
Introduction

China has been making tremendous achievements  
in economic development since the reform and  

opening-up policy and has become the second-largest 
economy in the world. However, economic development 
has also led to a series of environmental issues,  
and China is currently facing serious air pollution 
challenges [1]. It is unhealthy to be exposed to 
ambient air pollution, and it increases the probability 
of mortality, and morbidity decreases life expectancy. 
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Abstract

Decreasing of PM2.5 concentration in the heating season was not significant in Xi’an. This article 
determined a land use regression (LUR) model and researched the distribution characteristics of PM2.5 
in  heating and non-heating seasons in Xi'an. The results showed that: (1) The R2 of LUR was larger 
than 0.9, and the simulation results were better than previous studies. (2) The PM2.5 concentration 
in the heating season was larger than in the non-heating season. In Xi’an, the distribution of PM2.5 
concentration was low in the southeast and high in the northwest  in the non-heating season and was low 
in the southeast and high in the main urban region in the heating season. (3) The PM2.5 concentration 
was affected by temperature, average air pressure, altitude, humidity and precipitation in  non-heating 
season and was influenced by precipitation, altitude, average air pressure, vegetation, and density of 
roads in heating season. (4) This paper showed some improvements in selection of potential variables for 
LUR model, and the conclusion can provide a scientific basis for PM2.5 pollution control and a reliable 
method for simulating PM2.5 concentration in other cities.
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Therefore, the report in Global Burden of Disease Study 
(GBD) identified air pollution as a leading cause of 
global diseases, especially in low-income and middle-
income countries [2]. At the same time, some of research 
results revealed that PM2.5 was the fifth largest death 
risk factor in 2015 [3]. Xi’an, a famed tourist destination 
as well as the largest national central city in northwest 
China, has been experiencing severe air pollution which 
has become an urgent issue that threatens people's 
health and quality of life. Xi’an has taken several 
measures to improve air quality since 2013, such as 
coal reduction, vehicle control, dust suppression, source 
of contamination control and green area enhancement. 
As a result, a statement released by the Bureau of Xi’an 
ecological environment in 2017 indicated the air quality 
achieved “one increase”, “two decreases” and “four 
declines” compared with 2013, those were the number 
of excellent days increased from 138 days to 180 days, 
the number of heavy pollution days decreased from  
67 days to 39 days, the number of extraordinary 
pollution days decreased from 8 days to 0 days, and the 
average annual PM2.5 concentration declined by 30.5% 
from 2013 to 2017, respectively. However, the number 
of excellent days in the heating season was only 68 of 
180 excellent days, the improvement of air quality was 
not very ideal in the heating season, and the air quality 
was still inferior and showed an obvious difference 
between the heating season and the non-heating season. 
At the same time, the conclusion that the concentrations 
of multiple air pollutants during the heating season 
were higher than those during the non-heating season 
resembled results from different regions, such as Czech 
Republic [4], Italy [5] and China [6-7].

Most of the previous studies in Xi’an focused on 
the chemical composition of PM2.5 in a small scale 
[8-15]. However, the current studies seldom simulate 
PM2.5 concentration on a small grid-scale, so the 
existing results could hardly meet the needs of 
precision for further study. At present, there were two 
main methods for spatial distribution simulation of 
PM2.5 concentration. One was the spatial interpolation 
method, and the other was remote sensing inversion 
through aerosol optical depth (AOD) products. Firstly, 
the spatial interpolation method used  limited in-situ 
sampling data to establish an approximation function 
to simulate the PM2.5 concentration outside the in-situ 
sites. However, the precision of spatial interpolation 
method had some uncertainties [16]. Moreover, the 
spatial interpolation method could not be implemented 
in some places if in-situ sampling sites data was sparse 
or missing, so the results would not be reasonable 
[17]. Secondly, remote sensing inversion method took 
advantage of the relationship between AOD and PM2.5 
concentration to simulate PM2.5 concentration [18]. 
However, the spatial resolution of PM2.5 concentration 
products based on remote sensing inversion were also 
coarse  and were inadequate to satisfy simulation for 
PM2.5 concentration on a small-scale [19]. Besides, 
there were field sampling methods for measuring 

