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Abstract

Little Akaki River (LAR) is among the heavily polluted urban rivers in Ethiopia. A bimonthly 
physico-chemical and heavy metals water quality analysis was conducted aimed at assessing the 
spatio-temporal characteristics and quantifying sources contributing to the pollution during dry and 
wet season at 22 montoring stations. Accordingly, laboratory analysis results indicated that most of 
the constituents deviated from the national and international guideline limits and the river is critically 
polluted at the middle and downstream segment. Factor Analysis (FA) was used to qualitatively 
determine the possible sources contributing to the pollution of LAR where three factors are identified 
that determine the pollution level during wet and dry season explaining 79.26 % and 79.47 % of the 
total variance respectively. Agricultural and urban runoff (nonpoint pollution sources), industrial 
and domestic waste are the three dominant factors that contribute to pollution in LAR. On the other 
hand, pollution sources of heavy metals in LAR are mostly dominated by industrial release whereas 
urban washouts from garages and automobile oil spills are other possible sources. Cluster Analysis 
spatially grouped all 22 monitoring stations into four and three clusters during the dry and wet season 
respectively. USEPA’s receptor model, UNMIX,  was used to quantify the composition and contribution 
of LAR constituents. The model predicted quite well with a minimum Signal to Noise ratio (S/N) of 
2.71 and 2.16>2 and R2 of 0.91 and 0.88>0.8 for the dry and wet season respectively. The UNMIX model 
effectively predicted the water quality source composition with a model predicted to measured ratio  
(P:M) of 1.04 and 1.16 during the dry season and wet season with an average percentage error of 1.38 % 
and 17.13 % respectively. LAR water quality management approach incorporating all the three pollution 
sources could be feasible. 
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Introduction 

Urban rivers of developing countries are often 
considered as carriers of toxic heavy metals, organic 
and inorganic nutrients, and are becoming a threat to 
community [1]. The rivers are serving as a hotspot 
where pollution from various sources are dumped [2]. 
Due to the complex and dynamic characteristics of 
waste released to the rivers, it is becoming extremely 
difficult to accurately characterize the water quality 
constituents of these rivers thereby making water 
quality management more challenging. Hence 
assessment of spatio-temporal variation of a river water 
quality is becoming  vital in characterizing the different 
constituents of the river water through routine water 
quality monitoring programs [3, 4]. 

The spatio-temporal assessment of water quality 
based on a short duration monitoring campaign will 
give an erratic result which is difficult to draw a 
concrete water quality management plan [5]. Nowadays, 
multivariate statistical techniques (MSTs) such as Factor 
(FA) and cluster analysis (CA) are becoming a way to 
effectively evaluate this spatio-temporal variability 
in a watershed identification of the possible pollution 
sources [6] where they are applied and found to be 
successful in evaluating river water quality in South 
America [5], Asia [6, 7], North America [8], Africa [9, 
10], and Europe [11]. Though MSTs, specifically FA, 
is effective in the qualitative estimation of the type of 
pollution sources, they have drawbacks in quantifying 
sources contributing to the pollution of a water 

environment [12]. Hence, multivariate receptor models 
(MRMs) have the tendency to fill the gap and they 
become a tool that can effectively quantify the sources 
contributing to river pollution. Studies conducted 
using MRMs such as APCS-MLR [12], UNMIX [13], 
and PMF [14] have proved effective in estimating the 
contribution of each source to individual constituents. 
In Ethiopia, urban river pollution is associated with the 
high and unplanned expansion of cities, uncontrolled 
agricultural and urban runoff, and improper domestic 
and industrial waste release. Moreover, waste generated 
from different sources in urban areas is released to 
the rivers without or minimal treatment which makes 
the rivers a primary pollution hotspot [15]. Due to the 
lack of continuously monitored water quality data, few 
studies have been conducted on Little Akaki River 
(LAR) water quality. The study conducted by Abegaz 
[16] with two sampling campaigns showed that the 
distribution of pollutants and heavy metals in LAR 
deviated from the Ethiopian and international guideline 
standards. In addition, based on the land use type of the 
study area, Yilma et.al. [17] classified the LAR in three 
pollution zones (low, medium, and high). Therefore, 
it is time to carefully look at the main causes that 
control the spatial and temporal water quality dynamics 
in LAR. Hence, the objectives of this study were 1) 
evaluating the LAR physico-chemical and heavy metal 
water quality characteristics during dry and wet seasons 
2) determination of possible sources contributing to the 
LAR pollution and classifying the pollutions based on 
their spatial similarity 3) quantifying the contribution 

Fig. 1. Study area map and monitoring station locations (M = main channel, T = Tributaries, AA = Addis Ababa)
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and composition of the identified pollution source using 
USEPA’s UNMIX model.

Materials and Methods

The Study Area

LAR is located in Addis Ababa, the capital and 
the largest city of Ethiopia. Geographically, the study 
area is bounded between 9.06°N and 38.69°E to 8.89°N 
and 38.75°E (Fig. 1). The climate of the area is mostly 
warm temperate to humid and sub-humid with an 
altitude ranging from 2200 m to 2600 m above sea 
level. The dry season in the study area ranges from 
October to May whereas the wet season ranges from 
June to September. The rainy season in the study area 
is characterized by rainfall of short duration with an 
annual depth of 1400 mm. There are three major rivers 
in the city (Kebena, LAR and Tiliku Akaki River) all 
originating near the foothills of Entoto. LAR is one of 
the heavily polluted rivers in the country [18, 19] due 
to the release of industrial, agricultural, and domestic 
waste into the river with no or minimal treatment. 
Nearly 52% of the country’s large-scale industries are 
located in Addis Ababa where most of them discharge 
their wastewater directly to the river [19]. Moreover, 
the river is highly impacted by the release of household 
and agricultural waste. On the other hand, the study 
conducted by Ghebretekel [20] showed there are a total 
of six large-scale tanning facilities near LAR only that 
directly discharge their industrial waste to the river. 
LAR receives a lot of waste from households, tanneries, 
shoe factories, detergent and oil industries, abattoir, 
marble factories, hospitals and schools, soft drink 
industries and brewery factories. This study generally 

comprises upstream from the outlet of Gefersa dam and 
downstream to Aba Samuel lake inlet which stretches 
for about 43 km.

