
Introduction

Carbon emissions and the resulting global warming 
problem have always been important topics of global 

concern [1-3]. To deal with global warming, some 
countries signed The Paris Agreement in 2015 [4].  
The Agreement urges countries to control the increase 
in the global average temperature below 2ºC above 
“pre-industrial levels” and make great efforts to limit 
the temperature increase to 1.5ºC above “pre-industrial 
levels”. In order to achieve this goal, the IPCC 
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(Intergovernmental Panel on Climate Change) predicts 
that by 2030, CO2 emissions as the main greenhouse 
gas should be at least 45% lower than in 2010 [5]. 
However, in recent years, the global CO2 emissions 
have not shown an evident downward trend, even 
reaching 37 billion tons in 2018, the highest ever 
recorded.

The main drive of the rapid increase in carbon 
emissions is high energy consumption [6-8]. As shown 
by data, the carbon emissions from energy consumption 
account for about 80% of the global carbon emissions 
[9]. Transportation sector is highly dependent on fossil 
energy, and its energy consumption accounts for about 
one-third of the total energy consumption [9]. It has 
become the main carbon emitter after the power and 
heat industries [9]. According to the statistics from 
the International Energy Agency, in 2015, the carbon 
emissions from the transportation sector around the 
world reached 7.969 billion tons/person, and their total 
carbon emissions accounted for 24% of the global 
carbon emissions [9]. Therefore, transportation sector 
has been considered one of the most difficult sectors for 
carbon emission reduction [10]. 

The task of reducing carbon emissions in the 
transportation sector is equally arduous for the world’s 
largest carbon emitter – China. As far as China is 
concerned, the transportation sector is one of its 
“three major carbon sources” [11]. The annual average 
growth rate of energy consumption in transportation 
sector has been close to 8% since 1985 [12]. The 
increase in transportation energy consumption resulted 
in transportation carbon emissions accounting for  
5%-9% of the total carbon emissions generated by fuel 
combustion during 1985-2014 [9]. China is committed to 
controlling CO2 emissions to peak in around 2030, and 
proposes the “13th Five-Year” energy conservation and 
emission reduction goal to reduce energy intensity by 
15% and carbon intensity by 18% as of 2020 compared 
with 2015. But, the World Energy Outlook 2017 China 
Special Report shows that only the transportation sector 
among China’s industries cannot reach its peak before 
2040. Therefore, the transportation sector has become 
an important industry that restricts China’s energy 
conservation and emission reduction.

China has 34 provincial level administrative regions. 
Their economic development and environment vary 
greatly, which results in significant differences in the 
levels and evolution characteristics of transportation 
carbon emissions. For example, in the period from 
2005 to 2015, the eastern region had higher per capita 
transportation carbon emissions than the central and 
western regions, but had a lower average annual growth 
rate [13]. Therefore, the per capita transportation carbon 
emissions in various provinces could converge to the 
different clubs with different carbon emission levels 
[14]; moreover, different provinces are also in different 
positions and play different roles in the spatial association 
network of transportation carbon emissions [15]. In 
general, the spatial non-equilibrium implies that there 

are significant differences of per capita transportation 
carbon emissions at the regional level in China. Given 
the overall regional differences unchanged, provinces 
with a higher level of transportation carbon emissions 
may transfer to another level. If the mobility among 
various levels is relatively low, regional differences will 
have little variations with time, which is considered as 
a solidification of spatial non-equilibrium [16]. In other 
words, the solidification of spatial non-equilibrium 
is roughly equivalent to having no evident change in 
regional differences of China’s per capita transportation 
carbon emissions over time, which means regional 
differences are hard to change spontaneously. Hence, 
the central government should perform an intervention 
to guide provinces with higher transportation carbon 
emissions to transfer to lower level. In order to fit the 
potential transportation carbon emissions in different 
provinces, reduction policies should be made based on 
overall spatial non-equilibrium and its solidification 
effect. Through the above analyses, it is of great 
significance to explore the spatial non-equilibrium 
of China’s transportation carbon emissions and its 
solidification effect, clarify the sources of the spatial 
non-equilibrium as well as understand their evolution 
rules [17]. Then, differentiated transportation carbon 
emission reduction measures can be taken to equalize 
efficiency and fairness.

