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Abstract

The purpose of the study is to unravel the effects of inorganic Nitrogen (N) combined with either 
organic fertilizer or biochar on the soil biochemical properties, plant phenotypic characteristics and 
soil bacterial community structure within an experimental cotton field. The experiment involved the 
determination of the soil chemical properties, enzymatic activities and bacterial community. The study 
method employed field measurements, laboratory analyses, high throughput sequencing of the bacterial 
16S rDNA to examine the response of soil enzymatic activities, microbial communities and plant 
phenotypic properties to the applied three different fertilizer regimens; (1) inorganic fertilizer (N), (2)  
N + organic fertilizer (N + OF), (3) N + biochar fertilizer (N + Biochar), under two cotton varieties: 
CN01 and ZD2040. The study indicated that combined N plus carbon-based organic fertilizer is 
responsible for enhanced crop growth, yield productivity and probiotic soil microbial content. Further, 
the combined mineral and carbon-based fertilizer regimen is highly beneficial to soil microbial content 
and diversity. The occurrence could be due to the increased soil nutrient content as a result of availability 
of carbon-based fertilizer and induced microbial activity by the mineral fertilizer. The use of N plus 
carbon-based organic fertilizer is recommended to improve the soil quality and cotton yield.  
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Introduction

High and increasing global demand for agricultural 
produce has put a strain on crop production. 
Consequently, this situation has led to dependency in 
intensive agricultural management practices. Fertilizer 
application is a key farming practice that has been used 
over a long period of time in improving crop nutrition 
and productivity through availing of nutrients to plants, 
with associated soil property and microbial changes [1], 
and its use is expected to continuously increase in the 
coming decades. Application of these fertilizers, either 
organic or inorganic, not only impact on the plants’ 
growth and health, but also influence the soil nutrient 
availability, physico-chemical properties, plant diseases 
suppression, disease incidence and soil microbiota [2-4].

With respect to agricultural sustainability and 
cropping systems, soil microbial processes are of 
high significance because of their essential role in the 
dynamics of soil carbon (C) and N [5]. Application 
of organic fertilizer amendments has been found to 
improve soil fertility, soil structure and microbial 
biomass through the increase of soil nutrient and 
organic matter content [6-8]. Organic fertilizers 
contribute in the enrichment of soil microbial biomass 
through their supply of C-rich organic compounds 
to the C-limited soil microbial communities [9]. 
Additionally, the availability of C in the soil tend to 
favor proliferation of specific microbial groups that 
utilize organic compounds, hence changing general soil 
microbial community structure [10]. Several conducted 
studies estimate that soil microbial activity increases 
by 16 % to 20 % when organic fertilizer is applied, 
compared to inorganic fertilizers [8, 6, 11, 13]. Further, 
an increase in enzymatic activities associated with 
plant macronutrients in relation to organic fertilizers 
has been recorded in some studies [11, 14]. Therefore, 
soil amendments by organic fertilizer can promote soil 
microbial activities and subsequently give high crop 
yields due to the increase in long term soil organic 
matter and soil fertility, when compared to inorganic 
fertilizer amendments [15, 16]. However, a study had 
illustrated that the application of organic fertilizer can 
improve plant growth and yields even in cases when 
they are applied in small quantities in a single planting 
season [17-19].

Equally, inorganic fertilizers like the N fertilizer 
have had an impressive contribution in improving crop 
yields [20]. Indeed, different forms of nitrogenous 
fertilizers have been used singly in agricultural 
farms to increase productivity [21]. In addition, 
most cotton farmers have resorted to the use of soil 
conditioning techniques to help restore soil integrity 
and consequently improve cotton productivity [22]. 
Contrary to the positive contribution of nitrogenous 
fertilizer to increased crop productivity, some of them 
have been shown to pose consequential effects on the 
soil microbial diversity and community structure, a 
condition that results to alteration in the soil enzymatic 

activities [23]. Such consequential effects may be 
based on the relationship that exists between the soil 
microbial communities and the soil enzyme activities 
[20, 24]. Further, the application of inorganic fertilizers 
over a long period of time can also present negative 
effects on overall soil quality as a result of complex N 
transformation in the soil, soil acidification, breakdown 
of soil structure, and decline in soil productivity [3].

