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Abstract

With the continuous emission of greenhouse gases, the carbon trading market has become  
a powerful weapon to contain it. It is indispensable to analyze the carbon price of China that acts as 
the largest emitter of carbon dioxide worldwide. Therefore, this paper proposes an innovative hybrid 
carbon price forecasting model that incorporates fast ensemble empirical mode decomposition 
(FEEMD) and extreme learning machine optimized by particle swarm optimization (PSO-ELM) with 
external and internal influencing factors considered. The original carbon price series are disassembled 
into several intrinsic mode functions (IMFs) and one residual via FEEMD. The PSO-ELM is then 
employed to forecast the sub-series. It’s remarkable that the inputs of the PSO-ELM model are divided 
into external and internal influencing factors. Factor analysis is used to extract potential factors from 
energy prices, macroeconomics and other influencing factors associated with the original carbon price 
as external influencing factors, and the partial autocorrelation function (PACF) is exploited to select 
internal influencing factors. A case study in Hubei Province, China shows that the proposed carbon 
price forecasting model is superior to the contrast models in terms of the smallest prediction error  
(MAE = 0.1274 yuan, MAPE = 0.8368%) and the strongest stability (RMSE = 0.0116 yuan). And the 
forecasting results demonstrate that the developed model with external and internal influencing factors 
considered can highly improve carbon price prediction performance and have potential in a wider range 
of carbon price forecasting. In addition, accurate carbon price forecasting can help the government 
realize macro control and the investors fulfill risk minimization.
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Introduction

Excessive greenhouse gas emissions and consequent 
adverse impacts on global climate change have become 
a serious threat to human sustainable development, 
drawing increased attention from the most international 
society. Among all greenhouse gases, carbon dioxide is 
the most prominent and artificially controllable. For the 
target of global greenhouse gas emissions reduction the 
carbon market, an effective mechanism for harnessing 
related issues about global climate change, has 
emerged. China ranks as the largest emitter of carbon 
dioxide globally, which has distinct potential to achieve 
emissions-reduction pledges in the decades to come. 
Driven by the situation of emission reduction at home 
and abroad, the Chinese National Development and 
Reform Commission piloted seven carbon emissions 
trading markets in 2011, providing an important 
demonstration for the construction of a nationwide 
carbon emissions trading system, as well as a valuable 
opportunity for the development of related companies 
in China. In view of this, it is crucial to accurately 
predict carbon prices. Grasping the basic and inherent 
characteristics of carbon price volatility in advance will 
not only assist in the formation of appropriate policies 
and regulations for government to macro-market 
regulation and climate change response, but also help 
investors take timely steps to reduce investment risks. 
Therefore, carbon price prediction is now one of the 
hottest and most attractive core research topics in the 
field of energy and climate economics.

Previous research on carbon price forecasting has 
usually been multi-factor forecasting or pure time series 
forecasting. Multi-factor forecasting predicts carbon 
price on the basis of the influencing factors of carbon 
price. For example, Brent oil, coal and electricity 
prices [1]; economic and energy indicators [2]; crude 
oil volatility index (OVX) [3]; and coal, temperature 
and air quality index [4] are commonly extracted as 
latent predictors that inherently have strong correlation 
with future carbon prices during the modeling 
procedure. Whereas time series forecasting only uses 
the historical data of carbon price, and time-lagged 
factors can characterize the development trend and 
law of original data, which has been researched [5-8]. 
Incorporating external and internal influencing factors 
into account comprehensively enables us to extract 
sufficient information as for precise predictions and 
countermeasures formulation [9, 10]. However, as far as 
is known, few relevant papers comprehensively consider 
external factors and internal factors when predicting 
carbon price.

In order to further fill the research gap for carbon 
price forecasting, this paper comprehensively selects 
more appropriate and reasonable impact indicators from 
energy price, macroeconomics and other influencing 
factors as external influencing factors, meanwhile 
taking the time-lagged sequence of historical carbon 
price as the internal influencing factors through PACF. 

The selected internal and external influencing factors 
are utilized as inputs to the forecasting model to predict 
carbon price.