Sampling 

Water sample in LAR was collected bi-monthly for 
physico-chemical and heavy metal constituents in LAR 
from April 2018 to March 2019 during dry and wet 
seasons. The sample collection for the wet season was 
event-based where samples were collected following the 
rainfall. A total of 22 monitoring stations were selected 
(Fig. 1); 15 on the main river channel and 7 from 
tributaries (LART). The sample site selection was based 
on the factors such as availability of point and non-
point sources, land use type, nature of anthropogenic 
influences, accessibility, level of disturbance and type 
of settlement. Sample collection, handling, preservation, 
and treatment were according to [21]. A 1.5 L PE bottle 
was used to collect water for physico-chemical analysis. 
The bottles were washed by deionized water 24 hours 
prior to sample collection and rinsed three times by 
sample water during collection. Once collected, the 
samples were preserved, put in the cooler box (Mobicool 
v30 AC/DC, Germany) and transported immediately to 
the laboratory for analysis. 

Analytical Methods

The collected samples were analyzed for 11 
physico-chemical parameters, namely, pH, Electrical 
Conductivity (EC), Total Dissolved Solids (TDS), 
Water Temperature (T), Dissolved Oxygen (DO), 
5-days Biochemical Oxygen Demand (BOD5), 
Chemical Oxygen Demand (COD), Total Kjeldahl 
Nitrogen (TKN), Nitrate (NO3-N), Nitrite (NO2-N), 

Table 1. Analyzed parameters and analytical methods.

No. Parameter Measurement Location Analytical Method Instrument

1 pH On site Digital Multi-parameter analyzer HQ40d, USA

2 DO On site Digital Multi-parameter analyzer HQ40d, USA

3 EC On site Digital Multi-parameter analyzer HQ40d, USA

4 TDS On site Digital Multi-parameter analyzer HQ40d, USA

5 Temperature On site Digital Multi-parameter analyzer HQ40d, USA

6 BOD Laboratory Modified Winkler

7 COD Laboratory Open Reflex

8 Orthophosphate Laboratory Spectrophotometer DR2800 (HACH, USA)

9 TKN Laboratory Kjeldahl Kjeldahl

10 Nitrate Laboratory Spectrophotometer UV-VIS Spectr., India

11 Nitrite Laboratory Spectrophotometer DR2800 (HACH, USA)

12 Heavy Metals Laboratory GFAAS

All units in mg/L except pH (s.u), Temp (oC), EC (µS/cm)
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Orthophosphate (PO4-P) and heavy metals such as 
Manganese (Mn), Chromium (Cr), Lead (Pb), Zinc (Zn), 
Copper (Cu), and Cadmium (Cd). All the analytical 
procedures (Table 1) for the determination of physico-
chemical and heavy metals constituents of the LAR  are 
according to [21, 22]. 

Statistical Analysis 

Data treatment needs to be performed for 
constituents with non-detects, outliers, retaining, and 
deletion, and exclusion of monitored water quality data 
prior to the implementation of MSTs. For effective 
interpretation of water quality variables by FA, 
redundant parameters need to be excluded so that the 
information explained by PCA/FA will not be distorted 
[23]. In addition, data normalization and standardization 
are also prerequisites during MST analysis so as 
to control bias during evaluation [24]. For the case 
of LAR, the raw water quality data were tested for 
normality and checked for outliers. The variables were 
further Z-scale standardized to have standard deviation 
of one and a mean of zero. With Z-standardization, 
some parameters with different measurement units 
will have a similar weight to others and the impact of 
parameters with unjustified influence will be avoided 
[25, 26]. A parametric test, one-way ANOVA, was 
performed on raw data to check the availability of a 
significant difference between the sample means. In 
LAR, FA was used to qualitatively determine the type 
of source contributing for LAR pollution where data 
quality plays a vital role while analyzing the water 
quality constituents. Hence, prior to FA, the suitability 
of the collected samples for FA was checked using the 
parameters suitability test: Kaiser-Meyer-Olkin (KMO), 
a measure of sampling adequacy and Bartlett’s test of 
sphericity that on the other hand examines whether the 
available data are independent or not. A KMO value 
close to unity would generally mean the correlations 
are compacted and hence the sampling and the samples 
are highly suitable for FA whereas smaller values would 
generally mean that the variables in consideration have 
very little in common [24]. Though KMO greater than 
0.5 is considered adequate [27, 28], higher values are 
often recommended. On the other hand, CA was used 
to group all the monitoring station according to their 
spatial similarity were Hierarchical Cluster Analysis 
(HCA) was used to classify the monitoring stations 
based on the similarity between constituents through 
Ward’s method. The statistical analysis in this paper 
was performed integrally by R (v3.5.3), PAST, and 
Microsoft Excel (2016). 