Therefore, a field experiment was undertaken with 
cotton as the crop of production.  This study was 
purposed to unravel the effects of various fertilizer 
treatments on soil ecosystems and plant phenotypic 
and enzymatic characteristics. Jingzhou city in Hubei 
Province was chosen as the study location because it is a 
major agricultural zone in China and the soil ecosystem 
is highly evolved due to agricultural practices and soil 
management regimes. Soil management practices have 
a major impact on the crop growth, yields and soil 
microbial communities. The study hypothesized that 
combining N and carbon-based organic fertilizer does 
not add any significant contribution on the growth, 
yield productivity of cotton as well as on the probiotic 
soil microbial content based on the prevailing soil 
conditions within the Jingzhou agricultural zone of the 
people’s republic of China.  The study employed the 
use of high throughput sequencing of the bacterial 16S 
rDNA, together with other experimental approaches in 
examining the response of soil microbial communities 
and plant phenotypic properties to three different 
fertilizer regimens; i.e. N, N + Organic fertilizer and 
N + Carbon-based organic fertilizer, applied on CN01 
and ZD2040 cotton varieties. The two cotton varieties 
are superior cotton varieties that can produce high and 
stable yields under low chemical fertilizers, pesticides 
and water, and are more tolerant to pests, diseases, 
drought, salinity, submergence and other abiotic or 
biotic stresses, but slightly differed in amylose and 
protein content [25].

Materials and Methods

Experimental Site and Study Setup

A field experiment was set-up in a cotton field 
in Hubei province, China (111°48′E, 29°37′N). The 
study region has a typical subtropical climate with 
annual precipitation of 1200 mm, annual evaporation 
stands at 600 mm and the average temperature is  
16-17ºC (Source: http://www.hubei.gov.cn/). The studied 
soil used in cotton production was fluvisol, based on 
Food Agricultural Organization (FAO) classification 
guidelines. The studied crop system comprised of 
two varieties of cotton. Three fertilization treatments 
were applied: (1) inorganic fertilizer (N), (2) organic 
fertilizer (N + OF), (3) biochar fertilizer (N+Biochar), 
all with two varieties: CN01 and ZD2040. Unfertilized 
soil was used as control. Each fertilizer treatment 
was performed in triplicate in a field area of 30.4 m2; 
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with a plant spacing of 22 cm and eventual density 
of 3987 plants/ha, in a randomized block design  
(Table 1). Each treatment was applied on the same 
day. The regular fertilizer application rates of N, P, 
and K were the same for each treatment (10 kg ha–1). 
The compound fertilizer: (N-P2O5-K2O) (25-10-16) was 
obtained from Hubei Xinyang Fengfei Company Ltd 
(Hubei Xinyang Fertilizer Co, Ltd, China), organic 
fertilizer (N-P2O5-K2O) (13-8-9) with organic matter 
content of ≥15% was obtained from Zhongnong 
Fertilizer Co, ltd, China, while the biochar-based 
organic fertilizer (1#): C = 10%, total nutrient ≥5% 
(calculated by N-P2O5-K2O with 2-2-2), organic matter 
content ≥5% was obtained from Hennan Huinong 
Fertilizer Co, Ltd, China. The fertilization level was 
N-P2O5-K2O = 2.5-1.52-1.71. The specific fertilizers and 
dosages are as shown in Table 1.