To explore the evolution and the sources of spatial 
non-equilibrium of China’s transportation carbon 
emissions from both static and dynamic perspectives, 
as well as to investigate the solidification effect of the 
spatial non-equilibrium, our work is as follows. First, 
the Dagum Gini coefficient is used to analyze the overall 
spatial non-equilibrium of per capita transportation 
carbon emissions in China from a static perspective, 
and then decompose the spatial non-equilibrium into the 
intra-regional difference, the inter-regional difference 
and the intensity of transvariation to investigate the 
sources of the spatial non-equilibrium and inequality 
in per capita transportation carbon emissions. Second, 
Kernel density estimation is employed to describe 
the dynamic evolution characteristics of per capita 
transportation carbon emissions at the national and 
regional levels, respectively. After studying the 
overall spatial non-equilibrium of China’s per capita 
transportation carbon emissions from both static and 
dynamic perspectives, Markov chains approach is 
adopted to explore its solidification effect for the first 
time. Finally, the robustness of the solidification effect 
is analyzed. The above work can provide a basis for the 
national and local governments to develop differentiated 
carbon emission reduction policies.

Literature Review

There have been many studies regarding the 
regional differences of carbon emissions. Research 
methods gradually evolve from a single indicator to a 
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spatial-level decomposition. For example, Grunewald et 
al. [18] use the Gini coefficient to explore the evolution 
of inequality in CO2 emissions in 90 countries around 
the world; Mussini and Grossi [19] link the relative 
CO2 emission disparities, population size and country 
ranking through introducing a three-term decomposition 
of the Gini coefficient, so as to explain inequality state 
among European countries over 1991-2011; Wang and 
Zhou [20] adopt a new approach based on the Theil 
index and the index decomposition analysis (IDA) 
technique to find that the global emission inequality 
tends to decrease; based on the Theil index, Wang et 
al. [21] further apply spatial Markov chains and multi-
level models to confirm that China’s carbon emissions 
inequality has slowed down.

Compared with the studies on total carbon emissions, 
the works on the spatial differences of transportation 
carbon emissions have increased in recent years. 
Meanwhile, the methods used in the existing studies can 
be roughly divided into two types. The first type uses a 
single indicator such as standard deviation, coefficient 
of variation, Gini coefficient, etc. to test the spatial 
differences of transportation carbon emissions. The 

other type uses composite models to comprehensively 
measure the spatial non-equilibrium of transportation 
carbon emissions from different perspectives. For the 
two types, the former is convenient to calculate and 
makes the results succinctly and effectively. But it 
only reveals one aspect of spatial non-equilibrium, and 
cannot fully explain it. The latter helps to make up the 
deficiency of the former, and integrates these single 
indicators about transportation carbon emissions from 
more thorough perspectives as shown in Table 1.

The above studies explore the spatial non-
equilibrium of China’s transportation carbon emissions 
from multiple dimensions, serving as a good inspiration 
for understanding the spatial pattern and regional 
differences of transportation carbon emissions at present. 
However, there are still three shortcomings as follows. 
(1) In terms of research perspective, the existing studies 
lack independent description and in-depth discussion 
of the evolution of transportation carbon emissions. 
Even if a few of them have investigated the spatial  
non-equilibrium in transportation carbon emissions 
from the static perspective, the sources and evolution 
trends of the spatial non-equilibrium are not further 

Table 1 Studies on the spatial non-equilibrium of transportation carbon emissions.

Type Perspectives Studies Methods Key findings

Single 
indicator

Liu et al. [22] Logarithmic standard deviation The differences of China’s transportation 
carbon emissions raise during 1996-2000.