Multivariate Receptor Model (UNMIX) 
and its application in LAR

Although MSTs are nowadays gaining advantages 
as they can predict the type of source contributing to 
river pollution, quantifying constituent contribution 

is often difficult [12]. MRMs, developed based on the 
mathematical procedure in consideration of sources 
contribution of constituents, have now become 
successful to fill this gap. Many studies were conducted 
integrating MRMs such as PMF and UNMIX [14], 
APCS-MLR and PMF [29, 30] or individual model 
such as UNMIX [13], APCS-MLR [12, 31] to estimate 
the contribution of a certain source to each individual 
constituent based on the source type identified. EPA’s 
UNMIX model has become popular among MRMs 
in recent days to review environmental sample data 
such as air, water quality and sediment analysis [32]. 
The UNMIX model primarily assumes the constituent 
concentration has a linear relationship with a certain 
source of unknown number and contribution where both 
remain positive [33]. Whereas the source contribution 
explains the share of each source for individual 
constituents, the source type is determined based on the 
constituents’ source profile [32].

Results and discussion

Evaluation of Spatio-Temporal Variation 
of Water Quality in LAR 

Descriptive statistics for physico-chemical 
characteristics of LAR for the dry season is shown on 
Table 2. A physical water quality parameter, pH, in 
LAR during the wet season has shown few irregularities 
across the monitoring stations. The monitored pH 
on LAR ranged from 7.1-7.97 were the minimum 7.1 
recorded at two of the tributaries; T1 and T4, where 
both receive domestic waste including raw sewage from 
residential areas. Though deviation of pH from the 
recommended standard limit could have impact on the 
aquatic environment [4], the observed pH in LAR was 
within the national standard [34] . On the other hand, 
maximum pH was recorded at M13 with 7.97 where 
the effluent released from the wastewater treatment 
plant upstream of the monitoring station could be a 
contributing factor for the rise in pH. Unlike the wet 
season, the pH recorded during the dry season showed 
deviation from the standard guideline at M3. The lower 
pH at station M3 (5.7) could be due to the presence of 
acidic waste released from the most polluted segment 
of the river originating from densely populated urban 
commercial center, Merkato.  

The DO concentration in river is the major 
controlling factor for the existence of aquatic life [35]. 
In LAR, DO concentration rises during the wet season 
due to increased flow and physical aeration by river 
wave action. The DO trend in the LAR monitoring 
stations during the wet season was found that the 
concentration in the upstream section of the river had 
few deviations from the standard guideline relative to 
the middle catchment. This could primarily be due to 
the availability of fewer industries and relatively less 
anthropogenic influence. On the other hand, LAR 
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tributaries, mostly in the middle catchment, has shown 
high DO deterioration were 0.79 mg/L is recorded at 
T3, the most polluted tributary of LAR. The higher  
DO concentration was recorded at M15 (7.07) and M7 
(7.06) mg/L respectively. Both stations are located at the 

upstream and less disturbed section of the catchment, 
the later found at a closer range downstream from a 
waterfall that could initiate the re-oxygenation. The 
average DO concentration in LAR tributaries during 
the wet season is nearly 3.88 mg/L whereas the main 

Table 2. Descriptive statistics of spatial variation in LAR physico-chemical constituents during the dry season: mean and standard 
deviation (in bracket, italics).

St. PO4-P NO2-N COD BOD DO pH TDS Temp TKN NO3-N EC

M1 5.5
(1.3)

0.06
(0.02)

1146
(106)

101.2
(80.9)

1.53
(0.3)

7.2
(0.08)

502
(74)

12.8
(0.5)

28.2
(4.8)

0.35
(0.09)

1022
(133)

M2 4.5
(0.03)

0.07
(0.03)

912
(308)

110.8
(30.5)

3.2
(0.44)

7.3
(0.02)

440.8
(39.5)

12.9
(0.4)

40.8
(6.2)

0.23
(0.17)

899.8
(56)

M3 3.02
(2)

0.08
0.004

1477
(250)

582.3
(10.3)

0.25
(0.02)

5.6
(0.5)

699.75
(93)

18.7
(0.22)

61.6
(16.4)

0.74
(0.5)

1415
(203)

M4 5.2
(0.23)

0.11
(0.01)

1036
(357)

316.4
(98.1)

0.12
(0.01)

7.2
(0.07)

638.2
(52.4)

19.8
(0.06)

42.2
(3.9)

0.92
(0.23)

1293.3
(85.7)

M5 7.8
(1.62)

0.11
(0.02)

1442
(355)

389.2
(35.9)

0.11
(0.01)

7.2
(0.2)

724.2
(38.8)

19.7
(0.08)

44.6
(2.4)

0.72
(0.22)

1464
(42.5)

M6 5.5
(0.6)

0.06
(0.02)

1260
(409)

481
(104)

2.06
(0.53)

6.9
(0.24)

481.8
(31.3)

16.2
(0.21)

84.1
(12.1)

0.4
(0.12)

984
(29.3)

M7 3.96
(1)

0.03
(0.02)

771
(344)

180.4
(104)

4.8
(0.84)

7.5
(0.4)

514.5
(80.7)

15.8
(0.13)

40.6
(5.4)

0.37
(0.06)

1046.8
(142)

M8 1.2
(0.1)

0.01
0.001

1078
(403)

139.2
(10.1)

2.9
(0.43)

6.8
(0.06)

634.5
(117)

21.1
(0.77)

27.6
(1.6)

1.8
(0.43)

1286
(218)

M9 3.9
(0.2)

0.04
(0.02)

1467
(554)

284.8
(98.8)

0.14
(0.03)

6.9
(0.08)

677.8
(84.2)