Chlorophyll Content, Photosynthetic 
and Yield Parameters

Chlorophyll content was measured using the 
spectrophotometry method. Net photosynthetic rate was 
measured through the increase in dry mass which was 
undertaken through the technique of ‘serial harvests’ 
where cotton leaves were harvested, dried to constant 
weight and weighed – this was repeated over the 
duration of the experiment. Stomatal conductance and 
transpiration rate were measured using a steady state 
potometer which measures stomatal conductance using 
a sensor head with a fixed diffusion path to the leaf. 
It measures the vapor concentration at two different 
locations in the diffusion path. It computes vapor flux 
from the vapor concentration measurements and the 
known conductance of the diffusion path. Intercellular 
carbon dioxide concentration was determined 
through the direct measurement of intercellular CO2 
concentration in a gas-exchange system.  Root weight, 
cotton ball weight, ratio of root to shoot and yield of 
un-ginned cotton were measured for each cotton variety 
under each treatment.

Soil Chemical Properties and Enzymatic 
Activity

Sampling of soil in all the treatments was performed 
at the boll-opening stage of cotton development. 
Random soil sampling was done in replicates of 10 in 
a range of 5cm from the cotton trunk at soil depths of  
0-15 cm. Thereafter, all the replicates were completely 
mixed to produce a uniform and homogenous sample. 
The soil samples were then were transported to the lab 
in ice box under cold condition and all the physico-
chemica parameters analyzed within a week from 
the collection time. One part of all study samples 
was cryopreserved (-80ºC) for later use in soil 
microbiological and chemical analysis. Soil chemical 
properties were analyzed as described by Liu [26]. 
In brief, soil total N was determined by Kjeldahl 
digestion. Soil available N was converted to NH+

4 under 
alkaline conditions, collected in a H3BO3 solution, and 
subsequently, determined by titration with standard 
0.01 mol L−1 H2SO4. Total soil P was measured by first 
digesting soil in a mixed acid solution of H2SO4 and 
HClO4, and then, analyzed by the molybdo-phosphate 
method. Available soil P was determined by the Olsen 
method. Soil pH was measured in 1:2.5 soil:water slurry 
using a glass electrode. The determination of Urease, 
Nitrate reductase and Nitrite reductase tests were 
conducted as previously described [27]. Experimental 
analysis of all enzymatic activities was conducted in 
triplicates for all the soil samples.

Total Microbial DNA Extraction, 
PCR Amplification and 16S rDNA Sequencing

Total DNA was extracted from all the treatments, 
each comprising of a homogeneous mixture of the 
replicate samples for each treatment. Approximately, 
0.4 grams of soil samples was used in DNA extraction 
using the E.Z.N.A.® soil DNA Kit (Omega Bio-
Tech, Norcross, GA, U.S.) based on the manufacturer 
guidelines. Briefly, the soil sample and solution were 
added to a sterile Eppendorf tube then vortexed for  
15 seconds at 5 000 r min–1. The resultant supernatant 

Variety Treatment
Compound 

fertilizer
(Kg ha-1)

Organic 
Fertilizer
(Kg ha-1)

Carbon-based 
organic fertilizer

(Kg ha-1)

P2O Make up
(Kg ha-1)

K2O Make up
(Kg ha-1)