small-scale concentration of PM2.5 [10], nighttime 
lighting data simulation method [20], and a model 
between other pollutants concentration and PM2.5 
concentration [12]. Although field sampling method 
could acquire high precision data, it was costly, time-
consuming and inefficient. The nighttime lighting 
data simulation method could be used for obtaining 
the spatial distribution of PM2.5 concentration on a 
large scale. However, the accuracy was low for PM2.5 
concentration simulation in a small scale. Therefore, 
we should find a new method to simulate PM2.5 
concentration and analyze the probable influences from 
nature and human beings. At the same time, Xi’an is 
undergoing unprecedented urbanization process that 
leads to obvious landscape change [21]. In addition, 
Xi’an appears some unreasonable land use cases, and 
the urban planning of Xi’an may neglect the effects of 
natural factors and human activities on the landscape 
[22]. Land use change is due to human activities and 
natural factors [23]. Some of previous studies used land 
cover maps derived from remote sensing images to 
evaluate the changes in urban development and green 
areas [23-33]. Furthermore, some recent studies are 
to develop a landscape plan according to the aims of 
sustaining the natural and cultural landscape values of 
an area by considering landscape variables such as the 
number of potential visitors, vegetation cover, cultural 
values and the topographic structure. ArcGIS was used 
to evaluate the landscape variables, and the study data 
were obtained through a land survey, questionnaires 
and maps [23-35]. Besides, some of the previous studies 
have revealed that urban planning including land use, 
urban spatial structure, spatial form, transportation 
and green space may affect concentrations of air 
pollutants [36-38]. Moreover, particulate matter can be 
purified and absorbed by urban green spaces [39], and 
the landscape pattern of green spaces (such as edge 
density and patch density) can also influence PM2.5 
concentration [40]. Hence, the PM2.5 concentration is 
not only affected by natural factors but also influenced 
by human activities especially land use and urban 
planning, so it is feasible to control PM2.5 concentration 
through optimizing land use structure, urban planning, 
spatial form, transportation and green space [37]. 
Therefore, it is possible to simulate PM2.5 concentration 
through land use and urban planning perspective, 
and the LUR model supply probability for simulating 
PM2.5 concentration. The LUR model was often used 
to predict pollutant distribution, including NO2, NOX 
and PM2.5 [41-44]. The LUR model is based on 
monitoring data and land use information within a 
certain radius of the monitoring sites, road traffic 
characteristics and other relevant geographic variables 
to construct regression model [45]. The LUR model is 
able to generalize regression relationship  to simulate 
the spatial distribution of pollutants in unmonitored 
areas [46]. In short, LUR model  can simulate PM2.5 
concentration with  higher simulation precision for 
further study.



A land use regression application... 4067

The purposes of this study were: (1) to establish the 
LUR model for PM2.5 in a heating season and a non-
heating season in Xi’an. (2) to map the distribution of 
PM2.5 on a grid scale. (3) to analyze the influence factors 
for PM2.5. (4) to supply some suggestions for improving 
air quality in Xi’an.

Materials and methods 

Study area

Xi’an is located in the center of the Guanzhong 
Basin. The overall terrain is elevated in the north and 
south and low in the center. It has a warm, temperate,  
semi-humid, continental monsoon climate with four 
distinct seasons. The annual average temperature 
is 15.6ºC and the average annual precipitation is  
649.0 mm. Xi’an is a National Central City and an 
important tourist destination. In 2017, it received 
18,093,140 visitors from home and abroad, and the 
GDP was 747.189 billion yuan (1 $ = 6.87 yuan). The 
city has a total area of 10096.81 km2, a built-up area 
of 832.16 km2, and a population of 4.66 million in the 
main region, accounting for 47.90% of the city’s total 
population. The six districts in the main urban region 
are the Xincheng district, the Beilin district, the Lianhu 
district,  the Baqiao district, the Weiyang district, and 
the Yanta district, respectively (Fig. 1). 

