
Introduction

Energy is a basic guarantee for human activity and 
social development. Human activities consume fossil 
fuel energy and generate a large amount of greenhouse 
gases, such as carbon dioxide, that absorb surface 
radiation, resulting in a global greenhouse effect. 
According to global energy and CO2 status report, 

global energy-related CO2 emissions rose by 1.4% 
in 2017, leading to the global warming phenomenon 
becoming more and more serious. The current global 
average temperature increased by nearly 1ºC above  
pre-industrial levels. Continued rising temperatures 
will not only lead to sea level rise and extreme weather, 
but also lead to a decline of crop yields, hindering the 
economic development of countries. The IPCC report 
on global warming highlighted the goals set out in the 
Paris Agreement, that the global ground and ocean 
surface average temperature must rise to within 1.5ºC. 
Under the severe background of the US withdrawal 
from the Paris Agreement, the agreed countries must 
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control energy consumption in order to reduce carbon 
emissions on a large scale.

However, the growth rate of energy demand has 
increased while the world primary energy reserves are 
decreasing. In 2017, global primary energy consumption 
was raised by 2.2%, mainly due to the increase in 
natural gas consumption. China is a major energy 
consumer mainly relying on coal [1]. The growth rate 
of energy consumption in China has ranked first in the 
world since 2010. Although coal consumption in China 
has declined slightly in recent years, it also accounts 
for a larger proportion. In 2017, coal accounted for 
60.4% of primary energy consumption, decreasing 
slightly from 2016, which was still at a high level in 
the world. The use of fossil fuels has brought PM2.5 
and ozone pollution, which has become a major threat 
to human life. Therefore, it is urgent to control energy 
consumption from the source. China is currently in a 
period of steady economic development with a medium-
high level economic growth rate. However, energy 
efficiency in China is still at a low level and total energy 
consumption will continue to increase. How to control 
the speed of energy growth and reduce the dependence 
on energy consumption while growing economically is 
worth studying.

Energy intensity is an important indicator for 
evaluating energy efficiency in regional economic 
development, which can reflect regional energy 
conservation levels. China attaches great importance to 
the level of energy utilization and proposes to cut 15% 
energy intensity by 2020. Many researchers have proven 
that due to resource endowments, economic levels and 
energy use levels are inconsistent in different provinces 
of China, and energy intensity varies greatly from 
region to region [2]. The economic development of oil- 
and coal-rich areas in the central and western regions 
is not fast, and they are more dependent on energy 
consumption. On the contrary, economic development 
is faster in eastern regions with less of an energy 
supply. Consequently, the energy intensity in western 
regions is higher than that in the eastern region [3]. 
As the interaction between China’s provinces becomes 
more frequent, the heterogeneity and spatial interaction 
between provinces must be considered when analyzing 
the method to reduce energy intensity. In recent years, 
energy intensity has declined in China, but some 
provinces have failed to meet energy-saving targets. 
At the end of the 13th Five-Year Plan, finding out the 
influencing factors of energy intensity and studying the 
differences of influencing factors in various provinces 
will help to improve national energy efficiency while 
reducing the gap in energy utilization.

Analyzing the factors affecting energy intensity is 
necessary for the formulation and implementation of 
energy-saving policies. Researchers have systematically 
studied the influencing factors of energy intensity 
by different models, such as input-output, LMDI, 
STIRPAT and so on [4-5]. The input-output model 
seems to be popular in the industrial field. Li et al. 

proved that industrial transfer between cities played a 
critical role in energy intensity reduction by developing 
a multi-regional input-output model [6]. Lam et al. 
performed an environmentally extended input-output 
model for energy intensity of industry sectors analysis 
in Australia from 2006 to 2015 [7]. The spatial panel 
econometric model is a common method in energy 
intensity research recently. Zhang et al. confirmed the 
need to decompose energy intensity targets based on 
panel data from 30 Chinese provinces using three types 
of convergence model [8]. Zhang identified the causal 
relationship between energy intensity targets and wind 
energy generation capacities based on panel data of 
Chinese provinces from 2001 to 2014. The findings 
showed that the mandatory energy intensity targets 
are notably useful [9]. Nahla used panel autoregressive 
distributed lag approaches affirming that trade openness 
plays a key role in diminishing energy intensity [10].

As for results of these models, economic activity 
is considered to affect energy intensity generally. 
Scholars have approved of population as a great factor, 
including population size and urbanization rate, and 
energy use will increase with higher population size 
and urbanization rate. Yang et al. identified the total 
population as the most important factor affecting the 
energy intensity through the Pareto optimal model [11]. 
Economics has also been proven to be an important 
factor. Dong et al. found that economic structure 
and urbanization rate are the deterministic factors 
increasing energy intensity [12]. Soni et al. found that 
labor intensity has a positive impact on energy intensity 
– especially on low-energy intensity groups [13]. 
Petrović considered that energy intensity relating to the 
positive influence of industrial gross value be added 
[14]. Tan et al. found technology improvement effect is 
the most significant factor [15]. 

Many researchers have analyzed the impact of 
foreign investment and technology, and believe that 
foreign investment may improve technology, but its 
spillover effect will inhibit the reduction of energy 
intensity. Bu et al. [16], Jiang et al. [17] and Zhao [18] 
proved that foreign direct investment is an effective 
means to reduce energy intensity. But Huang et al. [19], 
Chen et al. [20] and other researchers have indicated 
that indigenous innovations play a more important 
effect on energy intensity than foreign innovations 
[21]. Price confirms the effect of energy in previous 
studies. Amin Karimu et al. found that input prices 
were significant determinants of energy intensity [22], 
while Verbič regarded electricity prices as a potential 
energy policy tool for reducing energy intensity [23]. 
Besides, some researchers have studied the effects of 
energy intensity on other aspects. Guo et al. reveals 
that optimizing energy structure may be the best way 
to reduce energy intensity in the short run [24]. Nielsen 
presented that the efficiency in expanding the electricity 
system accounted for energy intensity [25].