Accurate predictions depend not only on reasonable 
variables, but also on prediction methods. Methods 
applied for carbon price forecasting are mainly branched 
into three representatives recently: statistical and 
econometric methods, artificial intelligence techniques 
and hybrid (ensemble) models.

The statistical and econometric methods can deal 
with the carbon price time series and obtain good 
prediction results, including nonparametric modeling 
technique [11], GARCH-type model [12], HAR-RV 
model [13], dynamic model averaging (DMA) model 
[14], and ARIMA models [15]. With the advent of 
artificial intelligence (AI) models, it has been found 
that this method can deal with the nonlinear problem of 
carbon price changes that cannot be solved by statistical 
and econometric models. The typical AI models 
covering the LSSVM method [16], muti-layer perceptron 
(MLP) neural network [17], neuro-fuzzy controller [18], 
and ELM [5, 19] have been applied to forecast carbon 
price and achieved relatively good prediction results. 
However, carbon pricing is a complex, volatile sequence 
with nonlinear and non-stationary characteristics that 
cannot be fully captured by a single model.

In order to address the shortcomings, the ensemble 
(hybrid) models are widely used for carbon price 
prediction and have achieved good results [20, 21]. The 
recent hybrid forecasting model is usually formed by 
adding signal processing techniques to an AI model, 
with the aim of further decomposing a nonlinear carbon 
price time series into more stationary and regular sub-
series, so that the ultimate forecasting result can be 
obtained by aggregating the forecast values from the 
sub-series. Sun et al. demonstrated that the proposed 
hybrid model based on variational mode decomposition 
(VMD) and spiking neural networks (SNNs) is 
appropriate for carbon price forecasting [22]. In order 
to obtain a more robust method for predicting carbon 
prices, Zhu proposed a multiscale ensemble forecasting 
model that includes the empirical mode decomposition 
(EMD), genetic algorithm and artificial neural network 
for carbon price forecasting [23]. In addition, Zhu et al. 
came up with a combination of EMD and evolutionary 
least squares support vector regression based on particle 
swarm optimization (PSO), and proved that the proposed 
model is superior to the other popular forecasting 
models [24]. Among many decomposition methods, the 
fast ensemble empirical mode decomposition (FEEMD) 
is widely adopted to cope with the non-stationary 
characteristics of original series due to be considered as 
an optimization method that can overcome the inherent 
defects of EMD and has strong computing power. The 
FEEMD method can decompose the original unstable 
and high volatility time series into several more 
stationary and regular sub-series in an efficient way to 
further prediction. So far, it has been applied to related 
fields, for example wind speed forecasting [25-27], 
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pollutant concentration forecasting [28], etc., and has 
achieved satisfactory prediction results.

Summing up previous research can shed light on the 
hybrid model combining artificial intelligence models 
with decomposition methods as a kind of popular 
model for processing and predicting carbon prices, 
and the FEEMD is an excellent enough decomposition 
technique. The extreme learning machine (ELM), a 
neural network model with superior performance, is 
distinguished from traditional ones owing to its faster 
convergence speed, less artificial involvement and can 
avoid many problems that probably arise in the gradient-
driven approach, such as stopping criteria, learning 
rate and learning epochs. In addition, considering 
the inherent instability of ELM, the particle swarm 
optimization (PSO) is exploited to optimize the weight 
and bias for input layer and hidden layer respectively 
in ELM. Thus, a hybrid model combining the fast 
ensemble empirical mode decomposition and the 
extreme learning machine optimized by particle swarm 
optimization (FEEMD-PSO-ELM) is first exploited in 
this paper to predict carbon prices.  