Data Sources

PM2.5 data

PM2.5 concentration data with a period from 
November 15, 2016 to November 14, 2017 was collected 
from the Xi’an Air Quality Daily Reporting System 
(http://www.xianemc.gov.cn/). There are 13 air quality 
monitoring stations in Xi’an (Fig. 1, Table 1). The mean 
concentration during a heating season (From November 
15, 2016 to March 15, 2017) and a non-heating season 
(From March 16, 2017 to November 14, 2017) was 
calculated respectively.

Potential independent variable data

(1) Land use data with 30m resolution was collected 
from the Department of Earth System Science of 
Tsinghua University (http://data.ess.tsinghua.edu.
cn/), and the land use classes were divided into 
cropland, forest, grassland, shrub land, wetland, 
water, impervious surface and bare land, respectively. 
(2) The DEM data with 30 m resolution was derived 
from the Geospatial Data Cloud (http:// www.gscloud.
cn/). (3) Meteorological data including the average 
daily temperature, precipitation, average wind speed, 
maximum wind speed and relative humidity from 
21 meteorological stations with a period from  
November 15, 2016 to November 14, 2017 was collected 

Fig. 1. Map of study area.
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from the China Meteorological Data Center (http://data.
cma.cn/). The mean value of meteorological parameters 
was calculated and the data layers with 30m resolution 
were obtained by Kriging interpolation method. (4) 
The population data with 1km spatial resolution was 
collected from the Resource and Environmental Science 
Data Center of the Chinese Academy of Sciences  
(http://www.resdc.cn/), and  the original spatial 
resolution (1 km) was reclassified to 30 m for further 
analysis. (5) Roads data was derived from the wiki 
world map database (http://www.open street map.org/) 
(Table 1).

LUR model

In this study, the LUR model (Equation 1) was 
used to simulate the spatial distribution of PM2.5 in 
Xi’an. The dependent variable was PM2.5 concentration, 
and the potential independent variables were land 
use, transportation, topography, population and 

meteorological factors, respectively. The multivariate 
stepwise regression was implemented to determine the 
quantitative relationship between PM2.5 concentration 
and potential independent variables. The processes  
for LUR were as follows: (1) This paper selected  
natural and human factors as independent variables  
for the LUR model, and 98 potential independent 
variables were extracted (Table 1). (2) The multivariate 
stepwise regression model with screening rules 
was used to determine the LUR model. Screening  
rules were as follows, when the F probability of the 
variable was less than 0.05, the variables would be  
chosen to the model; when the F probability of the 
variable was larger than 0.1, the variable would be 
removed from the model. At last, the retained variables 
were selected as independent variables for the LUR 
model. 
 

    (1)

Table 1. Potential variables for the LUR model.

Groups Variable Extracting Methods Remarks Variable 
Number

Land use  

Cropland (Xc-i)

Using Zonal Statistics tool of ARCGIS 10.3 
to extract the area of different land use types 
in different buffer zones. The buffer radii are 

100 m, 300 m, 500 m, 1000 m, 1500 m,
2000 m, 2500 m, 3000 m, 3500 m, 4000 m, 

respectively.

Xc-i represents
the area of cropland in the 
buffer zone of i; the same 
principle applies for other 

land use types.

10

Forest  (Xf-i) 10

Grassland (Xg-i) 10

Shrubland (Xs-i) 10

Wetland (Xwte-i) 10

Water (Xwater-i) 10

Impervious surface (XI-p-i) 10

Bareland(Xb-i) 10

Road

Road length  (Xroad-i)

Using statistical analysis tool of ARCGIS 
10.3 to extract the length of the roads in 

different buffer zones, The buffer radii are: 
100 m, 300 m, 500 m, 1000 m, 1500 m, 

2000 m, 2500 m, 3000 m, 3500 m, 4000 m.

Xroad-i represents the total 
road length in the buffer 
zone with a distance of i. 

10

Nearest road distance (Xn-road)

Using the Nearest Neighbor Analysis tool of 
ARCGIS 10.3 to determine the closest 

distance from the monitoring sites to the 
roads.

Xn-road represents the 
distance from the Monitor 
point to the nearest road. 

1

Terrain Elevation(Xdem)
Using the Extract Multi Values to 

Points tool of ARCGIS 10.3 to obtain the 
elevation value of each monitoring site.