Yang et al. 
[23] Gini coefficients

The regional differences of China’s per 
capita transportation carbon emissions 

begin to decrease after 2005.

Composite 
model

The perspective of 
spatial econometrics

Zhang and 
Nian [24]

A stochastic impact by regres-
sion on population, affluence, and 

technology (STIRPAT) model

Different impacts brought by passenger 
transport make the characteristics of 
China’s transportation CO2 emissions 

across regions different.

Lim et al. [25] Moran index and STIRPAT 
model

The national transportation CO2 emis-
sions in the spatially dispersed urbanized 
countries have a high probability of being 
higher than those in the spatially polarized 

urbanized countries.

The spatial non-equi-
librium of transporta-
tion carbon emission 

efficiency

Zhang et al. 
[11]

A non-radial Malmquist CO2 
emission performance index 

(NMCPI)

The original efficiency change index of 
NMCPI of China’s provincial 

transportation CO2 emission has shown 
different performance.

Wang and He 
[26]

A non-radial directional distance 
function model

The transportation CO2 emission efficiency 
shows significant regional differences.

Zhang and Wei 
[27]

A metafrontier non-radial Luen-
berger carbon emission perform-

ance index (MNLCPI)

The carbon emission performance of the 
transportation industry exhibits significant 

differences across China’s three main 
areas.

The spatial non-equi-
librium of city-level 
transportation carbon 

emissions

Ma et al. [28] A static spatial microsimulation

Residents who inhabit in Beijing’s inner 
suburban zone take higher carbon travel 

behavior, while others in the central urban 
zone emit lower carbon.

Liu and Wang 
[6]

Moran index and a multiproxy 
allocation system

There is an obvious difference between the 
center and periphery of Wuhan from the 
total transport-related carbon emissions.



Bai C., et al.1054

decomposed and explored from the dynamic perspective. 
(2) In terms of exploring dynamic evolution rules, 
although a few studies indicate the dynamic evolution of 
spatial non-equilibrium, they neglect the solidification 
effect of spatial non-equilibrium. Actually, a stronger 
solidification effect has more of a chance to widen 
the spatial non-equilibrium of transportation carbon 
emissions. Thus, studying the solidification effect plays 
a vital role in analyzing the dynamic changes of spatial 
non-equilibrium. (3) In terms of study methodology, the 
existing studies prefer a single indicator such as Gini 
coefficient, Theil index, Moran index, etc. to briefly 
describe the spatial non-equilibrium in transportation 
carbon emissions without decomposing and analyzing 
the sources of the global difference. So, it is difficult to 
explain the characteristics of the subsamples.

Different from the existing studies, this work 
focuses on the global static and dynamic evolution laws 
of the spatial non-equilibrium of transportation carbon 
emissions and its solidification effect. The research 
objects are specific to China’s 30 provinces. The sample 
years are from 2005 to 2015. By using the Dagum 
Gini coefficient and Kernel density estimation, we 
decompose the sources of the spatial non-equilibrium 
as well as describe the subsample characteristics. After 
that, Markov chains approach is used to investigate 
the solidification effect of the spatial non-equilibrium 
for the first time. Compared with the existing study 
methodology, the definition of Gini coefficient by 
subgroup decomposition proposed by Dagum [29] is 
relatively straightforward. It is conducive to portraying 
the evolution trend of spatial non-equilibrium. 
Meanwhile, it can be used to decompose the sources of 
spatial non-equilibrium and measure the distribution of 
subgroups, having unique advantages in analyzing the 
spatial non-equilibrium among samples. And Kernel 
density estimation in the distributed dynamic model 
is flexible and robust, with no need for priori settings 
for data distribution [30], which can directly reflect 
the overall status and dynamic evolution of the sample 
distribution. Therefore, it is mostly employed to study 
the regional polarization phenomenon. However, there 
is only little information provided by Kernel density 
estimation about the solidification effect of spatial non-
equilibrium. Thus, Markov chains approach proposed 
by Quah [31] is applied. This approach can compensate 
for the limitation of Kernel density estimation in 
describing the dynamic changes within samples; reveal 
the relative mobility among different status of the 
samples; and analyze the solidification effect of spatial 
non-equilibrium well [32].