CN01

N 10 — — 3.25 0.18

N + organic fertilizer — 19 — — —

N + carbon based organic 
fertilizer 8.4 — 20 1.75 —

ZD2040

N 10 — — 3.25 0.18

N + organic fertilizer — 19 — — —

N + carbon based organic 
fertilizer 8.4 — 20 1.75 —

Table 1. Table of fertilizer application rates under cotton variety CN010 and ZD2014.
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was transferred to a new Eppendorf tube as described 
in the manufacturer’s extraction protocol. Final DNA 
elute was aliquoted into three parts and stored at 
–20ºC until use. To check for quality, the extracted 
genomic DNA was checked using 1% agarose gel 
electrophoresis. Ethidium bromide (5 µg mL–1) was 
used in staining the agarose gel and the image viewed 
on a gel imaging system. The extracted genomic 
DNA was used as PCR amplification template of the 
V3-V4 hypervariable regions of the 16SrDNA gene 
with previously described universal primers 338F 
(5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R 
(5’-GGACTACHVGGGTWTCTA AT-3’) [28]. Briefly, 
PCR reactions were performed in triplicate 20 μL 
mixture containing 4 μL of 5 × FastPfu Buffer, 2 μL 
of 2.5 mM dNTPs, 0.8 μL of each primer (5 μM),  
0.4 μL of FastPfu Polymerase and 10 ng of template 
DNA. The resulted PCR products were extracted from a 
2% agarose gel and further purified using the AxyPrep 
DNA Gel Extraction Kit (Axygen Biosciences, Union 
City, CA, USA) and quantified using QuantiFluor™ 
-ST (Promega, USA) according to the manufacturer’s 
protocol. For DNA sequencing, TruSeqTM DNA 
Sample Prep Kit was used. In every sample, Purified 
amplicons were pooled in equimolar and paired-end 
sequenced (2 × 300) on an Illumina MiSeq platform 
(Illumina, San Diego,USA) according to the standard 
protocols by Majorbio Bio-Pharm Technology Co. Ltd. 
(Shanghai, China).

Data Sequence Editing, Categorical 
Transformation

The obtained sequenced data was edited, categorized 
based on similarity and thereafter classified. In brief, all 
low-quality reads below a Phred score of 28, sequencing 
tags, chimeras and non-bacterial ribosomal sequences 
were filtered from the dataset, using the MOTHUR 
software package [29]. Thereafter, the paired-end 
reads were merged with an allowed minimum overlap 
of 10bp. A second tier of quality control and filtering 
was performed and then operational taxonomic units 
(OTU) were assigned to the sequences with a cutoff of 
95% similarity. OTUs with reads ≥3 were filtered out 
as they may be a result of sequencing artifacts [30]. 
Bacterial 16S OTU classification was done against the 
non-aligned version of Silva database.

Statistical Analysis

Data was analyzed using MINITAB statistical 
package version 14 (https://www.minitab.com/en-us/
products/minitab/), QIIME and R software. Mean 
differences were calculated at a p value of 0.05. Means 
were compared using one-way Analysis of Variance 
(ANOVA) and Least Significant Test (LSD) used in 
mean separation as a post hoc test. All the statistical 
tests performed in this study were considered significant 
at P<0.05.  

Results

Chlorophyll Content, Photosynthetic 
and Yield Parameters

The results on chlorophyll content, photosynthetic 
and yield parameters are provided in Fig. 1. The 
chlorophyll content and photosynthetic parameters 
showed a similar trend across all the fertilizer 
applications and the cotton varieties. The net 
photosynthetic rate, stomatal conductance, intercellular 
carbon dioxide concentration (Ci), and transpiration 
rate were all observed to be highest on the N + Carbon-
based organic fertilizer application than the other two 
fertilizers applications (N fertilizer and the N + Organic 
fertilizer applications) under both the two cotton 
varieties (CN01 and ZC2040) (Fig. 1a). Yield parameters 
also showed similar trend, the root weight, cotton ball’s 
weight, ratio of root to shoot and yield of unginned 
cotton were all highest on the N + Carbon-based 
organic fertilizer application than the other two 
fertilizers applications (N fertilizer and the N + Organic 
fertilizer applications) under both the two cotton 
varieties (CN01 and ZC2040).  However, there was a 
slight change of trend for the ratio of root to shoot under 
the ZC2040 variety, which showed significantly similar 
values across all the fertilizer applications (Fig. 1b).

Soil Biochemical Properties

The results on enzymatic activities in µmole/min/mg 
are provided in Fig. 2. The urease activity for both the 
CN01 and ZC2040 cotton varieties was highest at the  
N + Organic fertilizer application than on the N 
fertilizer and the N + Organic fertilizer applications. 
The nitrate reductase enzymatic activity was equally 
highest at the N + Organic fertilizer application than 
on the N fertilizer and the N + Organic fertilizer 
applications. However, the Nitrite reductase activity 
was highest on N + Carbon-based organic fertilizer 
application than the other fertilizer application under 
the CN01 cotton variety but highest on the N fertilizer 
application under the ZC2040 cotton variety. 