However, few studies consider the heterogeneity 
between provinces. The realistic influence of factors 
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is skewed due to the complexity and variability of 
socioeconomic development. Lin and Chen applied 
profit function into the input-output system using 
China’s provincial data. The results indicate that 
economic infrastructure construction will reduce the 
energy intensity in the long term [26]. Guang et al. 
estimated a penalized panel quantile regression model 
that accounts for the different influences of economic 
growth, urbanization, foreign direct investment, energy 
structure, and industrialization across the regions of 
China [27]. But most researchers did not consider the 
impact of geographic heterogeneity on models. The 
geographically weighted regression (GWR) model 
embeds spatial location into the regression parameter 
and reflects the spatial non-stationary nature of the 
parameters in different regions, which promotes the 
relationships among the variables able to change with 
their spatial positions [28-29]. The GWR model was 
recently used in a study of air quality and carbon 
dioxide but less for energy intensity. Taking the impact 
of geographic heterogeneity into consideration, this 
paper use GWR to analyze the different influences of 
various factors in energy intensity. 

This paper intends to analyze the influencing 
factors of energy intensity by the spatial Durbin model, 
which takes the influence of geographical lag into 
consideration, with a panel data of China‘s 30 provinces 
during the period 1995 to 2017. Then it uses the GWR 
model to find the differences of influencing factors in 
each province. This paper is composed of five sections, 
with the remaining sections as follows: Section 2 
relates the econometric model establishment and the 
data description, Section 3 presents the estimation 
results, Section 4 implements an in-depth discussion 
on the spatial Durbin results and GWR results, and 
Conclusions and policy suggestions are placed in 
Section 5.

Experimental  

Spatial autocorrelation test

Spatial correlation is the interaction between 
research subjects in different geographical regions as 
determined by the space geographical relationship, 
rather than due to time or other external forces. The 
spatial autocorrelation test is a necessary step before 
spatial measurement analysis. Eq. (1) shows the 
calculation formula of Moran’s I index that correlates 
the similarity of the values of a region‘s neighboring 
spaces to study global spatial correlation [30]:

             (1)

...where xi and xj represent the observed energy intensity 
values of provinces i and j respectively, n is the number 
of research objects and Wij represents the spatial weight 
matrix. Moran‘s I index is generally between -1 and 
1, and a value greater than 0 indicates that there is an 
accumulation in the region.

The weight matrix is used for measuring the 
spatial location geographic relationship. The farther 
the geographical distance, the smaller the interaction 
relationship will be; the inverse distance matrix takes 
the reciprocal of the exponential power of the distance 
between two regions as the matrix element, and is 
expressed as Eq. (2):

               (2)

…where d is the distance between two provinces and α 
is the set power exponent. 

Considering the relationship between objects in 
different regions and surrounding adjacent regions, 
local spatial autocorrelation can reflect not only the 
correlation between a certain area and the surrounding 
area, but also the heterogeneity of the entire space 
research object. Moran scatter plots and LISA are 
commonly used for local spatial autocorrelation 
analysis. The model results divide the provinces 
into four spatial correlations: HH, LH, LL and HL, 
indicating the results of different high- and low-value 
aggregations respectively.

Spatial Durbin Model

According to previous literature on energy intensity, 
factors such as economic level, social development, 
energy utilization, industrial development, technological 
progress and market opening have direct or indirect 
effects on the change of energy intensity. Different 
indicators change energy intensity by influencing total 
energy consumption or gross national product. In order 
to further analyze the influence of energy intensity on 
the different provinces, this paper is intended to choose 
the factors that have a greater impact and can be well 
controlled. Finally, 6 influential factors were selected as 
explanatory variables in the model. 

Firstly, as a low calorific value energy, the use of 
coal has greatly increased energy consumption, and the 
proportion of coal consumption should be considered. 
Industrial structure is an important factor affecting 
coal consumption – especially energy- and carbon-
intensive enterprises according to China‘s authentic 
situation [31]. This paper takes secondary industry 
proportion into models. China is currently at the stage 
of rapid urbanization that not only leads to rapid 
expansion of urban population, but also results in the 
significant demand of energy use [32]. Urbanization rate 
is an important factor affecting energy intensity. The 
extension of freeways and new energy vehicles has also 
effectively reduced the proportion of oil consumption, 
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thus the factor of civil vehicles is put in. Finally, 
technology and openness have different conclusions 
in previous studies, which are related to the actual 
conditions of different regions [33]. Therefore, the 
influencing factors like R&D expenditure and foreign 
direct investment should be adopted in the model. 

Consequently, a non-spatial panel data model (OLS) 
is established as Eq. (3):

 (3)

…where lnEI, lnCV, lnCR, lnRD, lnUR, lnFDI and 
lnIS represent possession of energy intensity, civil 
vehicles, proportion of coal consumption, R&D 
expenditure, urbanization rate, foreign direct investment 
and secondary industry proportion respectively. βk is 
the coefficient of the k-th influence factor, μi and ηt 
represent spatial and temporal effects, and εit stands for 
error term.