The contributions of the present research may be 
summarized in the following aspects. First, taking 
Hubei carbon emission trading market as an example, 
the influencing factors of carbon price are divided into 
external and internal influencing factors. Regarding the 
external influence factors, this paper comprehensively 
considers 19 external influencing factors and selects 
indicators that are related to carbon prices. In order to 
decrease the dimensions of variables without distortion, 
factor analysis is introduced to dig out potential factors 
hidden in these variables as inputs to the proposed 
model. Secondly, the latest FEEMD is used to transform 
the original carbon price into multiple empirical modes. 
The partial auto correlation function (PACF) is then 
employed to select the lags for these modes, and the 
number of lags for these modes obviously that have 
a strong correlation with the original series will be 
selected as intrinsic influencing factors. Finally, the 
extreme learning machine based on particle swarm 
optimization is applied to predict the carbon price of 
Hubei Emission Exchange. Through case analysis, 
compared with contrast models, the proposed model 
has higher accuracy in predicting carbon price, and the 
influencing factors added to carbon price forecasting 
are effective, which further improves the accuracy of 
the prediction results.

Material and Methods 

This paper applies the carbon price prediction model 
of PSO-ELM. Firstly, the FEEMD is used to decompose 
the original time series characterized by high volatility 
and instability into several subseries; subsequently, 
input selection is executed where bivariate correlation 
analysis and factor analysis are applied to screen 
the main external influencing factors, and PACF is 

employed to extract internal influencing factors; then 
the PSO is applied to optimize the ELM model, and the 
parameters are trained using historical data to obtain 
the optimal penalty and nuclear parameters to obtain 
the final prediction model.

Fast Ensemble Empirical Mode Decomposition 
(FEEMD) 

The ensemble empirical mode decomposition 
(FEEMD) is developed based on the empirical mode 
decomposition (EMD) method [29] and ensemble 
empirical mode decomposition (EEMD) [30]. It adds 
Gaussian white noise with amplitude ε to original 
series, and uses ensemble averaging to eliminate the 
modal aliasing phenomenon [31]. At the meantime, it 
can solve the issue of computational complexity and 
long calculation time of EMD and EEMD.

Two major parameters set in FEEMD are p and M  
which represent the amplitude of the white noise and 
the replicated times of EMD respectively. According to 
the characteristics of the data in this paper, amplitude p 
is 0.05-0.5 times, and replicated times M is 100. Related 
procedures of FEEMD are described below:
1. Add the random Gaussian white noise series nl(t) to 

original time series x(t)

                   (1)

…where xl(t) denotes the noise-added signal utilized in 
FEEMD of the lth trial.
2. Decompose the noise-added signal xl(t)  into several 

IMFs ci,l(t), i = 1,2,...,n and a residue rn,l(t) by 
adopting the EMD approach.

3.  Change different white noise series and repeat 
procedure (1) to procedure (2) until l = M.

4.  Calculate the ensemble mean ci(t) of every IMF and 
residue rn(t) using equations as follows:

                      (2)

                      (3)

Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) was inspired 
based on studies of predation behavior of birds. 
This algorithm abstracts the birds in the group into 
“particles”, which are randomly distributed, and then 
sorts the particles according to the relevant information 
about the position of each particle in the space, 
and simultaneously records the optimal historical 
information of each particle motion until the entire 
particles find the optimal solution to the problem or 
meet other stopping conditions [32]. 
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Suppose that in the D-dimensional search space, 
N particles are included. In order to find the optimal 
position, a particle’s position calculated by fitness 
function was updated by tracking two extremes: the 
optimal location of the particle itself pi = (pi1, pi2,..., piD) 
and the global best position of the whole swarm currently  
pg = (pg1, pg2,..., pgD). Particles in space have two 
characteristics of position and velocity. In each iteration, 
velocity vij and position xij of the particles are updated 
according to the following expression:

 
(4)

                   (5)

…where k is the current number of iterations, i = 1, 2,... 
N, j = 1, 2,... D, vij ∈ [–vmax, vmax], and vmax is a constant. 
xij ∈ [–Xmax, Xmax] Xmax is also a constant. Both rand1 and 
rand2 represent random numbers among 0 to 1. c1 and c2 
are acceleration factors equal to 1.49445. ω is the inertia 
weight and its value is non-negative, having great effects 
on the convergence speed and accuracy of the PSO 
algorithm, and a larger value of ω means the algorithm 
performance better in global optimization and worse in 
local optimization; and vice versa. The following is the 
expression of ω:

            (6)

…where ωS and ωe represent the initial inertia weight 
and the end weight, respectively. tm is the maximum 
allowed number of iterations.