The elevation value of the 
monitoring sites. 1

Population Population(Xpop)
Using the Extract Multi Values to Points tool 
of ARCGIS 10.3 to get the population value 

of each monitoring site.

The population value of 
monitoring sites. 1

Mete-
orological 

factors

Precipitation (Xp)
Using the Extract Multi Values to 

Points tool of ARCGIS 10.3 to obtain 
precipitation, average air pressure, wind 
speed, temperature, and average relative 

humidity of each monitoring site.

The different Mete-
orological values of the 

monitoring sites.

1

Average pressu-re (Xa-p) 1

Wind-speed  (Xw) 1

Temperature (Xt) 1

Average relative humidity (Xrhu) 1
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...where: Y was the simulated value of PM2.5 
concentration; b0 was constant; X1, ..., Xi were 
independent variables; b0, b1, ..., bi were correlation 
coefficients corresponding to X1, X2, ..., Xi

The model accuracy was validated based on the 
cross-validation method [46-47]. The coefficient of 
determination (R2), root mean square error (RMSE) 
(Equation 2) and mean percentage error (MPE) 
(Equation 3) were calculated to evaluate the precision 
of the model. 

              (2)

                   (3)

...where: A is the real PM2.5 concentration collected 
from monitoring sites, μg/ m3; B is the simulation PM2.5 
concentration based on the LUR model, μg/m3; n is the 
number of samples.

Simulating distribution of PM2.5

Simulating distribution of PM2.5 on a grid-scale 
was based on the LUR model and ArcGIS10.3. Firstly, 
using the fishnet tool of ArcGIS10.3 to create a fishnet  
(100 m × 100 m) in the study area. Secondly, using 
the polygon to point tool of ArcGIS10.3 to convert the 
fishnet into a point layer. Thirdly, taking advantage 
of the spatial analysis tool of ArcGIS10.3 to obtain 
the independent variables value of each fishnet point. 
Fourthly, the LUR model was used to calculate the  
PM2.5 simulation concentration at each fishnet 
point. Finally, using the Kriging interpolation 
tool of ArcGIS10.3 to interpolate the simulation 
concentration of PM2.5, and the distribution maps of 
PM2.5 concentration were obtained in the study area 
(The resolution is 100 m). Furthermore, the maps of 
PM2.5 concentration were reclassified based on the 
criteria published by the Chinese government (table 2) 
(GB3095-2012).

Results and Discussion

Descriptive statistics

The mean PM2.5 concentration in 2017, non-heating 
season and heating season were 72.64 µg/m3, 43.62 µg/m3 

and 144.96 µg/m3, respectively. According to the 
national criteria (Table 2), the air quality in the whole 
year of 2017 and the non-heating season was good and 
the heating season was moderate pollution. The PM2.5 
concentration ranged from 56.1 µg/m3 to 225.9 µg/m3 

during the heating season and was obviously larger than 
during the non-heating season (4.1 µg/m3-61.3 µg/m3).

LUR model and validation

The LUR was implemented to determine the 
relationship between PM2.5 concentration and  
independent variables including precipitation, 
temperature, average air pressure, relative humidity, 
DEM, grassland area within 300 m buffer, and the 
distance between monitoring sites and the nearest road , 
respectively (Equation 4, Equation 5). 

(4)

(5)

...where Xtem, Xa-p, Xdem, Xrhu, Xp, Xn-road, and Xg-300m 
denote the temperature, the average air pressure, the 
elevation, the relative humidity, the precipitation, the 
distance from the a monitoring site to the nearest 
road, and the area of grassland in a 300 m buffer zone, 
respectively. Clearly, in the non-heating season, the  
PM2.5 concentration was affected by temperature, 
average pressure, elevation, relative humidity, and 
precipitation, respectively (Equation 4, Table 3), and 
the strongest impact factor was temperature (regression 
coefficient = 519.003, R2 = 0.461). In the heating 
season, the PM2.5 concentration was influenced by 
precipitation, roads, vegetation, elevation, and average 
pressure, respectively (Equation 5, Table 3), and the 
strongest impact factor was precipitation (regression 
coefficient = 17.446, R2 = 0.377). In the non-heating 
season and the heating season, the R2 were 0.986 and 
0.963, respectively, the adjustable R2 were 0.976 and 
0.937, respectively (Table 3), the R2 based on crossing 
validation were 0.85 and 0.92, respectively (Fig. 2). 
RMSE were 2.84 μg/m3 and 3.55 μg/m3, respectively, 
and MPE were 0.68 μg/m3 and -0.39 μg/m3, respectively. 
The relative error rate was between 0.42% and 15.31%. 
The comparison between observed values and predicted 
values showed the model worked very well (Fig. 3).