Hence, this paper analyzes the spatial non-
equilibrium of China’s per capita transportation 
carbon emissions as a whole from a static perspective; 
decomposes the sources of the spatial non-equilibrium; 
and describes the dynamic evolution laws of the 
spatial non-equilibrium. Most importantly, we further 
investigate the solidification effect of the spatial non-
equilibrium for the first time. In conclusion, this paper 

determines the sources of spatial non-equilibrium 
and the internal evolution of China’s per capita 
transportation carbon emissions from both the static 
and dynamic perspectives so as to provide a basis for 
the formulation of differentiated transportation carbon 
emission reduction policies for China and provinces, 
as well as present a new perspective for the study of 
transportation carbon emissions.

Material and Methods

Methods

Analysis of the Spatial Non-Equilibrium from 
a Static Perspective – Dagum Gini Coefficient

Compared with the Theil index and the traditional 
Gini coefficient, the Dagum Gini coefficient can be 
used to measure the distribution of subgroups, and 
effectively identify the sources of regional differences. 
It has unique advantages in analyzing the spatial non-
equilibrium among samples from a static perspective. 
In this study, the Dagum decomposition of the Gini 
coefficient is employed to investigate the spatial 
non-equilibrium of per capita transportation carbon 
emissions in China, and to decompose the sources of the 
spatial non-equilibrium. The Dagum Gini coefficient is 
defined as follows [29]:
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...where, yij(yhr) denotes the per capita transportation 
carbon emissions of the province j(h); μ denotes the 
average per capita transportation carbon emissions 
at the national level; μh denotes the average per capita 
transportation carbon emissions in the region h; n is 
the number of provinces (n = 30 in this study); k is the 
number of regions; nj(nh) is the number of provinces in 
the region j(h).

According to sub-groups, the Dagum Gini 
coefficient is decomposed into the contribution of 
the intra-regional difference Gw, the contribution of 
the inter-regional difference Gnb and the contribution 
of the intensity of transvariation Gt. And the above 
three satisfy G = Gw + Gnb + Gt [29]. Specifically, 
Gw represents the internal difference in the per 
capita transportation carbon emissions in the region  
j(h); Gnb represents the net difference in the per 
capita transportation carbon emissions between the 
regions j and h; and Gt represents the residual term 
of the Gini coefficient of the cross-effect of  
the regional per capita transportation carbon emissions 
[33].
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...where, Gij denotes the Gini coefficient within the 
region j; Ghj denotes the Gini coefficient between the 
regions j and h (pj = nj/n, sj = nj/Y j/nY, j = 1,2,3,...,k); 
Djh denotes the relative impact of the per capita 
transportation carbon emissions between the regions 
j and h. Define djh as the difference in the contribution 
rates of the per capita transportation carbon emissions 
between the regions j and h. Define pjh as the one order 
moment of transvariation. Fj(h) and Fh(h) represent the 
cumulative density distribution functions of the regions 
j and h, respectively.

Analysis of the Spatial Non-Equilibrium from a Dynamic 
Perspective – Kernel Density Estimation