Bacterial Diversity and Community 
Composition

The bacterial community operation taxonomic 
units through pieplot analysis is shown in Fig. 3.  
A total of 1,075,591 sequences was obtained after 
quality check and trimming processes, with an average 
base length of 440. Using pie plot, bar plot, and sunburst 
plot, abundance analysis to identify OTUs comparison 
and variation across the fertilization treatments was 
conducted. Unfertilized soil was used as control. 
OTU 152 (9.39%) was the most dominant bacterial 
community in all the treatments, followed second 
by OTU 126 (6.16%) and third was OTU 27 (4.59%). 
The percentage of absolute abundance of bacterial 
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community OTU levels through barplot analysis across 
the treatments is provided in Fig. 4. The result showed 
that the bacteria of OTU 152 had the highest absolute 
abundance level in tests 1,2,3 and 4 while the bacteria 
of OTU 126 had the highest absolute abundance level 
in the control tests while almost missing in the other 
treatment tests. Result on the bacterial community 
OTU levels across the treatments through sunburst plot 
analysis is provided in Fig. 5. This result showed that 
the bacterial phyla Bacteroidetes, Proteobacteria and 
Firmicutes were the most dominant communities across 
all the fertilizer treatments.

Relationship between Sample 
and Species

With the use of circus sample-species relationship 
visual diagram, the correspondence between study 
samples and bacterial species was depicted in terms of 
the dominant species composition ratio per treatment 
and between the different treatment regimes. Bacterial 
phyla Bacteroidetes, Proteobacteria, and Firmicutes 
were the most dominant communities in all the fertilizer 
treatments. Bacteriodetes and Firmicutes highly 
corresponded to the test samples as well as the control. 
Further, compared to the other three dominant phyla, 
phylum Vernucomicrobia was present in very small 
proportions than the test samples and control (Fig. 6).

Beta Diversity Analysis

We examined for the beta diversity between the 
test samples derived from the three fertilizer regimens 
(Fig. 7). The microbial community in test 1 was highly 
related to the control tests while test two was very 
diverse rooted from the two test groups. (Fig. 7a). 

Discussion

Nitrogen (N) is a very crucial and important nutrient 
essential in crop yield formation by establishing and 
sustaining its photosynthetic capacity [11, 31]. Also, 
the application of additional N fertilizer is typically 
essential for crops to attain optimum yields [32-34]. 
Most studies have confirmed that the addition of organic 
materials results to the increase in organic carbon, 
aggregate stability, moisture retention capacity and 
infiltration rate of the surface soil while reducing the 
bulk density. Furthermore, the application of inorganic 
fertilizer alone can drastically decrease the stability 
of macro aggregates and moisture retention capacity 
but increased the bulk density values. The annual 
applications of mixed fertilizers such as the wheat straw 
and farmyard manure have therefore resulted in higher 
grain yields of most crops on long term [35]. Studies 
also suggest that the partial substitution of inorganic 
fertilizer with organic fertilizers may be one of the 
sustainable approaches necessary in the sustainable 
management of soil nitrogen content, and this has been 
found to promote cotton productivity, and improving 
nitrogen use efficiency in cotton farmlands [19, 36]. 
From our study findings, we established that application 
of a combined N+ carbon-based fertilizer can increase 
the chlorophyll content of cotton leaves and hence 
enhance the photosynthetic capacity of cotton leaves. 
Further, the dry matter weight and root-shoot ratio of 
cotton plants are higher, which significantly increased 
the number of bolls per plant and single boll weight 
of cotton plants; subsequently improving the yields 
significantly. Further, in the two cotton varieties 
(ZD2040 and CN01), stomatal conductance, intercellular 

Fig. 2. Soil urease, nitrate reductase (NR) and nitrite reductase 
(NiRs) enzymatic activities in µmole/min/mg under cotton 
variety CN010 and ZD2014. 
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Fig. 3. Bacterial community operation taxonomic units through pieplot analysis.