Table 2. The air quality classification.

PM2.5 daily average concentration/
(µg.m-3) Air quality level

0~35 Excellent

35~75 Good

75~115 Mild pollution

115~150 Moderate pollution

150~250 Heavy pollution

250~500 Severe pollution
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The spatial distribution characteristics 
of PM2.5

In the non-heating season, the pattern of PM2.5 
concentration was low in the southeast and high in  

Table 3. Parameters of the LUR model.

Category Independent 
variables

Unstandardized 
Coefficients

Standardized 
Coefficients T Sig. R2 Adjusted 

R2

B Std. Error Beta

Non-heating season

(Constant) 16167.499 1012.259 15.972 0.000

xtem 519.003 34.883 28.938 14.878 0.000 0.461 0.412

xa–b -28.750 1.899 -26.983 -15.138 0.000 0.808 0.769

xdem -0.239 0.043 -0.639 -5.624 0.001 0.925 0.900

xthu 33.390 6.698 2.262 4.985 0.002 0.962 0.943

xp -5.909 1.692 -1.080 -3.492 0.010 0.986 0.976

Heating season

(Constant) 529.103 190.239 2.781 0.027

xp 17.446 2.888 1.664 6.041 0.001 0.377 0.320

xn–road 0.080 0.016 0.453 4.847 0.002 0.699 0.639

xg–300m 2.252*10-4 6.804*10-5 -0.273 -3.310 0.013 0.839 0.785

xdem -0.305 0.073 -0.898 -4.164 0.004 0.924 0.886

xa–p -0.606 0.223 -0.660 -2.716 0.030 0.963 0.937

 
Fig. 2. Scatter plot of  PM2.5 concentration: a) Non-heating 
season, b) Heating season.

Fig. 3. Simulation quality assessment: a) Non-heating seasons, 
b) Heating seasons.
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the west of Xi’an (Fig. 4a). Clearly,  PM2.5 concentration 
in scenic spots, colleges, residences, and ecological 
zones were relatively low (Fig. 4a, Fig. 1). The lowest 
PM2.5 concentration distributed mainly in the Baqiao 
Ecological Park, the Bailucang Tourism Scenic Spot 
and the Qujiang District (Fig. 1, Fig. 4a). On the 
contrary, the PM2.5 concentration of industrial areas 
and under construction areas was relatively high  
(Fig. 1, Fig. 4a). Besides, 85.74% of the area had good 
air quality and 14.26% of the area had excellent air 
quality distributed mainly in the southeast of the study 
area (Fig. 5a). The rank of PM2.5 concentration from 
high to low was the Weiyang District, the Lianhu 
District, the Beilin District, the Xincheng District,  
the Yanta District, and Baqiao District, respectively 
(Fig. 4a). The largest PM2.5 concentration ranged 
from 43.48 μg/m3 to 61.29 μg/m3 in the Weiyang 
District, and the lowest PM2.5 concentration ranged 
from 4.14 μg/m3 to 56.18 μg/m3 in the Baqiao District. 
Overall, the air quality in the main urban region 
of Xi’an was good during the non-heating season  
(Fig. 5a).