As an important non-parametric estimation method 
to estimate the unknown density function based on 
sample characteristics, Kernel density estimation 
can not only overcome the defects of parameter 
estimation but also reflect the overall status and the 
dynamic evolution of the sample distribution. Hence, 
it has been widely used in the study of spatial non-
equilibrium distribution from a dynamic perspective 
[2]. The basic principle is as follows. Assume that the 
random variables X1, X2........Xn are the n sample points 
of independent and identical distribution F(x), and its 
probability density function f(x) is unknown. Therefore, 
f(x) is estimated by the samples.
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Eq. (10), i.e. Kernel density, can be adopted to 
estimate the probability density at the point x, which 
indicates the probability that x appears in a given 
region. In the Eq. (10), h is the smoothing parameter 
or bandwidth; n is the number of observations; x is 
the average; K(·) is Kernel function, which is a weight 
function. Kernel functions commonly used include 
triangular Kernel function, quadrangle Kernel function, 
Epanechnikov Kernel function and Gaussian Kernel 
function. Among them, Gaussian Kernel function 
has a better performance in terms of data mapping 
than others [34]. Therefore, it is used in this study to 
estimate the distribution density of provincial per 
capita transportation carbon emissions. It is defined as 
shown in Eq. (11). And then, their dynamic distribution 
characteristics are determined according to the position, 
ductility and shape of the obtained Kernel density 
curves.

Analysis of the Solidification Effect of the Spatial 
Non-Equilibrium from a Dynamic Perspective 

– Markov Chains Approach

In this study, Markov chains approach proposed by 
Quah [31] is adopted to explore the internal evolution 
characteristics of provincial per capita transportation 
carbon emissions. Kernel density estimation cannot 
describe the solidification effect of the spatial non-
equilibrium from a dynamic perspective, but Markov 
chains approach can. It is the state space of a stochastic 
process {X(t), t ∈ T}. For any n values at time t, if 
X(ti) = xi, then the state transition probability of the 
conditional distribution function X(tn) satisfies the 
following:

{ } RxxtXxtXP nnnnn ∈=≤ −− ,)()( 11      (12)

Assume that the transition probability of the 
provincial per capita transportation carbon emissions is 
only related to the states i and j. If it is not related to n, 
then the time homogeneous Markov chains are obtained; 
otherwise, the non-time homogeneous Markov chains 
are obtained. The time homogeneous Markov chains 
can represent the probability distribution of random 
variables transiting from one state space to another. 
This study only focuses on the time homogeneous 
Markov chains, so Eq. (12) can be transformed into as 
following:

{ }iXjXP nn ==+1                   (13)

Provided that the provincial per capita transportation 
carbon emissions are classified into N types, a N×N  
state transition probability matrix P (as shown below) 



Bai C., et al.1056

can be obtained through the Markov chains. In that way, 
the internal dynamic evolution characteristics of the 
provincial per capita transportation carbon emissions 
can be determined.

        (14)

Rjipij ∈≥ 、,0
                        (15)

Njip
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∈
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                      (16)

...where, pij represents the probability of a province 
transiting from the state i in year t to the state j in year 
t + 1. The bigger the value of pii, the stronger the 
solidification effect. It is often estimated using the 
maximum likelihood method. And pij = nij/ni, where, nij  
is the number of times that the per capita transportation 
carbon emission level transits from the state i to the 
state j during the sample period; ni is the total number 
of the state i.

Data Sources and Regional Division

Currently, China has no official organization to 
directly release the data on transportation carbon 
emissions. Therefore, scholars often employ the top-
down and bottom-up approaches to calculate the 
transportation carbon emissions [35-36]. The bottom-up 
approach requires complete data. However, the data on 
the types, quantities, mileage, energy consumption per 
unit mileage, etc. of various vehicles are not all available 
in China. So, the top-down approach is used herein to 
calculate the transportation carbon emissions according 
to the final energy consumption of the transportation 
sector. Based on the major energy consumption types 
of the transportation sector and the IPCC Guidelines for 
National Greenhouse Gas Inventories [37], the carbon 
emissions from the transportation sector1 are calculated 
via the following equation:

8
i i ii

c e v ce r= × × ×∑                (17)

...where, c denotes the total carbon emissions from the 
transportation sector; ei denotes the fuel consumption 
of the fuel i; vi denotes the average low calorific value 

1 China's official statistical agency combines transporta-
tion, warehousing and postal services into one industry.  
Therefore, the transportation sector in this study consists of 
transportation, warehousing and postal services.

