitable areas, mainly in the Heilongjiang, 
Liaoning, Jilin, Hebei, Shanxi, Henan, Shandong, 
Jiangsu, Sichuan, Chongqing, Guizhou, Guangxi, 
Guangdong, and Fujian provinces. The total area of  
the moderately suitable area is 178.59×104 km2, with 
a wider distribution than that of the most suitable  
area. The total suitable area (the most suitable area  
and the moderately suitable area) is 271.46×104 km2, 
which accounts for 28.22% of China’s total area.

In this study, ArcGIS software was used to visualize 
the calculation results of MaxEnt and to extract the 
suitable distribution area of kiwifruit in China. At 
present, the main producing provinces of A. arguta 
in China are Sichuan, Jilin, Liaoning, and Hubei. 
Although it has been planted in other areas, a scale has 
not yet formed. According to the results of a Maxent 
analysis, Hebei, Shandong, Jiangsu, Anhui, Zhejiang, 
Henan, Hunan, Guizhou, Chongqing, Ningxia, and 

Yunnan also have a large area of A. arguta (P≥33%). 
In these areas, small-scale planting areas can be 
expanded in combination with actual conditions, and 
areas that have not yet been cultivated can be considered 
for introduction and cultivation. Using MaxEnt to 
simulate the geographical distribution of species 
requires data on the occurrence of species. Studies 
have shown that the more species occurrence data,  
the higher the accuracy of the MaxEnt prediction.  
Under the background of global warming, many areas 
that are not suitable or have low suitability are likely 
to become suitable areas for this plant as the climate 
changes.

Environmental Factors Affecting the Existence 
of A. arguta

We used the spatial analyst tools of ArcGIS to 
extract the niche parameters of each suitable area 
and to calculate the ecological range (minimum 
to maximum) and the majority and mean of the 6 
environmental variables (Table 4). The results showed 
that with the increase of suitable grade, the change 
range of each environmental variable showed a unified 
and gradually narrowing trend, and the majority and 
mean of each variable in the moderately suitable area 
and the most suitable area had little difference; that is, 
the concentration trend of the niche parameters was 
basically the same.

Table 3. Suitable area of A. arguta in China.

Region Province
Area (×104km)

Lowly suitable Moderately Suitable Most suitable

Southeast

Sichuan 4.57 20.82 14.62

Guizhou 0.02 4.71 11.23

Hubei 3.79 6.87 6.90

Chongqing 0.01 2.64 6.22

Shaanxi 8.66 4.84 5.09

Tibet 12.15 5.43 1.38

Northeast

Liaoning 0.74 8.38 6.54

Jilin 6.21 8.88 5.97

Heilongjiang 31.94 11.97 0.14

Central

Hebei 6.99 7.80 4.85

Shanxi 3.36 7.86 4.73

Anhui 4.15 6.92 2.29

Henan 1.55 11.93 2.65

East

Shandong 4.57 7.09 3.73

Zhejiang 2.98 3.07 3.30

Fujian 2.50 6.45 1.84

Jiangsu 6.10 3.54 0.05
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Fig. 4 is the response curve drawn by MaxEnt 
between the key environmental variables and the 
probability of presence. In this study, the range of 
environmental variables suitable for the distribution 
of A. arguta was divided by a probability value of 
0.33. The results showed that the suitable range of 
the precipitation in July was 142.3-408.2 mm, and  
the optimum value was 213.2. When the rainfall is  
142.3-213.2 mm, the probability of presence increases 
with the increase of rainfall. While at 213.2-408.2 mm, 
the probability of presence decreases with the increase of 
rainfall. The suitable range of the mean temperature in 
March was -2.1-16.1ºC, and the optimum value was 7.3ºC. 
This finding indicates that when the mean temperature 
in March is -2.1-7.3ºC, the probability of presence of A. 
arguta will increase with increasing temperature. When 
the temperature is higher than 7.3ºC, the probability will 
decrease as the temperature increases. The response 
curves of the 6 key environmental variables were similar 
to that of the normal distribution, but the suitable range 
and the variation range were different (Table 5). Within 
the suitable range, the change of the key environmental 
variables has a certain influence on the probability of 
presence, but outside the suitable range the influence 
decreases gradually. 

The results of the MaxEnt model operation indicated 
that the main environmental factors affecting the 
geographical distribution of A. arguta were precipitation 
of July, mean temperature of April, temperature 
seasonality, mean temperature of March, precipitation of 
the warmest quarter and altitude, in which the percent 
contribution and permutation importance of precipitation 
of July were 29.1% and 24.1%, respectively, and were the 
most important climatic factors. The flowering period of 
A. arguta is from May to July, and the fruiting period is 
from June to August. July is the most vigorous period 
of A. arguta, and it is also the month with the largest 
water demand. This indicates that the precipitation in 
July has a crucial impact on the growth and distribution 
of A. arguta. This study shows that the optimum value 
of precipitation in July is 142.3-408.2 mm, which not 
only satisfies the water requirement of A. arguta but 
also does not cause excessive root water to rot. The 
temperature factors affecting the distribution of A. 
arguta include tmean3, tmean4 and bio4. It is reported 
that when the temperature is above 6ºC in early March, 
the sap of A. arguta begins to flow. In mid-March, when 
the temperature was above 8.5ºC, it begins to germinate. 
The leaf spreading period is from mid-March to early 
April, when the temperature is above 10ºC [49]. In this 

Fig. 4. Response curves of the variables contributing most to the prediction by MaxEnt for A. arguta.