Extreme Learning Machine (ELM) 

ELM acts as an effective single-hidden layer feed-
forward neural network (SLFN) and is introduced by 
Huang et al. [33]. The algorithm randomly initializes 
the weights and thresholds, and all these are no 
adjustment required during the whole training process. 
Once the number of neurons in the hidden layer is set, 
the only solution with the smallest prediction error can 
be obtained.

The following is the specific working principle of 
the ELM network:
1. Define the number L of neurons in the hidden layer, 

stochastically set the connection weight ω and the 
threshold b of the hidden layer neurons as:

                  (7)

2. The network output of the activation function g(x) is 
expressed as:

 (8)

…where the specific form of the hidden layer’s output 
matrix H is shown as:

 (9)

Thus formula (8) can be simplified as:

 (10)

The weight matrix β belonging to hidden and output 
layer can be obtained by the following expression:

                             (11)

…where H + is the Moore-Penrose generalized inverse 
matrix of hidden layer output matrix H. 

Approaches of FEEMD-PSO-ELM Model

As shown in Fig. 1, this framework of the developed 
carbon price forecasting model consists of three parts, 
each of which is represented by a different color. 

In the green section, the original carbon price series 
are disassembled into several intrinsic mode functions 
(IMFs) and one residual via FEEMD. The decomposed 
IMF components embody local characteristic signals 
of the original signal at different time scales, which 
is very helpful for subsequent data processing. In the 
meantime, the yellow portion of the framework is used 
to pre-select the input of the PSO-ELM model, which 
is divided into two parts: external influencing factors 
and internal influencing factors of the carbon price. 
The external influencing factors are first screened by 
bivariate correlation analysis, and then factor analysis 
is employed to mine potential common factors for the 
purpose to achieve complexity-reduction of the data 
by replacing the majority of the original variables with 
a few variables. The internal influencing factors are 
selected using partial autocorrelation analysis. Finally, 
the blue area aims at realizing carbon price prediction 
by PSO-ELM adopted, and PSO is employed to 
optimize connection weights ω and bias threshold b of 
ELM.

Data Source

In order to verify the efficiency and practicability 
of the developed model, this paper analyzes the carbon 
price and its influence factors of Hubei Emission 
Exchange in China as the carbon trading volume 
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of Hubei Emission Exchange is relatively large and 
persistent. The study period goes from September 
1, 2016 to May 4, 2018. The data sample consists of 
404 daily observations. Among these, 344 data are 
employed as a training set while the remaining 60 data 
are used as a testing set.

Carbon Price Decomposition

The volatility is violent and the regular information 
is not clearly available. Thus, FEEMD is utilized to 
reduce the nonlinearity and high volatility of original 
carbon price series. The result is distinctly displayed 
in Fig. 2, on which the raw data is broken down into 6 
IMFs and one residual.

For highlighting the superiority of FEEMD, 
ensemble empirical decomposition (EMD) is also used 

to disassemble the original series. The EMD also break 
down the carbon price series into 6 IMFs and one 
residual.

Selection of Intrinsic Influencing 
Factors

According to characteristics of time series data, 
relevant historical data extracted as time-lagged series 
can characterize the development trend and law of 
original data, which can improve prediction accuracy. 
Taking the effect that historical data variables put 
on the prediction results into account, the partial 
autocorrelogram of each acquired IMF can be 
obtained by using the partial autocorrelation function 
(PACF). Fig. 3 shows the PACF results of carbon 
price decomposition after FEEMD. The given xi is 

Fig. 1. Flowchart of the proposed carbon price forecasting model FEEMD-PSO-ELM.
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the output, and xi–k will be denoted as input variables 
in such a situation that the PACF at kth lag is out of 
the 90% confidence interval. In light of the carbon price 
decomposition PACF results after FEEMD, Table 1 
shows the number of lags for these series obviously that 
have a strong correlation with the original series. 