As the spatial heterogeneity and spatial correlations 
exist, energy intensity of a certain region is affected 
not only by the local environmental condition, but also 
by its neighboring region. The results coefficients of 
classical non-spatial panel assumptions will be biased 
and inconsistent. Therefore, the spatial econometric 
model is established to obtain accurate regression 
results. The inter-regional relationships are introduced 
into the spatial econometric model, which is mainly 
divided into the spatial cross-section model and the 
spatial panel model [33]. The spatial econometric model 
sets the location of the space item according to different 
variables of spatial correlation including the explained 
variables, error terms and explanatory variables, 
which are applied as spatial lag model (SLM), spatial 
error model (SEM) and spatial Dubin model (SDM) 
respectively. 

The spatial Durbin model considers the endogenous 
and exogenous correlation between interpreted variables 
as well as explanatory variables into the model. 
Therefore, this paper conducted the SDM to examine 
the influence factors of energy intensity and its spillover 
effects. The model with 6 influence factors and the lag 
term of them can be expressed as Eq. (4).

  (4)

…where ρ denotes the spatial autocorrelation coefficient, 
β is the spatial regressive coefficients, γ represent the 
spillover effects of variables, WlnEI is the spatial lag 
terms of energy intensity, WlnEI, WlnCV, WlnCR, 
WlnRD, WlnUR, WlnFDI and WlnIS respectively stand 
for the spatial lag terms of six independent variables, 

μi and ηt represent spatial and temporal effects, and εit 
stands for error term.

Geographically Weighted Regression Model

The influence of different types of time effects 
and spatial effects on regional observation objects is 
considered in the spatial Durbin model, but the final 
results represent the average of the whole region, which 
ignored the inconsistency of the explanatory variables 
in different regions. Introducing the concept of variable 
parameters into the GWR model which effectively 
incorporates the heterogeneity of non-stationary space 
into the study, the variation of parameter estimates in 
different regions is analyzed from the local point of 
view to reflect the characteristics of the actual spatial 
distribution.

Taking the regional geographic location information 
and 6 selected influencing factors into the GWR model, 
the model can be expressed as Eq. (5).

 (5)

…where (ui,vi) stands for the latitude and longitude 
position of the i-th province, β0 is an intercept term, 
βk(ui,vi) is a function of location (ui,vi) that indicates the 
parameter vector of k-th factor in i-th province to be 
estimated, and εit is a random error term.

The coefficients β were estimated by the weighted 
least squares method as Eq. (6).

                  (6)

…where βi represents estimate vector of region 
regression coefficient, and Wi is the diagonal matrix of 
spatial weight function between the i-th region and the 
remaining regions

The spatial weight function W, also known as 
the kernel function, is an important part of the 
geographically weighted regression model [35]. 
Considering that the spatial relationship decreases with 
increasing distance, this paper uses the Gaussian spatial 
weight function to optimize the fitting effect. Gaussian 
function takes the distance as a negative exponential 
power so that the weight will not become maximal 
when the distance is close. The formula is shown as Eq. 
(7):

                      (7)

…where dij is the Euclidean distance between regions, h 
is the bandwidth, the larger h is, the slower the weight 
function value changes.

In order to accurately reflect the spatial non-
stationarity of the region, an optimal bandwidth can be 
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determined by AIC method, which avoids over-fitting 
and reducing the complexity of the model. 

Results and Discussions

Spatial Relationship Analysis

Spatial Heterogeneity

Energy intensity of different provinces varies 
greatly. From the average data, Ningxia is the region 
with the highest energy intensity, reaching 4.41 tons of 
standard coal per 10,000 yuan in 1995-2017, which is 
2.88 times of the national average energy intensity. The 
region with the lowest energy intensity is Fujian, and its 
average energy intensity is 0.83 tons of standard coal 
per 10,000 yuan. 

As shown in Fig. 1, provinces are divided into four 
grades according to their energy intensity, which is 
generally high in the northwest and low in the southeast. 
Energy intensity of all provinces showed a decreasing 
trend, while the change of the energy intensity grades 
in provinces was different. In the period of 1995-2002, 
energy intensity grades for Xinjiang, Yunnan, and 
Hubei became higher, while Hunan and Chongqing 
became lower. Hebei and Guangxi had higher energy 
intensity grades, while Shanghai, Gansu, and Beijing 
were lower between 2002 and 2010. Energy intensity 
grades of Henan and Hainan became higher from 2010 
to 2017.

Spatial Autocorrelation

The energy intensity of China‘s provinces is 
affected by the nearby provinces, resulting in a certain 
aggregation effect. The results of Moran index from 
1995 to 2017 was calculated respectively to analyze 
global autocorrelation. As shown in Table 1, the value of 
Moran‘s I is greater than 0, and the P value is less than 
0.05 in most years, indicating that China has passed 
the global autocorrelation significance test and the 
aggregation of energy intensity in China is significant. 
In recent years, the index is higher and more significant 
than before, which means that the autocorrelation effect 
is enhanced.

Carrying out local autocorrelation tests on the 
energy intensity of various provinces, and the Molan 
scatter plots in 1995, 2002, 2010 and 2017 were plotted 
respectively. As shown in Fig. 2, the distribution of 
most provinces in each year tends to be in the first 
and third quadrants, and the slope of the trend line 
is positive. Therefore, the energy intensity of each 
province passes the local autocorrelation test, which 
indicates that there is an aggregation phenomenon 
among the energy intensity of provinces. The number 
of provinces with high energy intensity aggregation and 
low value aggregation was similar at the first year in 
this research. But over time, the number of low-value 
aggregation provinces became larger, while the number 
of high-value clusters was greatly reduced. This shows 
that the high-value aggregation effect is weakened, and 
some provinces in high-energy intensity areas change 
to low-energy intensity regions. 