20.7
(1.02)

43.8
(1.4)

0.94
(0.33)

1380
(164)

M10 4.99
(0.7)

0.07
(0.01)

1112
(515)

161.4
(71)

0.36
(0.02)

7.2
(0.2)

641.5
(51.4)

19.2
(0.42)

55.4
(13.5)

1.33
(0.68)

1300.3
(93.2)

M11 5.3
(0.2)

0.03
0.006

988
(332)

117.1
(7.9)

0.2
(0.1)

7.3
(0.17)

638.2
(46.1)

19.4
(0.7)

85
(21.6)

1.3
(0.41)

1294.3
(79.9)

M12 6.3
(1.7)

0.27
(0.22)

1056
(402)

129.7
(38.9)

0.1
(0.04)

7.6
(0.05)

665.8
(26.8)

20.5
(0.8)

50
(8.3)

0.95
(0.1)

1347.5
(20.4)

M13 6.7
(1.4) 0.084 1011

(488)
117.1
(12.9)

1.02
(0.23)

7.6
(0.03)

685.5
(57.4)

19.8
(0.33)

38.8
(1.35)

0.82
(0.22)

1387.5
(81.9)

M14 6.63
(1.1)

0.05
(0.02)

1076
(427)

63.3
(25.9)

0.8
(0.4)

7.5
(0.03)

692.5
(80.9)

21.4
(0.21)

43.3
(3.1)

1.05
(0.35)

1401.5
(129)

M15 0.36
(0.1)

0.3
(0.08)

594
(290)

60.1
(10)

5.8
(0.8)

7.6
(0.11)

224.6
(37.3)

13.1
(0.26)

12.5
(0.96)

0.2
(0.09)

464.8
(52.5)

T2 2.09
(1.9)

0.33
(0.27)

506.8
(154)

70.8
(75.2)

5.2
(0.72)

7.7
(0.32)

358.3
(71.1)

18.6
(0.91)

26.1
(15.7)

0.27
(0.02)

749.8
(131)

T4 8.7
(6.3)

0.08
(0.03)

1167
(280)

518
(150)

0.14
(0.04)

7.2
(0.15)

877
(138)

24
(0.83)

70.5
(23.5)

0.17
(0.13)

1704.7
(253)

T3 14.5
(2.9)

0.15
(0.03)

1697
(502)

520
(126)

0.14
(0.05)

7
(0.18)

821.3
(115)

20.8
(0.93)

129
(32.4)

0.1
(0.08)

1601.7
(212)

T7 1.37
(0.7)

0.35
(0.46)

310.5
(187)

82.3
(50.9)

3.54
(1.27)

7.2
(0.25)

364.8
(41.9)

19.1
(1.11)

30.3
(8.5)

0.03
(0.01)

761.7
(77.1)

T1 4.76
(2)

0.07
(0.05)

656.5
(460)

127.7
(97.7)

1.35
(1.11)

7.1
(0.2)

412.8
(36.1)

16.9
(0.95)

42.9
(16)

0.17
(0.15)

850.1
(66.4)

T5 5.2
(0.9)

0.09
(0.04)

497.3
(222)

94.5
(104)

0.95
(0.98)

7.4
(0.18)

496
(57.2)

23.7
(1.49)

33.1
(3.26)

0.16
(0.14)

1003.2
(105)

T6 4
(1.4)

0.08
(0.01)

440.3
(150)

112.4
(78.5)

0.22
(0.06)

7.7
(0.21)

584.8
(51.3)

24.8
(1.42)

96.6
(64.6)

0.24
(0.09)

1166.5
(94.4)

All units in mg/L except pH (s.u), Temp (oC), EC (µS/cm), M=Main Channel, T=Tributary, St.=Station (code)
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channel is about 5.39 mg/L. The overall mean DO 
in the LAR during the rainy season was 4.91 mg/L. 
Though DO is considered very essential in sustaining 
life in the river, its concentration in LAR revealed that 
the river is very much polluted so that it is not suitable 
for any purpose during the dry season. The middle 
catchment of LAR is highly impacted by this low flow 
and hence had high DO deterioration. Almost all of the 
stations didn’t meet either the Ethiopian or international 
standards for aquatic life. The study conducted on 
similar area by Yilma et.al. [17] also showed that nearly 
89% of the monitored stations analyzed on LAR during 
the dry season had DO concentration less than 4 mg/L 
whereas the current assessment showed 82% indicating 
the river is severely polluted. 

The EC, a proxy measure of salt concentration, is 
found very high in LAR with a mean value of 660.4 
(±282.25) μS/cm recorded during the wet season 
indicating the severity of the river pollution.  The 
TDS in the river on the other hand, was found in high 
amount with a mean value of 325.3 (±141.48) mg/L.  
The high standard deviation in both parameters could 
imply that the characteristics of both constituents vary 
spatially [17] and seasonally [10]. Both EC and TDS 
were recorded highest in the LAR tributaries located 
in the highly polluted segment of the river that could 
be attributed due to the presence of inorganic salts [4]. 
EC during the wet season has shown strong positive 
correlation with BOD (r = 0.87), negative with DO 
(r = -0.83), and positive with PO4-P (r = 0.70) at a 
significance level p<0.01. Unlike the wet season, EC and 
TDS during the dry season recorded high in almost all 
monitoring stations in general and LART in particular, 
with a mean value of 1142.5 μS/cm and 565.7 mg/L 
respectively. In most of the monitoring stations of LAR, 
the water temperature has shown slight increment from 
upstream to the downstream section of the main river, 
though there are a few irregularities at some monitoring 
stations from the trend during the wet season. The mean 
temperature in the LAR is found to be 19±2.18ºC. The 
minimum and maximum temperatures were recorded at 
M2 and T4 respectively. In general, the LAR tributaries 
recorded the highest temperature than the main channel. 
The temperature in LAR has a very weak correlation 
with other parameters except for TKN (r = 0.57). The 
trend in water temperature during the dry season has 
shown nearly similar distribution across the river 
stretch where the lowest was recorded at station M1 and 
maximum at T6.  COD and BOD measures the organic 
contamination load and indicates the pollution level in  
a river [10]. During the wet season, the LAR main 
channel has a nearly similar trend of BOD5 across 
the monitoring station, whereas the variation in 
concentration among the monitoring stations in LART 
was significantly high. The mean BOD5 concentration 
in LAR is 46.79 mg/L where minimum and maximum 
BOD5 concentration of 2.5 mg/L and 130.324 mg/L 
were recorded at T7 and M3 respectively. Similarly, the 
mean COD concentration of LAR for the wet season 