External Influencing Factors Selection

According to the previous literature on the 
influencing factors of carbon prices, it is widely 
accepted that carbon prices are mainly affected by 
macroeconomics, energy prices, policy factors, climate 
and so on. With regard to the external influencing 
factors affecting carbon prices of the Hubei Emission 
Exchange in China, combining with the actual situation 

of the market and the availability of data and taking 
comprehensive consideration of international carbon 
prices, macroeconomics, energy prices and other related 
aspects, this article has pre-selected 19 representative 
and relatively reasonable influencing indicators: EUA 
futures price (DEC18), CER futures price (DEC18), SSE 
(Shanghai Stock Exchange) Composite Index, Shenzhen 
Component Index, Shanghai Industrial Index, CSI 300 
Index, CSI Industrial Index, S & P 500 Index, British 
FTSE 100 Index, Zhengzhou Commodity Exchange 
thermal coal futures price, Shanghai Futures Exchange 
fuel oil futures price, Dalian Commodity Exchange 
coking coal futures price, Dalian Commodity Exchange 
coke futures price, Brent crude oil futures price, 
Rotterdam coal futures price (DEC18), British natural 
gas futures price (DEC18), Newcastle coal futures price 

Fig. 2. Decomposed results of Hubei carbon price by FEEMD.

Fig. 3. PCAF results of Hubei carbon price after FEEMD.



A Hybrid Carbon Price Forecasting... 3311

(DEC19), USD to RMB exchange rate, and the Euro to 
RMB exchange rate. 

Exploring the relationship between carbon price 
and the 19 pre-selected external influencing factors  
is critical to building a good predictive model.  
To this end, in this paper the bivariate correlation 
analysis and the two-tailed significance test are utilized 
to test the correlation between carbon price and 
preliminary chosen influencing factors, and Pearson 
coefficient reflects the correlation. The values of the 
correlation coefficients are listed in Table 2. It can be 
found that the 15 concomitant probability values for 
the two-tailed significance test are 0.000 less than 0.01, 
which reveals that there is a significant correlation 
between carbon price and the 15 aforementioned 
indicators. However, there is no significant correlation 
between the other indicators and the carbon price 
respectively, so these four indicators – CSI Industrial 
Index, Brent crude oil futures price, Shanghai  
Futures Exchange fuel oil futures price, and Dalian 
Commodity Exchange coking coal futures price – will 
be eliminated. 

Although the choice of influencing factors is 
feasible, intrinsic correlation among these factors may 

bring some inconvenience and bias to subsequent 
research to a certain extent. Hence, factor analysis 
in SPSS is exploited to address the above problems 
by further identifying potential common factors that 
actually affect the subject of the experiment.

The factor analysis results are shown in Tables 3 
and 4. The Kaiser Meyer Olkin (KMO) and Bartlett’s 
tests are performed prior to factor analysis. The KMO 
test is traditionally employed to check the correlation 
and partial correlation between variables, ranging from 
0 to 1, while Bartlett’s test is employed to examine 
the correlation between variables in the correlation 
matrix, and whether the correlation matrix is a unit 
matrix or not. As illustrated in Table 3, the statistical 
value of KMO is 0.795 (very close to 0.8), indicating 
that factor analysis could be conducted in this paper.  
At the same time, the value of Bartlett’s test is 0.000, 
which means the null hypothesis is rejected, that is, 
negating the idea that the correlation matrix is a unit 
matrix. Table 4 includes three common factors hidden 
in the 15 indicators whose cumulative contribution rate 
up to 86.094% is indicated as F1, F2 and F3. In order 
to better explain the extracted common factors, factor 
rotation is also performed. Meanwhile, based on the 
correlation and economic connotation of the indicators, 
F1, F2 and F3 are separately defined as international 
energy price factor, domestic comprehensive factor and 
international economic factor. Three specific factor 
variables can be obtained by the conversion of the 
scoring coefficients in Table 4. Hence, the following 
study will take these three factors as external input 
factors to predict carbon pricing of the Hubei Emission 
Exchange.

Table 1. Bivariate correlation of carbon price and various factors.