Fig. 1. Spatial distribution map of energy intensity in each province.
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Fig. 2. Moran scatter plot.

Table 1. Moran index of China from 1995 to 2017.

Year Moran’s I p sd Z-value Year Moran’s I p sd Z-value

1995 0.1322 0.025 0.0720 2.3273 2007 0.1100 0.051 0.0756 1.9032

1996 0.1413 0.031 0.0772 2.2887 2008 0.1196 0.041 0.0762 2.0132

1997 0.1277 0.037 0.0763 2.1420 2009 0.1378 0.026 0.0764 2.2422

1998 0.0783 0.068 0.0759 1.4984 2010 0.1386 0.033 0.0765 2.2518

1999 0.0949 0.060 0.0775 1.6770 2011 0.1326 0.030 0.0752 2.2083

2000 0.1155 0.052 0.0783 1.9147 2012 0.1399 0.027 0.0754 2.2962

2001 0.1089 0.060 0.0777 1.8454 2013 0.1506 0.014 0.0755 2.5589

2002 0.1044 0.064 0.0770 1.8084 2014 0.1587 0.016 0.0756 2.5307

2003 0.0988 0.065 0.0758 1.7555 2015 0.1696 0.015 0.0749 2.7008

2004 0.1025 0.058 0.0747 1.8283 2016 0.1557 0.018 0.0750 2.5169

2005 0.1112 0.050 0.0748 1.9416 2017 0.1490 0.015 0.0728 2.5060

2006 0.1029 0.058 0.0750 1.8272
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The Lisa aggregation map of the energy intensity of 
each province in 1995, 2002, 2010, and 2017 respectively 
are shown in Fig. 3, in order to show the locations of the 
aggregation phenomenon. At the level of significance of 
0.1, several provinces pass the correlation test, and the 
aggregation areas of one to four quadrants are basically 
distributed from northwest to southeast.

Xinjiang and Gansu have always been the high-
high energy intensity zones, forming the high-value 
aggregates in northwest China, but Ningxia and 
Neimenggu have not shown obvious aggregation except 
in 1995. Energy intensity in Sichuan has been shown 
as the low-high aggregation since 2002, and its energy 
intensity level is relatively low in southwest China. 
Guizhou has always been a high-low energy intensity 
zone, as it is located at the junction of the southeast 
low-intensity zones and the west high-intensity zones. 
The coastal areas have always been the low-low energy 
intensity zones, forming a southeast low-value cluster, 
and the scope has been expanded.

Results of the Spatial Dubin Model

The estimation results of the panel OLS model 
are shown in Table 2. The results of the residual LM 
test show that the error term and lag term pass the 
significance test, as their P value are less than 0.05. 
Ward test and LR test results in Table 3 reject the 
original hypothesis at the 1% level, which indicate that 
the transformation from the spatial panel Durbin model 

to the spatial autocorrelation model or spatial lag model 
is not needed. Therefore, the spatial panel Doberman 
model can be used.

According to the results of the Hausman test, chi-
square statistic is 71.9291, and p value is less than 0.01, 

Fig. 3. Lisa aggregation map.

Variable Coefficient t-statistic p-value

Intercept -2.840422 -10.205039 0.000000

LnCV 0.069575 2.984685 0.002940

LnCR 0.129924 5.443477 0.000000

LnRD -0.103713 -5.347702 0.000000

LnUR 0.155588 3.816708 0.000148

LnFDI -0.206649 -19.414952 0.000000

LnIS 0.729935 11.819401 0.000000

R2 0.6967

Adj-R2 0.6940

Log-likelihood 140.9382

LM test no spatial lag 99.7088, P = 0.000

Robust LM test no spatial lag 142.9944, P = 0.000

LM test no spatial error 15.7041, P = 0.000

Robust LM test no spatial error 58.9896, P = 0.000

Table 2. Estimation results of the OLS model.
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so the fixed effect is more appropriate. Estimating  
4 types of model including the random effect model, 
the spatial fixed effect model, the time fixed effect 
model, and the spatiotemporal dual fixed effect model, 
the results are shown in Table 4. Other spatial weight 
matrices are considered to test the robustness of the 
estimation results in order to avoid the arbitrariness of 
the impact of the spatial weight matrix choice on the 
SDM estimation results. The estimation results based 
on the four spatial weight matrices are consistent, 
which shows that the model estimation results have 
strong robustness. The spatiotemporal dual fixed effect 
model has the largest R2 and log-likelihood values, but 
the adjustment R2 is smaller. The spatial fixed effect 
model selected as the adjustment R2 is the largest, and 
the log-likelihood value is not much different from the 
spatiotemporal dual fixed effect model.

Different from the results in OLS estimation  
is that all the influencing factors passed the 1% 
significance level test, and the coefficient of civil 
vehicles failure passed the significance test in the 
spatial panel Dubin model. The coefficient of foreign 
direct investment is negative in both models, restraining  
local energy intensity. The proportion of coal 
consumption, urbanization rate and secondary 
industry proportion have a positive coefficient, which  
promotes the local energy intensity. The estimated 
coefficient of R&D expenditure is negative in the OLS 
model, while it becomes positive in the spatial panel 
Dubin model.

The lag coefficient of energy intensity is positive 
through the 1% level significance test, which shows that 
energy intensity in the surrounding area has a positive 
effect on the local region. R&D expenditure has a 
negative lag coefficient, indicating that the surrounding 
R&D expenditure is the disincentive to local energy 
intensity. Civil vehicles, urbanization rate and secondary 
industry proportion in the surrounding areas have 
contributed to the energy intensity of the local region, 
as the lag coefficients of these factors are positive. The 
lag coefficients of coal consumption proportion and 
foreign direct investment were not significant.