is 266.9 mg/L with the highest recorded at two of the 
LARTs: T4 and T3 with a mean concentration of 552 
and 520 mg/L respectively.  Both BOD and COD 
concentration has shown high deviation from Ethiopian 
[34] and WHO [36] guideline for aquatic life on some 
of the stations and have strong positive correlation 
during the rainy season (r = 0.76) and dry season  
(r = 0.81). The highest BOD5 and COD concentration 
recorded during the dry season is due to the reduced 
flow in the river that minimizes the dilution and self-
purification of LAR. Apart from the organic pollutants, 
nutrients play a vital role in the pollution of LAR. A 
nitrate concentration up to 10 mg/L in natural water 
bodies where the concentration in excess amount 
may affect the river ecology [10]. However, nitrate 
concentration in LAR during the rainy season is within 
the guideline standard of Ethiopia [34]. The mean 
concentration of NO3-N in the LAR main channel 
and tributaries respectively are 0.424 mg/L and  
0.856 mg/L, the tributary exceeding the main channel 
two folds. On the other hand, mean nitrite concentration 
in the seven monitored LARTs (0.441 mg/L) is slightly 
lower than the concentration in the main channel  
(0.892 mg/L). On the other hand, the mean concentration 
of TKN in the tributaries during wet season was  
32.4 mg/L where the monitoring station at T6 has 
recorded the highest (61.2 mg/L). The stations 
downstream of M4 and near M13 downstream of Addis 
Ababa wastewater treatment plant have the highest 
TKN concentration with a mean value of 32.2 mg/L 
each. The TKN during the dry season has shown an 
increasing trend relative to the wet season. The station 
M3 (129.3 mg/L) has shown the highest concentration 
of TKN. The phosphate during the wet season has 
recorded the highest on LARTs. Less variation of 
phosphate concentration has been observed across the 
monitoring stations. The maximum concentration of 
phosphate was recorded at T5 where the river receives 
waste from the slaughterhouse where the animal bone 
and small scale urban agricultural washouts remain the 
major source of phosphate in the area. The phosphate 
concentration during the dry season has shown an 
increasing trend where the middle of LART at T3 
recorded the maximum phosphate concentration at  
15.65 mg/L. Phosphate concentration at M5 could 
suggest that the wastewater released from the slaughter 
house could be the possible source for the high 
concentration.

Heavy metal concentrations in LAR and LART has 
shown much higher concentration than the national  
[34] and international guideline values for industrial 
release to a water body at most of the monitoring 
stations. Analysis of Ni in LAR has shown 67% and 
100% of non-detects during the rainy and dry seasons 
respectively. Among the trace metals analyzed during 
the monitoring campaign for the rainy and dry season, 
Cr has shown the maximum concentration relative 
to other metals with a mean concentration of 2.175 
mg/L and 1.17 mg/L respectively. This could be due 
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to the presence of most tanneries and textile industries 
near the river. The maximum Cr concentration during 
the rainy season was recorded downstream of M12  
(2.175 mg/L). The highest Mn concentration was 
observed at the station near M13 (0.93 mg/L) followed 
by the monitoring station at M11 (0.87 mg/L). The 
distribution of Zn concentration along the LAR  
has shown slight irregularity across the monitoring 
stations during both seasons. LAR monitoring station 
M1 (0.62 mg/L) and T3 (0.42 mg/L) were found to 
be the highest Zn concentration during the rainy and 
dry season respectively. The mean concentration of 
Zn is found to be 0.227 mg/L. Cadmium (Cd), which 
originates mostly from anthropogenic activities 
through the application of phosphate fertilizer, has 
shown almost a constant trend across the monitoring 
stations. The mean concentration of   Cd during 
the rainy season and the dry season is found to be  
0.0093 mg/L and 0.116 mg/L respectively. The 
concentration of heavy metals during the wet season in 
the order of Cr>Mn>Cu>Pb>Zn>Cd whereas in the dry 
season the order was Cr>Mn>Cu>Zn>Pb>Cd.

Factor Analysis and Seasonal Source 
Apportionment in LAR

Factor Analysis has long been widely used in water 
quality assessment for identifying the most influential 
and significant parameter from a set of constituents 
by minimizing the constituents’ dimensions without 
much loss of information contained in the original data 
[17]. In order to interpret water quality data using the  
PCA/FA, the data collected need to be checked for 
suitability for FA. The adequacy of the PCA/FA in LAR 
was tested based on the KMO, where it is recommended 
to be greater than 0.5. In LAR, however, the KMO was 
found to be 0.728 and 0.725 for the wet and dry seasons 
respectively (p<0.05) showing the suitability of FA for 
interpreting LAR water quality.