Table 4. Statistical analysis of the niche parameters in different suitable classes of A. arguta.

Variables
Marginally suitable Moderately suitable Most suitable

Range Majority Mean Range Majority Mean Range Majority Mean

Prec7 73-999 139 173 80-908 158 191 78-678 200 207

Bio4 25-168 85 97 40-161 95 90 42-147 75 85

Bio18 182-2624 482 469 235-2426 523 515 271-1824 516 547

Tmean3 -11-25.7 -1.5 5.4 -10.7-
22.9 10.5 7.4 -10.3-

20.4 12.9 8.2

Tmean4 -2-28.6 18.6 12.7 -6.8-25.8 16.9 13.9 -5.4-23.7 16.8 14

Alt -2-6338 0 965 0-6019 40 889 0-5352 538 960

Prec7: Precipitation in July; Bio4: Temperature Seasonality; Bio18: Precipitation of the Warmest Quarter; Tmean3: Mean  
Temperature in March; Tmean4: Mean temperature in April; Alt: Altitude.
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paper, the suitable range of tmean3 and tmean4 are  
-2.11-16.1ºC and 6.5-19.1ºC, respectively, and the 
optimum values are 7.3ºC and 15.3ºC, respectively, 
which are in good agreement with the above results. The 
temperature seasonality is an important environmental 
factor affecting the distribution of A. arguta, which 
reflects the average temperature and its variation 
range, and its percentage contribution and permutation 
importance are 13.5% and 16.4%, respectively. The niche 
parameter analysis showed that the majority and the 
average of bio4 gradually decreased with the increase 
of the suitable grade, and the range of the most suitable 
area was narrower than that of the moderately suitable 
area, which indicated that the seasonal variation of the 
average temperature of the most suitable area was not 
significant. The southwestern region is one of the main 
distribution areas of A. arguta in China. The climate of 
this region is controlled and influenced by the southwest 
monsoon, the westerly circulation and the Tibetan High. 
Its main features are low heat, small annual temperature 
differences and a large daily temperature difference, 
which is in line with the characteristics of A. arguta, 
which is cool and resistant to yin and good moisture 
[50].

Conclusions

Studies have shown that the more comprehensive 
the species distribution data, the higher the accuracy 
of the model simulation when using the niche model to 
simulate the geographical distribution of species. In this 
study, the occurrence data of A. arguta mainly comes 
from specimens, the literature and cvh, and the number 
is much lower than the actual quantity. Therefore, 
the results of this study have certain limitations and 
shortcomings. First, the field survey is conducted only 
in Sichuan Province, although it is relatively systematic, 
but due to the limitations of the scope of the survey, the 
work is not comprehensive and accurate. Among the 
distribution points obtained by retrieving the CVH and 
consulting the literature, the distribution points without 
clear latitude and longitude need to determine the 
relevant information through the coordinate positioning 
software, so there is inevitably a certain geographic 
error. 

The environmental variables used in this study are 
from the World Climate Database, which is the average 
of data from 1950 to 2000. Studies have shown that in 
the past 20 years, with increasing global warming, the 
growth and distribution patterns of the species have 
changed significantly [51]. The lack of climate data in 
the past 20 years may lead to a deviation from the actual 
situation. Therefore, to ensure more reliable prediction 
results, more comprehensive and accurate distribution 
data of kiwifruit should be used, and the corresponding 
missing climate data should be supplemented in the 
next step. The basic niche refers to the largest niche 
that is occupied by a species under the most ideal living 
conditions. The niche model only analyzes the influence 
of abiotic factors on species distribution, so it can be 
inferred that the niche predicted by the model is wider 
than the actual niche occupied by kiwifruit. The results 
show that the growth of kiwifruit is not only affected 
by climate but is also closely related to topographic 
characteristics, soil types, soil physical and chemical 
properties, and kiwifruit cultivation density. In the next 
step, consideration of the interaction between species 
and other biological factors expressed would improve 
the prediction effect of the model.

Based on MaxEnt software and certain 
environmental data, this paper predicts the geographical 
distribution of A. arguta in China and aims to provide a 
scientific reference for the introduction and cultivation 
of A. arguta. However, there are many factors that 
affect the distribution of plants, and each model has its 
advantages and disadvantages. Therefore, in the specific 
operation of expanding the introduction to consider 
factors such as the economy and the planting land, it is 
necessary to carry out trial planting before large-scale 
introduction.
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