Indicator Correlation Significant Indicator Correlation Significant

CER futures price(DEC18) -0.226** 0.000 CSI 300 Index -0.546** 0.000

EUA futures price(DEC18) 0.539** 0.000 CSI Industrial Index -0.071 0.154

S & P 500 Index -0.461** 0.000 Shanghai Industrial Index -0.328** 0.000

British FTSE 100 Index -0.388** 0.000 Shenzhen Component Index -0.389** 0.000

Euro to RMB exchange rate 0.491** 0.000 SSE (Shanghai Stock Exchange) 
Composite Index -0.457** 0.000

USD to RMB exchange rate -0.804** 0.000 Shanghai Futures Exchange fuel oil 
futures price 0.086 0.084

Brent crude oil futures price -0.081 0.106 Dalian Commodity Exchange coke 
futures price -0.455** 0.000

Newcastle coal futures 
price(DEC19) -0.329** 0.000 Dalian Commodity Exchange coking 

coal futures price -0.090 0.070

Rotterdam coal futures 
price(DEC18) -0.484** 0.000 Zhengzhou Commodity Exchange 

thermal coal futures price -0.480** 0.000

British natural gas futures 
price(DEC18) -0.206** 0.000

Note: ** indicates a significant correlation at the bilateral significance level of 0.01.

Table 2. KMO and Bartlett test.

Index Value

KMO 0.795

Bartlett 
test

Approximate Chi-square 11537.582

Degree of freedom 105

Prob. 0.000
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Comparative Framework

As shown in Fig. 4, seven different models are 
employed to contrast with the established model, which 
can be divided into two parts. In part 1, three models 
including FEEMD-PSO-ELM, EMD-PSO-ELM and 
PSO-ELM are introduced to illustrate the essential of 
introducing FEEMD. The applicability and effectiveness 
of PSO-ELM in carbon price forecasting can be 

verified in Part 2. Moreover, one find is at the heart 
of taking these two parts into comparison: adoption 
of decomposition is conducive to largely improve the 
accuracy of the prediction model. The inputs for all of 
the above models are internal and external influencing 
factors selected in this paper.

Model Performance Evaluation

To ascertain which forecasting model is more 
superior, MAPE, MAE, and RMSE, denoting mean 
absolute percentage error, mean absolute error and root 
mean square error respectively are selected to measure 
performances of all models involved. The smaller  
the values, the better the forecasting performance.  
The formulas of these three indexes are defined as 
follows: 

            (12)

                     (13)

Table 3. Factor analysis of the remaining 15 variables.

Indicator Loading 
of F1

Loading 
of F2

Loading 
of F3

Scoring coefficient
of F1

Scoring coefficient
of F2

Scoring coefficient
of F3

S & P 500 Index 0.638 0.314 0.662 0.073 -0.090 0.202

British FTSE 100 Index 0.045 0.162 0.924 -0.190 -0.128 0.508

CER futures price(DEC18) -0.422 -0.314 -0.796 0.038 0.088 -0.324

USD to RMB exchange rate 0.504 0.279 0.607 -0.288 0.061 0.130

Euro to RMB exchange rate -0.162 -0.225 -0.901 0.036 -0.075 0.203

EUA futures price(DEC18) 0.959 0.106 0.084 0.342 -0.103 -0.164

Newcastle coal futures 
price(DEC19) 0.736 0.474 0.352 0.151 0.028 -0.036

Rotterdam coal futures 
price(DEC18) 0.707 0.430 0.525 0.111 -0.022 0.082

British natural gas futures 
price(DEC18) 0.844 0.272 0.238 0.244 -0.049 -0.083

CSI 300 Index 0.580 0.580 0.527 0.041 0.059 0.078

Shanghai Industrial Index 0.125 0.881 0.317 -0.135 0.291 -0.018

Shenzhen Component Index 0.310 0.852 -0.017 0.008 0.323 -0.247

SSE (Shanghai Stock 
Exchange) Composite Index 0.093 0.857 0.453 -0.172 0.258 0.075

Dalian Commodity 
Exchange coke futures price 0.303 0.655 0.232 -0.018 0.189 -0.057

Zhengzhou Commodity 
Exchange thermal coal futures 

price
0.280 0.814 0.172 -0.036 0.272 -0.121

Cumulative contribution rate 33.023% 63.092% 86.094%

Table 4. PACF results after FEEMD.