For the FA in LAR, extraction was done by principal 
components using correlation matrix analysis based 
on eigenvalues greater than one and varimax rotation. 
The Kaiser normalization was used for maximizing 
the variance and extraction of underlining factors 
called varifactors. A similar approach was followed by 
[27, 37]. The loading by constituents of the principal 
components (PCs) extracted by the FA determines the 
weight of the respective parameter for the component 
and would generally indicate the correlation between 
the variable and the component. According to Cid et al. 
[5] and Kilonzo et al. [9], component loadings >0.75,  
0.5-0.75 and 0.3-0.5 are classified as strong, moderate, 
and weak loading respectively. The FA in LAR extracted 
three factors by retaining the PCs through varimax 
rotation that explained 79.26% of total variance for the 
wet season. The first factor that explained 37.9% of total 
variance after the varimax rotation has strong positive 
loading for COD (0.96), BOD (0.844), EC (0.775) and 
TDS (0.767) and moderate loading for DO, PO4-P, and 

NO3-N. The strong loading of COD, BOD, EC, and 
TDS in PC1 indicate that the possible source of pollution 
could be due to the combined effect of anthropogenic 
factors such as the release of untreated urban sewage 
[1, 31] and the presence of organic pollutant constituents 
from food, detergent, and beverage industries [17]. In 
addition, high TDS (325.3 mg/l) and EC (660.4 μS/cm) 
in LAR might be due to the impact of urban runoff 
[10] and natural effects such as the dissolution of soil 
constituents [3]. Therefore, the factor contributing 
to the first principal component may be named as 
a combined domestic and unrecognized non-point 
source, generally a combined anthropogenic factor. 
The factor is more dominant in the middle catchment 
and monitoring stations such as M3, M4, T3, and T4 
where domestic waste prevails. The second principal 
component (PC2) showed strong loading on temperature 
(0.9) and TKN (0.79) and moderate negative loading 
for DO (-0.645) and moderate positive loading for TDS 
(0.578) explaining 27.5% of the total variation. The 
high loadings of Nitrogen on the PC2 suggest that the 
sources could be nonpoint sources such as agricultural 
land use, urban drainage, and residential lawns during 
the rainy season [1, 30]. Therefore, the component 
could be named agricultural factor. The last PC, PC3, 
has strong positive loadings on pH (0.946) and strong 
negative loadings on NO3-N (-0.716) explaining the 
remaining variance of 13.85%. The strong loading on 
pH could be due to the prevalence of physical processes 
and reactions by aquatic plants [38] and acidity impact 
from different sources [39]. It can be clearly seen that 
PC3 is more influenced by industrial sources and may 
be named the acidity factor. This acidity factor is more 
dominant in the central and downstream of middle 
section of the LAR where industrial setup dominates.

The FA in LAR for the dry season has extracted 
three principal components explaining a total variance 
of 79.47% and retained three factors. Accordingly, the 
first factor explained 36.87% of total variation and 
has strong loadings on PO4-P, TKN, TDS, and EC 
with a component loading of 0.851, 0.773, 0.796 and 
0.778 respectively, indicating dominance of non-point 
sources such as washouts from agricultural fields and 
urban land use and can be named agricultural and 
urban runoff factor. The component has also moderate 
positive loading on Temperature (0.71) and negative 
loading on DO (-0.745) that could imply the impact of 
seasonal variation. Similarly, the second component 
which is responsible for 23.1% of the variation during 
the dry season has a strong negative loading on pH 
(-0.86) and strong positive loading on BOD (0.813) 
and COD (0.762), suggesting biodegradation of organic 
and inorganic nutrients are negatively impacted by the 
acidity of the river. The component is more explained 
by industrial impact and hence can be named industrial 
(acidity) factor. The third principal component 
explaining 19.5% of total variation has strong positive 
loading on nitrate (0.926) and negative moderate 
loading on nitrite (-0.58). Though the source of nitrate 
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could be various in type, the role of domestic waste is 
high and hence this component can be best explained by 
domestic waste source.

The concentrations of heavy metals have shown 
a very high variation during both seasons where the 
major source remains industry. Most of the industries 
within the vicinity of the river are tannery industries 
known for their Cr effluent. The tannery industries 
nearby the LAR release their wastewater to the river 
with no or minimal treatment. During the dry season, 
the FA has extracted two factors that explain a total 
variance of 68.62%. Pb (0.93) and Cr (0.85) in the first 
component loaded strongly suggesting that sources of 
heavy metal pollution in LAR is contributed by more 
than one source. The probable source of Cr is tannery 
industries where most of these industries are located 
near LAR and are discharging their raw waste to the 
river directly. On the other hand, the location of many 
garages and heavy machinery maintenance workshops 
near LAR could initiate the level of Pb concentration 
in the river. Hence factor one could be defined by both 
industrial and lead-acid battery. On the other hand, the 
second component is composed of two heavy metals: 
Mn and Zn where Zn loaded negatively that explains 
26.47% of the total variation.