In the heating season of Xi’an, the distribution 
pattern of PM2.5 concentration was low in the 
southeast and high in the textile industrial areas that  
distributed in northeast (Fig. 4b). 52.10% of the study 
area was polluted heavily that distributed mainly 
in the Weiyang District and the northern part of 
the Baqiao District. 39.38% of the study area was 
moderately polluted that distributed mainly in the 
central  and the west of the Baqiao District. 5.67% 
and 2.85% of the study area that distributed mainly 
in the southeast of the main urban area were slightly 
polluted and good air quality, respectively (Fig. 5b). 
The rank of PM2.5 concentration from high to low 
was the Lianhu District, the Weiyang District,  
the Yanta District, the Beilin District, the Xincheng 
District, and the Baqiao District, respectively  
(Fig. 4b), Fig. 5b). The largest PM2.5 concentration 
ranged from 139.92 μg/m3 to 172.28 μg/m3 in the Lianhu 
District. The lowest PM2.5 concentration ranged from 
56.08 to 225.89 μg/m3 in the Baqiao District. In short, 
the mean PM2.5 concentration in the heating season was 
obviously higher than in the non-heating season, and 

Fig. 4. The distribution of PM2.5 on a raster scale in 2017, Xi’an.
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the largest concentration difference appeared in the  
Baqiao District (Fig. 4c).

Influencing factors of PM2.5

Energy structure and land use

In the heating season, coal combustion played an 
important role in PM2.5 concentration. A previous 
study analyzed the distribution of PM2.5 in Beijing and 
reported that coal combustion contributed 22.7 mg/m3 
PM2.5 in January, in contrast with 0.7 mg/m3 PM2.5 in 
July in 2000 [48]. At the same time, the Bureau of Xi’an 
Ecological Environment announced that organic matter 
and coal contributed about 26% to PM2.5 in 2017 and 
indicated that coal combustion and biomass burning 
had a significant impact on PM2.5. Besides, in the 
southwest and northeast of the study area where the air 
quality was polluted heavily during the heating season 
as there were  several thermal companies and electrical 
companies located in these areas. (Fig. 1, Fig. 4, Fig. 5). 
The  lowest PM2.5 concentration distributed mainly in 
the southeastern part of Xi’an because the vegetation 
coverage was better than other regions in both 
heating season and non-heating season (Fig. 1, Fig. 4,  
Fig. 5). This conclusion was similar to previous studies. 
For example, forests can be used for reducing PM2.5 
concentration [49]. A large scale of green space played 
an important role in decreasing PM2.5 concentration 
[50].

Topography and meteorology

The PM2.5 concentration was strongly influenced by 
temperature (Equation 4) in the non-heating season, 
and the higher temperature might promote PM2.5 
concentration. Wang pointed out that the temperature 
was proportional to PM2.5 concentration. The higher 

temperature will enhance the photochemical reaction 
of the atmosphere that will accelerate the formation of 
a secondary aerosol was also an important source of 
particulate matter [51]. Besides, the average air pressure 
negatively correlates with PM2.5 due to the static 
wind often occurs in low-pressure weather conditions 
(Equation 4), and sufficient clouds may prevent to 
produce PM2.5. Furthermore, PM2.5 concentration 
decreased significantly with the increasing elevation 
gradient [52]. In the study area, the better vegetation 
coverage areas probably corresponded with high 
altitude, so PM2.5 concentration was absorbed by the 
vegetation in the southeast part of the study area 
(Equation 4). Moreover, the relative humidity positively 
correlated with the concentration of PM2.5 (except for 
precipitation occurs) (Equation 4). The large relative 
humidity was beneficial to PM2.5 adhere to the water 
vapor, and PM2.5 concentration would be increased. 
This result was similar to the study that humidity 
played an important role in PM2.5 pollution in Beijing. 
The secondary organic aerosol would be produced as 

Fig. 6.  The rose map of prevailing wind in 2017, Xi’an.

Fig. 5. Air quality distribution during non-heating season and heating season in 2017, Xi’an.
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the relative humidity increased [53]. Precipitation had 
a significant effect on purifying the air in non-heating 
season. Contaminants in the atmosphere were easily 
removed by rainfall (Equation 4). 

Unlike the non-heating season, precipitation 
positively correlated with PM2.5 during the heating 
season (Equation 5). Xi’an was not only cold but also 
dry during the heating season and there often occurred 
the inversion weather phenomenon, and PM2.5 was 
hard to diffuse due to the inversion weather condition. 
Furthermore, the prevailing wind direction in Xi’an was 
northeast and southwest that may cause pollutants to 
spread to the southwest and northeast (Fig. 6).