Considering the feedback effect of the energy 
intensity lag term in the spatial panel Dubin model, 

Table 3. Results of ward test and LR test.

Test Statistic p-value

Wald_spatial_lag 155.6516 0.000

Wald_spatial_error 107.7777 0.000

LR_spatial_lag 190.6135 0.000

LR_spatial_error 166.8543 0.000

Table 4. Fixed effect selection and estimation results of spatial Durbin model.

Variable Coefficient t-statistic p-value W2 W3 W4

LnCV 0.026038 0.935332 0.349617 0.054470 0.012512 0.010491

LnCR 0.043027 3.889932 0.000100 0.044227 0.058351 0.056217

LnRD 0.065789 3.650728 0.000261 0.022994 0.043749 0.063759

LnUR 0.121683 3.108087 0.001883 0.105013 0.147691 0.130604

LnFDI -0.031690 -3.681137 0.000232 -0.01480 -0.02355 -0.03196

LnIS 0.300241 6.451869 0.000000 0.313390 0.254131 0.245483

W*LnCV 0.199485 3.490955 0.000481 0.022827 0.103903 0.006157

W*LnCR -0.081175 -1.340503 0.180082 -0.04031 -0.03180 -0.008628

W*LnRD -0.422442 -8.221621 0.000000 -0.15045 -0.15635 -0.168242

W*LnUR 0.351178 2.798591 0.005133 0.016906 0.102838 0.096679

W*LnFDI -0.035159 -0.855186 0.392448 -0.11351 -0.05758 -0.029069

W*LnIS 1.027140 5.893847 0.000000 0.561836 0.286806 0.503787

W*LnEI 0.304976 3.733706 0.000189 0.359999 0.239992 0.320996

Model type R2 Adj-R2 loglikelihood

Random effect 0.7390 0.7385 -89.13373

Spatial fixed effect 0.9581 0.8392 539.8541

Time fixed effect 0.7862 0.7190 -30.75541

Spatiotemporal dual fixed effect 0.9638 0.3401 586.03371

Note: W2, W3, W4 represent for the estimated results under the 0-1 matrix, the economic distance matrix, 
and the economic-geographic distance matrix respectively.
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the model is decomposed into the direct effect and the 
indirect effect. The results are shown in Table 5. 

Results of the GWR Model and Classification 
of Provinces

The data of 1995, 2002, 2010 and 2017 were 
selected to analyze the difference of influence factors 
of each province. Results of OLS estimation in each 
year show that the VIF of each factor is less than 
8, but the regression model established by ordinary 
panels will have spatial non-stationarity. Therefore, 
the geographically weighted regression estimation can 
be carried out due to the low degree collinearity of 
each factor. The overall estimation of each factor and 
difference test results are shown in Table 6. Through 
the results of t-test, most of coefficients have passed 
the significance test. The standard values are basically 
negative except for coefficient of foreign direct 
investment in 1995 and 2002, indicating that there is a 
large difference in factors among provinces. 

It can be seen from the mean of each coefficient that 
the influence direction of each factor is similar to the 
result of spatial panel regression in general. But in 1995 
and 2002, the influence direction of R&D expenditure 
and civil vehicles are opposite between maximum 
values and minimum values, which indicates that the 
positive and negative effects of the factor on various 
regions are different. Taking the coefficient estimation 

results of each influencing factor for different regions 
into the spatial distribution map, the results are shown 
in Fig. 4.

Fig. 4.1 shows that the influence coefficient of 
civil vehicles on the energy intensity of each region 
has not changed much in the four years of study. 
The coefficients are between 0.1 and 0.4, and the gap 
between coefficients first increases and then decreases. 
The impact is basically positive, except that Xinjiang 
has a negative coefficient in 2002, the absolute value 
of which is so small that can be ignored. As is shown 
in Fig. 4.2, the impact of coal consumption proportion 
on the energy intensity of each region is positive with 
a decreasing trend. The coefficients in 1995 are above 
0.7, which was the main reason for the change in energy 
intensity. By 2017, coefficients of coal consumption 
proportion had basically reached below 0.2. From Fig. 
4.3, the negative impact of R&D expenditure on energy 
intensity in various regions has gradually increased 
over the four years of the study. The results indicate 
that increasing the R&D expenditure can effectively 
reduce energy intensity. Fig. 4.4 shows that the impact 
of urbanization rate on energy intensity is positive, 
and the coefficients of each region raise rapidly during 
the four years studied. The gap between provinces is 
also increasing. It can be seen from Figs. 4-5 that the 
impact of foreign direct investment on energy intensity 
is negative, and the coefficients tend to decrease during 
the four years of research. Except for the smaller 

Table 5. Decomposition results of spatial Durbin model.

Variable Coefficient t-statistic p-value

Direct effect

LnCV 0.030441 1.140974 0.262907

LnCR 0.041168 3.653665 0.000980

LnRD 0.058036 3.364581 0.002111

LnUR 0.129380 3.378254 0.002037

LnFDI -0.032348 -3.760698 0.000734

LnIS 0.322330 7.204822 0.000000

Indirect effect

LnCV 0.298573                          3.418930 0.001830

LnCR -0.092995 -1.033331 0.309708

LnRD -0.576704 -7.433454 0.000000

LnUR 0.560442 2.878600 0.007297

LnFDI -0.062818 -1.034236 0.309292

LnIS 1.593352 6.786888 0.000000

Total effect

LnCV 0.329014 3.740903 0.000774

LnCR -0.051827 -0.555451 0.582705

LnRD -0.518667 -6.815951 0.000000

LnUR 0.689822 3.550271 0.001292

LnFDI -0.095167 -1.506176 0.142480

LnIS 1.915683 8.030322 0.000000
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influence of the northwest and northeast regions, the 
impacts of other regions are similar. As shown in Fig. 
4.6, the impact of the of secondary industry proportion 
on energy intensity has been positive and significant, 
and the coefficients show a trend of first increasing and 
then decreasing in the four years of study.