Spatial Analysis of LAR Using Cluster Analysis

The CA in MSTs is used to classify monitoring 
stations with similar characteristics into the same 
group [27, 40]. In LAR, before the CA, raw data 
was Z-scale standardized and tested for normality 
of data distribution. The dendrogram showing the 
grouping of all 22 monitoring stations for the rainy 
and dry seasons in LAR and LART is shown in  
Fig. 2. The CA grouped all 22 monitoring stations in 
three significant clusters for the wet season in LAR 
(Fig. 2b). Accordingly, the first cluster (Cluster 1) 

grouped monitoring stations at the downstream and 
middle section of LAR in one cluster. The stations in 
this cluster are characterized by relatively moderate to 
heavily polluted and consist of 13 monitoring sites: M3-
M6, M8-M14, T5, and T6. The physical location of all 
the stations in cluster 1 in a similar area suggests that 
the clustering is reasonably fair. 

Cluster 2 consists of seven monitoring stations that 
are located at the most upstream section of the river 
and hence are relatively less polluted. The monitoring 
stations grouped in this cluster are T1, T2, T7, M1, 
M2, M7, and M15. The last significant cluster, cluster 
3, is composed of two highly polluted tributaries: 
T4 and T3. Similarly, the CA on LAR identified four 
significant clusters during the dry season. Cluster 1 
grouped monitoring stations downstream of the middle 
section of LAR consisting of stations such as M4, 
M5, M8-M14. Cluster 2, however, grouped monitoring 
stations at the most polluted river section: T3, T4, M3, 
and M6. Cluster 3 is composed of tributaries from the 
most upstream section with monitoring stations T2, T7 
and M15 in the group which are characterized by less 
anthropogenic influence. Finally, cluster 4 is composed 
of upstream monitoring stations: M1, M2, M7, T1, T5, 
and T6. 

Quantification of Source Composition 
and Contribution in LAR 

For the estimation of pollution contribution and 
composition of various sources in LAR, we used 
the UNMIX model for both dry and wet season. In 
our study, we have performed manual inclusion and 
exclusion of parameters in UNMIX until parameters 
with high error became excluded from modeling [33]. 
As a basic requirement, the UNMIX was run by 
checking the Noise-to-Signal (N/S) ratio and overall 
minimum R2 value. The R2 is meant to express the 

Fig. 2. Dendrogram showing clustering of LAR monitoring stations for dry a) and wet season b).
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variance explained by the determined source for each 
constituent [14]. Accordingly, Min S/N ratio>2 and Min 
R2>0.8 was adopted and the UNMIX model for LAR 
has fulfilled the minimum requirements with min S/N 
of 2.71 and R2 of 0.91 for the dry season. With this, 91% 
of the variance of each constituent can be explained 
by three sources namely uncharacterized nonpoint 
(agricultural and urban runoff), domestic (residential 
and commercial) and industrial. Similarly, the model 
output for the rainy season showed S/N of 2.16 and R2 
of 0.88 explained by three factors: domestic, industrial, 
and agricultural (nonpoint) pollution. 

Source composition by UNMIX in LAR 
constituents during the dry season has quantified for the 
three possible sources identified by FA. Table 3 shows 
percentage source composition and distribution during 
the wet and dry season calculated by the UNMIX 
model. In LAR, UNMIX model has effectively 
predicted the constituents contained in the model with 
an overall R2 of 99.8% between the model predicted 

and observed values, with an average predicted to  
measured (P/M) ratio of 1.01 during the dry season 
and 99.88% and 1.06 for the wet season. The maximum 
CV on the constituents was 16.84% with a mean CV  
of 4.78%<25% showing that the prediction was 
reasonably good and can be interpreted well. Moreover, 
the model performance during the dry season is much 
better than the corresponding rainy season with an 
average absolute error of 1.38% when compared to 
the rainy season (17.13%). The model accuracy for 
individual parameter estimation ranges from good to 
very good with the R2 value ranging from 0.66 to 0.984, 
an example of NO3-N with R2 of 0.96 is shown on 
Fig. 3. The model was relatively weak to capture the 
NO2-N contribution during the rainy season generating 
43.1% error calculated between the predicted and 
observed concentrations. 

From Table 3, it can be clearly seen that the 
contribution of source 1 (uncharacterized non-point 
source) for individual constituents is relatively weak 

Parameter Season Source1 (S1) Source2 (S2) Source3 (S3)  P M P/M e (%)