of the fuel i; cei denotes the carbon emission coefficient 
of the fuel i; i r denotes the carbon oxidation rate. The 
consumption and the average low calorific values of 
various fuels are sourced from the 2006-2016 China 
Energy Statistical Yearbooks [38]. The carbon emission 
coefficients of various fuels are sourced from the IPCC 
Guidelines for National Greenhouse Gas Inventories 
[37]. The carbon emission coefficients and the average 
low calorific values of various fuels are shown in  
Table 2. Additionally, following Wang et al. [39], the 
carbon oxidation rate is regarded as 100%, so r = 1 in 
the Eq. (17). The research object of this paper is the per 
capita transportation carbon emissions. Hence, the per 
capita transportation carbon emissions of each province 
are obtained by dividing the total transportation carbon 
emissions by the total population of each province. The 
population data of various provinces is derived from the 
2006-2016 China Statistical Yearbook [40].

This study selects the per capita transportation 
carbon emissions of China’s 30 provinces (excluding 
Tibet, Hong Kong, Macao and Taiwan due to the 
unavailability of their data) during 2005-2015 to 
analyze the spatial non-equilibrium and its solidification 
effect. Meanwhile, in order to demonstrate the spatial 
non-equilibrium, these provinces are divided into three 
regions: the eastern region, the central region and the 
western region according to the criteria defined by the 
National Bureau of Statistics of China2.

Results and Discussion

The Spatial Non-Equilibrium and Decomposition 
of China’s per Capita Transportation 

Carbon Emissions

General Description

Table 3 shows the average per capita transportation 
carbon emissions at the national level and in the 
eastern, central and western regions as well as their 
changes during 2005-2015. According to statistics 
proved by Table 3, the average per capita transportation 
carbon emissions present a significant upward trend on 
the whole. Taking 2005 as the base year, the annual 
average growth rates at the national level and in the 
eastern, central and western regions were 5.4128%, 
3.1487%, 8.2865% and 7.4859%, respectively in 2015. 
Among them, the annual average growth rates of 
the central and western regions were higher than the 
national level, while the annual average growth rate of 

2 In this study, the eastern region includes Beijing, Tianjin, 
Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shan-
dong, Guangdong and Hainan; the central region includes 
Shanxi, Heilongjiang, Jilin, Anhui, Jiangxi, Henan, Hubei 
and Hunan; the western region includes Inner Mongolia, 
Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, 
Gansu, Qinghai, Ningxia and Xinjiang.
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the eastern region was lower than the national level. 
At the same time, the average per capita transportation 
carbon emissions in the eastern region were much 
higher than those at the national level, as well as in the 
central and western regions, but the gap between them 
were narrowing. As far as the time is concerned, the 
increase in the average per capita transportation carbon 
emissions indicates that China’s transportation carbon 
emission reduction is relatively urgent. From the cross-
sectional data, the decrease in the difference between 
averages indicates that the spatial non-equilibrium was 
narrowing. The carbon emissions in various provinces 
possibly converge.

Spatial Non-Equilibrium and Sources

In this study, the Dagum Gini coefficient and its 
decomposition approach by subgroups are respectively 
used to calculate the overall Gini coefficient of China’s 
per capita transportation carbon emissions from 2005 
to 2015 from a static perspective and its decomposition 
results according to the three regions, as shown in 
Table 4. From Table 4, it can be seen that the overall 
difference, difference within regions and difference 

between regions of the Dagum Gini coefficient 
basically decline during the eleven years. Meanwhile, 
the contribution rate of difference between regions 
decreases, whereas the contribution rates of the other 
two increase.
(1) The spatial non-equilibrium and its evolution trend. 