According to the size of the influencing factors 
estimated by the GWR model, 30 provinces was 
classified in order to proposes specific suggestions for 
reducing energy intensity in various provinces. Taking 
the change of influence level in each year into account, 
the average impact level of different factors in the 
research year was analyzed. The provinces are ranked 
and divided into three levels: high, medium and low, 
considering the impact level of each factor. As shown 
in Fig. 5, 30 provinces were clustered according to the 
level of different influencing factors and finally divided 
into 7 categories. 

The first category consists of six provinces, including 
Shanghai, Zhejiang, Fujian, Jiangsu, Guangdong, and 
Anhui, of which the coal consumption proportion is 
affected greatly. The urbanization rate was the key 
factor on the second category consisting of Neimenggu, 
Hebei, and Shanxi. The third category consists of five 
provinces, including Hubei, Hunan, Guangxi, Hainan 
and Jiangxi, and foreign direct investment has greater 
impact. The fourth category was Guizhou, Shaanxi, 
Sichuan, Yunnan and Chongqing. The influence of 
secondary industries proportion in these provinces is 

relatively large. The secondary industries proportion 
as well as R&D expenditure has a large impact on the 
fifth category, including Xinjiang, Gansu, Ningxia and 
Qinghai. Civil vehicles of both the sixth and the seventh 
categories have a large influence on energy intensity. In 
addition, R&D expenditure also plays an important role 
in the seventh category, including Heilongjiang, Beijing, 
and Jilin.

Discussion

Analysis of Spatial Dubin Model Effect 
Decomposition

The decomposition results of direct and indirect 
effects reflect the local and surrounding effects of 
factors. Civil vehicles have a positive effect on the energy 
intensity of both the local region and surrounding area. 
The indirect effects passed the significance test with 
the spillover influence coefficient at 0.298573, but the 
direct effects impact is not obvious. The total effect of 
civil vehicles is positive, indicating that the increase in 
civil vehicles will increase the energy consumption and 
energy intensity, which proves the previous study that 
vehicles may be a key factor leading to corresponding 
energy consumption. Meanwhile, the increase of civil 
vehicles means the rise of resident consumption pulling 
up the local GDP, which makes insignificant effects and 
less range increase in energy intensity [36]. The GDP 

Year Statistic Intercept LNCV LNCR LNRD LNUR LNFDI LNIS Fit index

1995

Mean -4.575 0.268 0.750 -0.027 0.352 -0.321 0.198 R2 0.904

Min -4.971 0.182 0.755 -0.043 0.252 -0.338 0.113 Adj-R2 0.860

Max -4.489 0.303 0.783 0.022 0.398 -0.321 0.370 AICc -1.198

DIFF-
Criterion -2.585 -1.967 -8.055 -0.274 -1.227 0.578 -18.86 Band-

width 21.25

2002

Mean -5.563 0.164 0.306 -0.025 0.603 -0.333 0.698 R2 0.803

Min -5.902 -0.003 0.057 -0.057 0.454 -0.353 0.413 Adj-R2 0.701

Max -5.229 0.228 0.524 0.028 0.698 -0.299 1.157 AICc 21.366

DIFF-
Criterion -30.248 -2.080 -3.018 -2.422 -0.636 0.751 -13.07 Band-

width 18.461

2010

Mean -4.548 0.307 0.385 -0.222 0.537 -0.240 0.361 R2 0.812

Min -5.156 0.105 0.087 -0.332 0.405 -0.286 0.064 Adj-R2 0.695

Max -3.629 0.385 0.597 -0.145 0.654 -0.130 0.857 AICc 24.198

DIFF-
Criterion -145.1 -6.244 -123.5 -3.749 -28.09 -1.323 -64.00 Band-

width 13.898

2017

Mean -2.750 0.265 0.137 -0.280 0.486 -0.126 0.160 R2 0.707

Min -4.985 0.239 0.085 -0.443 0.317 -0.143 0.051 Adj-R2 0.565

Max -1.640 0.363 0.209 -0.234 0.884 -0.093 0.434 AICc 37.251

DIFF-
Criterion -97.998 -1.168 -0.598 -5.387 -32.77 -0.236 -12.24 Band-

width 21.248

Table 6. Estimated results of fitting indicators and influencing factor coefficients.
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may grow slightly lower than energy consumption of 
civil vehicles increases. By comparison, civil vehicles 
have little effect on surrounding economic development, 
thus the positive spillover effect of civil vehicles on the 
surrounding areas is more obvious. 

The proportion of coal consumption has a significant 
effect on promoting energy intensity of the local region, 
the coefficient of which is 0. 410168. The result is 
similar to a previous study [37]. But the effect on the 
surrounding area is negative and insignificant. On the 
whole, the total effect of coal consumption proportion 
is slightly negative, and its impact is not significant. As 
the calorific value of coal is low, coal needs to consume 
more compared with clean energy such as natural gas. 

Therefore, the increase in coal consumption will raise 
the energy intensity, though the surrounding areas are 
only slightly affected by coal consumption changes in 
the local region. Coal is mainly concentrated in the 
northern region of China, and it is difficult to obtain 
coal from the neighboring areas in the southern coal-
deficient areas. Therefore, the coal consumption 
proportion of the local cannot drive coal consumption 
in the surrounding areas, which leads to an insignificant 
impact.