Carbon price

IMFs and r0 Lag

IMF1 (xt–1, xt–2, xt–3, xt–4, xt–5)

IMF2 (xt–1, xt–2, xt–3, xt–5)

IMF3 (xt–1, xt–2, xt–3, xt–6)

IMF4 (xt–1, xt–2, xt–3, xt–4, xt–5)

IMF5 (xt–1)

IMF6 (xt–1)

r0 (xt–1)



A Hybrid Carbon Price Forecasting... 3313

          (14)

Results and Discussion

The procedures of FEEMD and PSO-ELM were 
executed by MATLAB R2016a. Fig. 5 demonstrates the 
carbon price prediction fitting curves for 60 data from 
January 30 to May 4, 2018 obtained by eight different 
models. It can be seen that: (a) in comparison with 
other seven models, the FEEMD-PSO-ELM model has 
the highest goodness-of-fit between the predicted and 
actual values, while the GM(1,1) results are the worst; 

(b) the fitting effect of ELM-based models is superior 
to other models in general; and (c) compared with the 
model without the decomposition algorithm, the model 
incorporating the decomposition algorithm has higher 
prediction accuracy.

Table 5 clearly listed the statistical errors for 
quantitatively evaluating the six prediction models. In 
order to display the comparison results more clearly and 
intuitively, a histogram is shown in Fig. 6.

Combining Table 5 and Fig. 6, the following 
important conclusions can be drawn: 
1. Among the four prediction models of ELM, BPNN, 

and GM(1,1), the MAPE, MAE and RMSE of ELM 
are all the smallest, then BPNN, and the largest is 
GM(1,1), which suggests that the selected model 
ELM is tremendously effective for predicting carbon 
price as the strong global search capability. 

Fig. 4. Framework of comparison models.

Fig. 5. Carbon price forecasting results between the proposed models and other contrast models.
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2. On the basis of the order of MAPE, MAE and RMSE, 
the PSO-ELM and ELM index values are 2.0544%, 
0.3124 yuan, 0.0273 yuan and 2.1220%, 0.3207 yuan, 
and 0.0288 yuan, respectively, indicating that ELM 
optimized by PSO can improve prediction accuracy 
and reinforce sensitivity. The FEEMD-PSO-ELM 
and FEEMD-ELM also showed the same conclusion. 
These are all due to the PSO’s strong global search 
capability overcoming the inherent instability of 
ELM. 

3. The three models from the best to the worst are 
FEEMD-PSO-ELM, EMD-PSO-ELM and PSO-
ELM, which certifies that regardless of the type of 
the decomposition method, there is a positive effect 
of improving forecasting precision. In addition, the 
performance of FEEMD-ELM, EMD-ELM, and 
ELM also reached the same conclusion. As can be 
seen from Table 5, there is a decrease between the 
EMD-driven model and the FEEMD-driven model 
in terms of predictive performance. For example, the 
MAPE of FEEMD-PSO-ELM is 0.8368% while the 
corresponding value of EMD-PSO-ELM is 1.2455%. 
The reason for this phenomenon is, to a great extent, 
thanks to the uniform frequency distribution in 
Gaussian white noise of FEEMD, which can solve 
inherent pitfalls, pattern mixing problem, and 
exiting in EMD. Overall, it can be concluded that 

the FEEMD-PSO-ELM is the best in line with these 
three statistic assessment indicators. 
For all the above analysis results, the input values 

of these models are the three exogenous factors, which 
indicates that not only the extracted factors but also 
the FEEMD-PSO-ELM model have been proved to be 
available and effective.

Furthermore, only the lag period of the original 
carbon price data is used as input for the FEEMD-
PSO-ELM model. The results are clearly displayed in 
Table 6. For this developed model, the three metrics 
values MAPE, MAE and RMSE of the prediction result 
about the input with external influencing factors are 
all less than the metrics values of the prediction result 
that the input without external influencing factors. It is 
further verified that forecasting results is significantly 

Table 5. Three evaluation indicators of models in carbon price forecasting.