Fig. 1 depicts the Dagum Gini coefficient of China’s 
per capita transportation carbon emissions and its 
evolution trend, which reflects the overall spatial non-
equilibrium among provinces. It can be seen that the 
Dagum Gini coefficient shows a downward trend as 
a whole. Specifically, it declined from 0.3534 in 2005 
to 0.2484 in 2015, with an annual average decline 
rate of 3.4641%, indicating that the overall spatial  
non-equilibrium of China’s per capita transportation 
carbon emissions was gradually narrowing. The 
conclusion is also supported by the evidence from 
Li et al. [41]. They agree that China’s per capita 
transportation carbon emissions at the city level show 
similar trends. This decline is bound up with the 
urbanization process, transportation structure, energy 
dependence, energy efficiency and other factors 
[42]. Obviously, rapid urbanization is accompanied 
by relatively frequent economic exchanges and high 

Table 2. Relevant coefficients of various fuels.

Type of fuel Raw coal Coke Crude oil Fuel oil Gaso-line Kero-sene Diesel oil Natural gas

Carbon emission coefficient 25.8 29.2 20 21.1 18.9 19.6 20.2 15.3

Average low calorific value 20908 28435 41816 41816 43070 43070 42652 38931

Conversion coefficient of standard coal 0.714 0.971 1.429 1.429 1.471 1.470 1.457 1.214

Notes: the carbon emission coefficients of natural gas and other fuels are expressed in m3/GJ and kg/GJ, respectively; the average low 
calorific values of natural gas and other fuels are expressed in KJ/m3 and KJ/kg, respectively.

Table 3. Average per capita transportation carbon emissions.

Year National level Eastern region Central region Western region

2005 0.0905 0.1383 0.0535 0.0697

2006 0.0993 0.1475 0.0583 0.0808

2007 0.1089 0.1588 0.0645 0.0913

2008 0.1191 0.1702 0.0739 0.1010

2009 0.1242 0.1750 0.0771 0.1075

2010 0.1318 0.1817 0.0809 0.1190

2011 0.1405 0.1871 0.0953 0.1268

2012 0.1481 0.1918 0.0989 0.1401

2013 0.1416 0.1791 0.1064 0.1297

2014 0.1474 0.1830 0.1128 0.1369

2015 0.1534 0.1886 0.1185 0.1436

Annual average growth rate 5.4128 3.1487 8.2865 7.4859

Note: the average per capita transportation carbon emissions are expressed in ton/person, and the annual average growth rate is 
expressed in %
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transportation demand [43]. During 2005-2015, China’s 
urbanization process progressed rapidly, and the growth 
rate of urbanization in relatively underdeveloped 
provinces was generally faster than that in developed 
provinces, thereby narrowing the gap in transportation 
demand between provinces. Besides, the economically 
developed provinces with a high carbon emission 
level at the initial stage were gradually optimizing 
their transportation energy structure and have made a 
great progress, while the economically underdeveloped 
provinces still had an unreasonable transportation 
energy structure, and the consumption proportion of 
pollution fuels in some of these provinces also showed 
a certain upward trend. Specifically, using the energy 
consumption data of China’s transportation sector [38] 
and the carbon emission coefficients of various fuels 
[37], we can obtain that the consumption proportions 

of high-pollution fuels in the total fuel consumption 
in the four economically developed provinces (Beijing, 
Shanghai, Zhejiang and Jiangsu) showed a downward 
trend, with an annual average decline of 2.22%, 
3.09%, 1.57% and 0.65%, respectively. Moreover, their 
transportation fuel efficiencies showed an upward trend 
[44]. Meanwhile, the calculation results also indicated 
the consumption proportion of high-pollution fuels in 
total fuel consumption in economically underdeveloped 
provinces showed an upward trend as a whole, with an 
annual average growth rate of 1.13%. Furthermore, the 
underdeveloped provinces had a lower energy efficiency 
than the developed provinces [44]. Therefore, relative to 
the initial stage, the increase of per capita transportation 
carbon emissions in underdeveloped provinces was 
growing faster than developed provinces, which implied 
the regions with lower transportation carbon emissions 

Table  4. The Dagum Gini coefficient and its decomposition.