There is a significant effect of R&D expenditure 
on both local and surrounding areas. The local effect 
is positive, opposite to the surroundings. The total 
effect of R&D expenditure is considered significantly 

Fig. 4. Distribution map of influence coefficient.
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negative, reaching 0.518667. The results correspond to 
the conclusion of Dong et al. that R&D expenditure is 
the main driver of energy intensity reduction [38]. The 
increase in internal R&D expenditure has led to the 
development of technology that has improve energy 
efficiency and overall reduced energy intensity in local 
and surrounding areas while developing the economy. 
However, the increase in technology has enabled more 
energy-intensive companies expanding production 
scale. Rapid development of secondary industry, 
especially the heavy metal industry, has expanded 
energy consumption for the local region. Thus the 
energy intensity of the local region has been driven up 
to a certain extent, which was somewhat different from 
a previous study [39].

Foreign direct investment has an inhibitory negative 
effect on energy intensity in the local region and 
surrounding area. The coefficient of effect on local 
energy intensity is 0.032348, showing that the influence 
is significant. But the effect on energy intensity in 
surrounding areas is not obvious. Foreign investment 
expands the degree of regional opening up as well as 
improves the level of energy utilization technology 
[40]. In the early stage of foreign investment, local 
enterprises have just begun to develop, and it is 
difficult to form a scale effect with the surrounding 
areas, so FDI has not promoted the development of the 
surrounding areas. Therefore, the development of low-
energy industries such as the financial industry reduce 
energy intensity, but had little impact on the spillover of 
surrounding areas.

Urbanization rate and secondary industry  
proportion have significant positive effects on the  
energy intensity of the local region and the surrounding 
areas, with total effect coefficients of 0.689822 and 
1.915683 respectively. The improvement of urbanization 
brings a large population and direct demand for 
resources. At the same time, the expansion of the scale 

of secondary industries such as industry requires more 
electricity and fuel, and the consumption of energy 
is increasing rapidly. However, the role of economic 
growth brought by urbanization is at a preliminary 
stage, and the secondary industry economic growth is 
slowing down. The result has proved the previous study 
that these factors make the energy intensity increase 
[41].

Differentiation Analysis of Influence Factor 
Coefficient

Areas with high influence of civil vehicles 
have changed from southeast to northeast, then 
gradually from north to northwest, showing a general 
counterclockwise trend that is related to traffic 
development in China. As the eastern region has a 
high population density, the demand for transportation 
is large, which required many oil products, leading to 
a greater impact on the energy intensity of the region. 
With economic development, civil vehicles spread to the 
western and northern parts, and the high-impact areas 
have gradually expanded [42]. In recent years, new 
energy vehicles began to be encouraged and promoted 
by various regions. The energy-saving effect of new 
energy vehicle applications in the eastern region was 
manifested, and the impact of civil vehicles on energy 
intensity has decreased. The promotion of new energy 
vehicles in the central region was not strong enough 
and the charging infrastructure of new energy vehicles 
and road construction is imperfect, so the impact is 
basically the same during study periods. Civil vehicles 
have increased in the western region, and the majority 
of the vehicles is mostly fuel-efficient, bringing about 
the enhanced impact on energy consumption [43]. 
Therefore, the impact of civil vehicles on energy 
intensity continues to increase – especially in the 
northwest.

Fig. 5. Clustering results of influencing factor rankings.



Variations in Cd and Pb Accumulations... 2913

The areas with a high level of coal consumption 
impact are gradually shrinking, mainly in the eastern 
and southern regions. As a big country in coal 
consumption, China’s coal utilization efficiency is low 
in the early stage, and unit consumption is large. The 
reduction of coal consumption proportion can effectively 
reduce energy intensity. With the development of clean 
coal technology and the widespread use of clean energy, 
the coal trade between different regions becomes 
cleaner. Centralized heating and other measures adopted 
in the northern region have effectively reduced the 
impact of coal as previous studies [44]. But it is still at a 
high level in the eastern and southern areas, where coal 
resources are scarce. The impact of coal consumption 
on these areas is related to supply and demand market 
and coal prices. The coal demand in coastal areas has 
maintained a growth trend opposite coal output, making 
the impact of coal higher than that in the north.

The influence coefficient of R&D expenditure in the 
western region changes more than that in the eastern 
region. The results in 1995 and 2002 that Xinjiang 
and Qinghai have positive coefficient contrary to other 
regions indicate that these provinces are more inclined 
to invest in new technologies in high-energy-consuming 
industries that can rapidly develop the economy, and 
energy intensity is consequently enhanced. At this 
time, although the energy intensity in the eastern 
region declined by R&D expenditure, competition 
exists in the output of science technology and high-
quality talents in different regions, the impact is not 
significant due to the low level of technology [45]. In 
2010 and 2017, the influence of R&D expenditure in 
various regions increased rapidly, and gradually became 
the main factor affecting energy intensity. Each region 
promotes the development of innovative industries by 
driving technology mutually. More attention was paid 
to energy-saving technology in different regions, and 
the cumulative technology has an increasing effect 
on improving energy efficiency. The results prove the 
previous study that R&D experiment plays a more 
important role in the development stage than in the 
basic stage [46].