Traffic

Obviously PM2.5 concentration was affected by the 
density of roads and vehicles flows (Equation 5). The 
PM2.5 concentration on both sides of roads in the heating 
season was larger than that in the surrounding area (Fig. 
4b), and it proved that density of roads  and traffic flows 
might be reasons for the increasing of PM2.5.

Different affecting factors for PM2.5 between 
heating season and non-heating season

There were significant differences in the influencing 
factors of PM2.5 between the heating season and non-
heating season in Xi’an. The affecting factors in the 
non-heating season came from mainly natural factors 
(Equation 4). On the contrary, the affecting factors in 
the heating season were not only natural factors but 
also human factors. Therefore, the results remind us 
that people need to pay more attention to the impact 
of human activities on atmospheric environment in 
the heating season. Furthermore, this paper’s results 
confirmed PM2.5 concentration was simultaneously 
affected by both human activities and the natural 
environment [54].

Simulation results

There were several improvements in this study 
compared with the previous results of the LUR model. 
Firstly, the regression equation had better R2, smaller 
RMSE and MPE (Fig. 2, Fig. 3). The adjustable R2 

was larger than the R2 (0.65-0.84) in the previous study 
[55-57]. Secondly, the improvement of precision might 
be related to the detailed land use classification. In the 
previous research, vegetation was always divided into a 
coarse class. By contrast, vegetation was divided into 
detailed categories in this study (Table 1). Thirdly, the 
majority of scholars used sum of lengths of roads as 
the independent variable to quantitatively describe the 
influence of roads for PM2.5. In contrast, the nearest 
distance from the monitoring sites to the road was used 
as an independent variable to participate in modeling 
in this paper. Last but not the least, the fishnet tool of 
ArcGIS10.3 was used to obtain the distribution of PM2.5 

[55, 58], and the fishnet (100m) greatly increased the 
number of spatial interpolation sites. Besides, the multi-
source heterogeneous data could be effectively merged 
in the LUR model with the help of ArcGIS10.3, and the 
precision of distribution for PM2.5 concentration was 
significantly improved.

Objectively speaking, this paper  still has some 
limitations. For example, the simulation accuracy may 
be further improved if the pollutant discharge data 
of key polluting enterprises can be directly obtained 
and allowed to participate in modeling. Besides, 
although the influence of wind direction on PM2.5 
was discussed in this paper, it was only a qualitative 
evaluation. The simulation accuracy may be improved 
if the wind direction can be used as a potential 
independent variable. In summary, PM2.5 was affected 
by both natural and human factors, and its influencing 
mechanism was very complicated. This paper’s results 
can supply a reference for the further study of PM2.5. 
In conclusion, the future study should focus on the 
influencing factors of PM2.5, source analysis for PM2.5, 
health risks and the relationship between epidemics and 
PM2.5 concentration.

Prevention and control measures 
for air pollution

Firstly, it recommended the government further 
reduce the consumption of coal, vigorously promote the 
conversion of energy structure, increase the supervision 
of emissions from polluting enterprises, and force  
some enterprises to use air pollution purification 
equipment for treating exhaust emissions. Secondly, 
the government should continue to implement vehicle 
restriction policy, and promote urban public transport 
infrastructure. Thirdly, the government should 
strengthen dust control on construction sites. Fourthly, 
it recommended to planting grass and trees to improve 
urban vegetation coverage. Finally, it is very important 
to improve residents’ awareness of environmental 
protection.

Conclusions

This study collected PM2.5 monitoring sites data, 
land use data, and socio-economic data to establish the 
LUR model for simulating PM2.5 concentration in the 
heating season and non-heating season. The conclusions 
are as follows: (1) This paper improved the precision 
of the LUR model. (2) The PM2.5 concentration 
showed different distribution patterns in a heating and  
non-heating season in Xi’an. (3) The PM2.5 concentration 
was affected by both human factors and natural factors, 
and human factors play significant role in heating 
season than in non-heating season. (4) The government 
should implement specific air quality improvement 
measures based on influence factors in different seasons 
for PM2.5 concentration.
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