Index FEEMD-PSO-
ELM

FEEMD-
ELM

EMD-PSO-
ELM EMD-ELM PSO-ELM ELM BPNN GM(1,1)

MAPE (%) 0.8368 0.9287 1.2455 1.4509 2.0544 2.1220 3.7024 4.82287

MAE (RMB Yuan) 0.1274 0.1409 0.1886 0.2193 0.3124 0.3207 0.5554 0.74287

RMSE (RMB Yuan) 0.0116 0.0123 0.0168 0.0205 0.0273 0.0288 0.0465 0.05486

Fig. 6. Three evaluation indicators of models in carbon price forecasting.

Table 6. Three evaluation indicators for different inputs of the 
FEEMD-PSO-ELM model.

Index Input with 
influencing factors

Input without 
influencing factors

MAPE (%) 0.8368 1.1308

MAE (RMB Yuan) 0.1274 0.1706

RMSE (RMB Yuan) 0.0116 0.0149
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pretty with external influencing factors added into 
lag period of the original carbon price. The reasons 
for this result may be: (a) the industrial structure of 
Hubei Province in China is mainly industrial, and with 
obvious characteristics of heavy chemical industry, and 
the demand for energy is large. The participants in the 
carbon trading market are mainly industrial enterprises 
with large energy consumption, so Hubei’s carbon prices 
are greatly affected by energy prices [34]. (b) Due to the 
superior geographical environment of Hubei Province, 
economic development has been good and fast in recent 
years, attracting more domestic and foreign enterprises 
to invest here, so that its development is closely related 
to the economic situation at home and abroad. However, 
economic development is bound to lead to an increase 
in carbon dioxide emissions, inevitably increasing the 
demand for carbon allowances and further affecting the 
price of the carbon market [35].

Conclusions 

A novel ensemble model is proposed in this paper 
involving fast ensemble empirical mode decomposition, 
particle swarm optimization and extreme learning 
machine, and with external and internal influencing 
factors considered comprehensively, aiming at carbon 
price precisely forecasting Owing to the volatility and 
nonlinearity of carbon price series, FEEMD is employed 
to filter the noise and then PSO-ELM is used to predict 
the decomposed series. For intrinsic influencing 
factors, PACF is utilized to select time-lagged variables 
of the carbon price series as inputs. In addition, 19 
indexes from energy price, macroeconomics and 
other influencing factors related to the original carbon 
price are preliminary chosen as external influencing 
factors, then 3 factors are ultimately identified through 
factor analysis as the inputs of the proposed model 
for purposes of reducing information overlapp and 
improving prediction accuracy. To verify practicability 
and effectiveness, a case study was conducted on 
the carbon price of the Hubei Emission Exchange 
and empirical results show satisfactory accuracy of 
the proposed model that take external and internal 
influencing factors into account – especially energy 
prices and macroeconomics derived from external 
influencing factors. 

Comparison between the developed model and  
other models make it clear that: (a) from factor analysis 
of 19 preliminarily selected external influencing 
indicators to mine latent 3 variables, as well extract 
internal influencing factors by PACF rendering 
it theoretically and practically available to boost 
predicting accuracy. (b) Integrating FEEMD with  
PSO-ELM is a way to blaze a new trail for predicting 
carbon price series with high volatility and nonlinearity. 
(c) The PSO-ELM model, distinct from other 
techniques, possesses the best prediction accuracy and 
fastest calculation speed due to the entry of particle 

swarm optimization algorithm which enhances the 
global optimization ability. (d) The case study of the 
carbon price of Hubei Emission Exchange proved 
that the proposed model with external and internal 
influencing factors considered comprehensively, 
especially energy prices and macroeconomics, are 
effective and promising.

Based on our results, the predicting results are of 
great significance in the following three aspects: (1) 
guiding investors to choose a reasonable investment 
plan to minimize risks; (2) inspire policymakers to 
institute reasonable policies and regulation aimed 
at mitigating climate change and promoting China’s 
macroeconomic growth; and (3) further promoting 
researchers to explore the projected reduction-emission 
potential of carbon dioxide. 
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