PO4-P
Dry 0.419 (8.4%) 1.4 (28.1%) 3.17 (63.5%) 4.989 5.02 0.994 -0.62

Wet 0.83 (35.5%) 0.06 (2.5%) 1.45 (61.96%) 2.34 1.93 1.20 21.2

COD
Dry 78.8 (8%) 464 (47.1%) 443 (44.9%) 985.8 986 0.99 -0.02

Wet 62.2 (18.9%) 27 (8.2%) 240 (72.9%) 329.2 266.9 1.23 23.3

BOD
Dry 0.26 (0.11%) 53.3 (24.2%) 167 (75.7%) 220.6 216.4 1.1 1.9

Wet 12.4 (20.3%) 20.2 (33.06%) 28.5 (46.6%) 61.1 48.48 1.26 26.03

DO
Dry 7.1 (0.11%) 34.3 (0.535%) 58.6 (0.914%) 1.56 1.59 0.981 -1.89

Wet 0.2 (3.42%) 0.51 (8.7%) 5.14 (87.9%) 5.85 4.91 1.2 19.9

pH
Dry 1.93 (27.6%) 2.86 (40.9%) 2.2 (31.5%) 6.99 7.22 0.97 -3.2

Wet 0.48 (6.4%) 0.36 (4.84%) 6.6 (88.7%) 7.44 7.61 0.98 2.2

TDS
Dry 70.4 (12.2%) 271 (46.9%) 236 (40.9%) 577.4 580.7 0.99 -0.57

Wet 122 (33.3%) 22 (6.01%) 222 (60.65%) 366 325.3 1.12 12.5

Temp
Dry 4.25 (22.75%) 8.01 (42.9%) 6.42 (34.4%) 18.68 19 0.98 -1.7

Wet 2.35 (12.6%) 1.05 (5.6%) 15.3 (81.82%) 18.7 19 0.98 -1.6

TKN
Dry 5 (2.37%) 15.3 (25.3%) 30 (72.3%) 50.3 50.4 1 -0.2

Wet 13.2 (62%) 2.06 (9.7%) 6.02 (28.28%) 21.28 21 1.01 1.3

NO3-N
Dry 0.007 (1.07%) 0.599 (96.83%) 0.013 (2.1%) 0.619 0.602 1.03 2.8

Wet 0.11 (15.8%) 0.451 (64.6%) 0.134 (19.6%) 0.698 0.561 1.24 24.4

EC   
Dry 148 (12.7%) 552 (47.3%) 467 (40%) 1167 1173.5 0.99 -0.55

Wet 289 (38.74%) 16 (2.14%) 441 (59.11%) 746 660.4 1.13 12.96

NO2-N
Dry  0.095(79.8%) 0.0031 (2.6%) 0.021 (17.6%) 0.119 0.117 1.02 1.71

Wet 0.024 (2.2%) 0.11 (10.3%) 0.942 (87.5%) 1.073 0.75 1.43 43.1

All units are in mg/L except pH (s.u.), Temp (ºC), EC (µS/cm), P = predicted, M = measured concentration, e = error
S1 = Agricultural and urban non-point, S2 = Domestic waste, S3 = Industrial waste pollution, for the wet season
S1 = Non-point source, S2 = Domestic waste, S3 = Industrial and bio-chemical pollution for the dry season 

Table 3: Source composition and contribution (%, bracket) of LAR constituents for the dry and wet season.
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during the dry season. The UNMIX showed that source 
1 has the highest loading of NO2-N and relatively 
weak on others indicating the source contribution is 
insignificant during the dry season. On the other hand, 
the source 1 contribution during the wet season is 
significant on constituents such as PO4-P, TDS, TKN 
and EC where the highest loading on EC could imply 
the prevalence of non-point source by runoff from 
different land uses. During the dry season, nonpoint 
source loading on NO3-N (96.83%) is very high whereas 
moderate loading on COD (47.1%), EC (47.3%) and TDS 
(46.9%) could indicate the dominance of domestic waste 
and hence the contribution for the constituents is from 
domestic waste.

Conclusion 

The output from this research in the study area 
revealed that the status of LAR is heavily polluted 
during both seasons. Poor waste management 
system coupled with uncontrolled waste release from 
industries, institutions, households, and other point and 
nonpoint sources such as agriculture and urban runoff 
is contributing to the river pollution. According to our 
finding, the most upstream section of LAR is relatively 
less polluted than the middle and downstream section 
in which LAR increases the pollution level in its course 
downstream. But due to the self-purification of the river 
at the most downstream section, the water quality level 
recovers to some extent but insignificantly. According 

to the assessment made across different monitoring 
stations in both dry and wet seasons on LAR, most of 
the physical water quality constituents are within the 
guideline standard whereas most of the organic and 
inorganic pollutants, nutrients and heavy metals have 
exceeded the limit. The concentration of the constituents 
during the dry season has shown deterioration due to 
reduced flow and physical aeration in the river and 
tributaries. FA in the area has revealed that three 
significant sources are responsible for LAR pollution, 
both during dry and wet seasons: Industrial, non-point 
source (agricultural and urban runoff), and domestic 
waste. On the other hand, the CA conducted on the 
LAR monitoring stations grouped the stations based on 
their chemical similarity. Accordingly, the rainy season 
produced a dendrogram with three clusters where 
the downstream and middle section of the main river 
showed similar characteristics and hence are grouped 
together. Stations at the most upstream and highly 
polluted tributaries in the middle of the catchment are 
grouped under clusters 2 and 3 respectively. On the 
other hand, the CA during the dry season classified the 
monitoring station into four clusters, unlike the rainy 
season clustering where tributaries are grouped in one. 

In most cases, specifically in developing countries, it 
is very difficult to quantify the contribution of a certain 
pollution source type for an individual constituent. This 
is primarily due to the unavailability of continuously 
monitored data that in turn is due to financial constraints. 
Moreover, the fast-changing characteristics of the urban 
river water quality hinder the accurate quantification 

Fig. 3. Model predicted vs. measured graph and scatter plot of NO3-N for the dry season (R2 = 0.96, e = 2.8%)
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of pollution source contribution and composition in a 
river system. In LAR, however, the USEPA’s UNMIX 
model was used to fill this gap. With the continuous 
and year-long monitored data, UNMIX gave a reliable 
and accurate result where the minimum requirement by 
the model was satisfied. Accordingly, min S/N and R2 
values were predicted and measured values are found to 
be greater than 2 and 0.8 respectively for both seasons. 
The model accurately predicted the source contribution 
and composition of all constituents. An average error 
between model-predicted and measured data was 1.38% 
and 17.13% during dry and wet season respectively. 
The contribution of domestic and industrial waste 
for the pollution of LAR was found very high during 
both seasons whereas the nonpoint source contribution 
prevails during the wet season. Controlling point 
source pollution will greatly improve the water quality. 
Implementation of local oxygenation techniques such 
as the use of weir at critical locations would help 
improve water quality. Additionally, nonpoint source 
pollution reduction strategies such as growing grass 
strips, terracing and filtering and treatment structures at 
selected points would greatly help improve the pollution 
in LAR.
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