Fig. 4. Percentage of absolute abundance of bacterial community operation taxonomic unit levels across the treatments through barplot 
analysis.
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carbon dioxide concentration, and transpiration rate 
were higher in N + carbon-based organic fertilizer 
treatment than in the pure N treatment. This can be due 
to the C availability in the soil hence the proliferation 
of microbial community and further conversion of soil 
nutrients and eventual uptake in plants.

Soil enzymatic activities are usually as a result of 
the activity of soil microbial flora, hence it is highly 
influenced by the number and diversity of available 
microbiota. In agricultural soils, denitrification is a 
very important process. This process is a facultative 
anaerobic reaction that sequentially reduces  NO3−  to 

Fig. 5. Bacterial community operation taxonomic unit levels across the treatments through sunburst plot analysis. 

Fig. 6. Sample-species relationship diagram through Circos analysis.
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N2 [37, 38]. Nitrate reductase and nitrite reductase are 
involved in this process. From our study results, we 
observed the highest enzymatic activity in a combined 
mix of inorganic and carbon-based organic fertilizer 
regimen. Enzymatic activities of urease, nitrate 
reductase and nitrite reductase continuously increased 
from N, N + Organic fertilizer and N + Carbon-based 
organic fertilizer, respectively. 

Fertilizer amendments often increase the soil 
organic C (Corg) levels and concentration of other soil 
nutrients like nitrogen (N) [40]. Soil organic matter 
sources can be from direct incorporation of manure, 
straw or sewage sludge or from indirect sources through 
improved plant growth [41]. Mostly, microbial biomass 
levels increase with rise in soil Corg content [42]. Our 
study findings agree with several previously conducted 

studies that have shown that organic amendments 
positively influence microbial biomass [6, 43, 44].  
Further, we found bacterial phyla Bacteroidetes, 
Proteobacteria and Firmicutes (Fig. 4) as being most 
dominant communities in all the fertilizer treatments, 
which generally corresponds to previously conducted 
studies agricultural soil studies [41, 45-47]. In addition, 
higher OTU diversity was seen in amended soil 
treatments than in the control group.

With the current advancements in sequencing 
technologies, it is possible to study soil microbial 
communities at higher throughput and resolution. 
Through these platforms, there exist opportunities 
to evaluate and gauge soil management practices at 
specific taxa level, and even determine their attributed 
function. Additionally, in combination with other 

Fig. 7. Beta-diversity analysis of obtained data. a) Hierarchical clustering tree on operation taxonomic unit levels. b) sample distances 
Heatmap on operation taxonomic unit levels.



Wang X., et al.4406

techniques, we can predict fertilizer regimens that 
promote growth of beneficial microbial flora that in turn 
translates into positive plant proliferation and hence 
higher yields [48]. For example, some of the previously 
conducted studies have reported a negative correlation 
between Verrucomicrobia abundance available 
nitrogen, phosphorus and potassium, and soil 
organic matter [49, 50]. In that, there is a decrease of 
Verrucomicrobia communities when levels of available 
nitrogen, phosphorus and potassium and soil organic 
matter increase. From our study, there was a small 
proportion of Verrucomicrobia. These observations 
depict that new microbial study technologies present 
novel ways to monitor the level, presence or even 
absence of different bacterial taxa that can be 
influenced by varying soil management practices under 
agricultural production [50, 51]. 

Conclusion

In conclusion, we used a multidisciplinary 
approach in studying the effects of combined organic 
and inorganic fertilizer treatments on soil microbial 
communities and crop productivity. Combined  
N + carbon-based organic fertilizer was shown to be 
responsible in promoting crop growth, yield productivity 
and soil microbial content. In comparison to other 
previously conducted studies, the findings from this 
present study support the conclusion that the application 
of carbon-based fertilizer in amalgamation with mineral 
fertilizer, typically contributes to increased crop 
productivity and stability. Further, combined mineral 
and carbon-based fertilizer regimen is highly beneficial 
to soil microbial content and diversity, this is achieved 
through increased soil nutrient content as a result of 
availability of carbon-based fertilizer and induced 
microbial activity by mineral fertilizer.
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