Areas with high levels of urbanization have 
gradually turned counterclockwise from the southeast 
to the northwest. In the early years of the study, the 
urbanization level of the eastern region developed 
rapidly, bringing about a substantially increased 
population. The improvement of living standard 
consumes a lot of energy in transportation and 
electricity. But the population outflow in the western 
region with low, level of infrastructure construction. 
Therefore, the impact of urbanization on the eastern 
region is even greater. With the development policy 
of the western region, urbanization of western regions 
come to an initial stage, the construction of energy-
intensive infrastructure and the increase of traffic 
demand in the process of urbanization make energy 
intensity increase during four research years [47]. 
However, urbanization in the eastern region has reached 

a certain high level and started to stabilize, so the 
influence coefficient of urbanization rate in the eastern 
region remains basically unchanged.

The gaps in foreign direct investment between 
provinces are relatively small. In the early stage of 
research, foreign investment brought opportunities for 
rapid economic development, such as improvement 
of production and management technology as well as 
advanced equipment, which has a greater impact on the 
reduction of energy intensity. With the enhancement 
of economic strength and the increase of domestic 
investment level, the economic effect of foreign 
investment is relatively weak. The impact of foreign 
direct investment on energy intensity began to decrease, 
but the impact gap has slightly increased in each 
year. Due to the emphasis on environment and energy 
in the eastern and central regions, foreign investors 
have gradually turned to low-energy tertiary industry 
investment, but there are still many foreign-invested 
enterprises with high energy-consuming industries 
in the northwest region, which has increased energy 
consumption [48]. 

The influence of the secondary industry proportion 
in different regions is quite different, performing higher 
in the northern than southern regions, and the western 
region is higher than the eastern region. In the early 
stage of research, China's industrialization level is not 
high, with less industrial energy consumption. The 
influence coefficient of provinces is small, and the 
gap is not big. In 2002, the scale of heavy industry 
was expanding rapidly for the rapid development 
of the economy. Many industrial enterprises and 
infrastructure investments have brought about energy 
consumption, but also a large amount of energy waste 
[49]. The impact of the secondary industry proportion 
on energy intensity became greater, especially in the 
western region, with an impact coefficient greater than 
one. In the later stage of the study, with the regulation 
and restrictions on high-energy-consuming industries, 
the impact of the proportion of secondary industry 
on energy intensity decreased. The industrial transfer 
between the east and the west makes the coefficient of 
the eastern region decrease earlier and faster. 

Conclusions and Policy

Using panel data from 1995 to 2017, this paper 
applies the spatial Durbin and GWR models to explore 
the different main factors affecting energy intensity in 
the 30 provinces. The main conclusions are as follows. 
According to the coefficients and spillover coefficients 
of 6 influence factors, urbanization rate and secondary 
industry proportion has a significant positive influence 
on both local and surrounding areas, while civil vehicles 
are only positive on the surroundings. The proportion 
of coal consumption and foreign direct investment have 
the opposite effect on location, while R&D expenditure 
has a different influence on local and surrounding areas. 
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Then the coefficients of 30 provinces were considered 
be highly differentiated through the spatial distribution 
map, and the impact of 6 factors changed in different 
research years. In addition, 30 provinces were divided 
into 7 groups with various key impacts.  

Based on the above empirical results, each province 
should adapt to local conditions and grasp the key 
factors affecting energy intensity. Therefore, this paper 
puts forward corresponding policy countermeasures.

(1) Government of the 4th and 5th group provinces 
should control energy consumption of the secondary 
industry while increasing investment to improve the 
energy-saving level in industry. They can formulate 
corresponding incentive policies to encourage industries 
with high energy consumption such as industry and 
transportation to use clean energy, and transform the 
focus of development from energy-consuming industries 
to businesses of resource saving. The existing industries 
should accelerate greening with high-tech materials 
and equipment in order to reduce the necessary energy 
consumption in industrial development. Besides, it is 
important to accelerate economic transition and promote 
industrial upgrading, forming an overall development 
style of the third industry.

(2) Provinces in the 2th group should optimize the 
spatial location of residential and commercial areas so as 
to make the population more centralized. It is necessary 
to focus on urban layout and improve the agglomeration 
effect of urbanization while the level of urbanization 
is constantly developing. Concentrated energy supply 
reduces transport losses and consumption of resident 
accommodation and transportation, decreasing the 
impact of the population increase brought about by 
urbanization on overall energy consumption. The 
government would be better off formulating the guiding 
policy and promoting energy-saving ways to improve 
living standards, turning environmental protection 
concepts into habits.

 (3) Provinces like the 3th and 7th group should pay 
attention to coordinating the relationship between 
economic development and the environment, and 
guiding investment in developing cleaner energy, 
thereby improving the local energy-saving level. Local 
governments can provide some start-up funds to 
attract high-tech industries, formulating corresponding 
incentive preferential policies to enable enterprises 
to innovate independently. The focus of government 
investment and foreign investment will gradually shift 
from large-scale energy industries to an innovative 
enterprise, exerting the role of technology in urban 
energy-saving development. 

(4) The 1th and 6th group of provinces could make 
policies to expand the coverage of clean energy. The 
proportions of clean energy like wind power, nuclear 
power and hydropower in primary energy consumption 
should be increased. The government set a long-term 
development policy like increasing the regulation 
of taxes and fees in the coal industry. It is useful to 
rationally expand investment in clean energy utilization 

and improve energy utilization infrastructure. On 
the one hand, these provinces encourage enterprises 
to expand the production and sales of clean energy 
vehicles. On the other hand, it is available to formulate 
a certain subsidy policy to reduce prices to encourage 
residents to purchase. At the same time, the government 
should restrict the use of energy-consuming vehicles 
and control the passenger population. From the 
perspective of residents, expanding the recycling of 
renewable energy will optimize the energy structure on 
the residential side.
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