Year Overall 
difference

Difference within regions Difference between regions Contribution rate (%)

Eastern 
region

Central 
region

Western 
region

Eastern- 
Central

Eastern- 
Western

Central- 
Western

Within 
regions

Between 
regions

Intensity of 
transvari-

ation
2005 0.353 0.330 0.204 0.255 0.460 0.393 0.255 29.060 39.300 31.640
2006 0.358 0.350 0.208 0.273 0.455 0.387 0.276 30.300 37.350 32.350
2007 0.341 0.347 0.197 0.241 0.444 0.364 0.259 30.340 37.350 32.310
2008 0.330 0.322 0.253 0.224 0.430 0.346 0.276 29.850 31.770 38.380
2009 0.320 0.308 0.230 0.225 0.420 0.339 0.260 29.620 31.250 39.120
2010 0.304 0.293 0.201 0.219 0.407 0.317 0.255 29.500 31.510 38.990
2011 0.289 0.273 0.211 0.234 0.360 0.309 0.248 30.220 25.930 43.850
2012 0.282 0.264 0.186 0.241 0.350 0.297 0.249 30.350 24.930 44.730
2013 0.259 0.277 0.154 0.226 0.297 0.281 0.213 32.150 25.150 42.700
2014 0.243 0.275 0.152 0.191 0.288 0.263 0.191 32.080 23.280 44.640
2015 0.248 0.278 0.146 0.211 0.284 0.271 0.201 32.400 21.900 45.710

Fig. 1. The Dagum Gini coefficient and its evolution trend.
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was catching up with the higher. The above reasons 
eventually led to a narrowing of the overall spatial non-
equilibrium among provinces in China.
(2) Intraregional differences and their dynamic 
evolution. 

Fig. 2 depicts the evolution trends of the intraregional 
Gini coefficients of the per capita transportation carbon 
emissions. It can be seen that, in general, the difference 
within the eastern region is the largest, followed by 
the western and central regions. The reasons are as 
follows: (i) The eastern developed provinces (Beijing, 
Guangdong, Shanghai, Zhejiang and Jiangsu) have 
greater advantages in energy conservation, emission 
reduction as well as transportation energy structure 
adjustment. In addition, because of the relatively high 
population density, their per capita transportation 
carbon emissions have declined slightly. Meanwhile, 
with the advancement of urbanization, the eastern 
undeveloped provinces have an increased demand for 

transportation. However, subject to policy orientation, 
technology level, energy structure and other factors, 
their transportation energy intensity and the growth 
rate increase. Additionally, their population is also 
relatively small, resulting in relatively high per 
capita transportation carbon emissions. Finally, the 
per capita transportation carbon emissions show a 
significant polarization within the eastern region. 
According to the statistics, the annual average energy 
intensity of transportation in the eastern undeveloped 
provinces was 0.18% during 2005-2015, which was  
3.6 times that of the eastern developed provinces [40]; 
(ii) some western provinces are rich in mineral resources 
and have a large resource transportation and cargo 
turnover, while the relatively harsh environment leads 
to a sparse population. So, they have relatively high 
per capita transportation carbon emissions. Moreover, 
some other provinces lack of natural resources and the 
terrain conditions are extremely complicated, resulting 

Fig. 2. Evolution of the intraregional Gini coefficients in three regions.
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Fig. 3. Evolution of the interregional Gini coefficients.
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in that their population growth and cargo transportation 
are restricted. Therefore, there is a certain difference 
in the per capita transportation carbon emissions 
within the western region; (iii) the differences in the 
natural resource endowments, transportation demand 
and technology level are relatively small between the 
central provinces, resulting in that the difference in the 
per capita transportation carbon emissions within the 
central region are not as prominent as those within the 
eastern and western regions. For instance, according to 
statistics, the difference rate of the extreme values of 
per capita R&D expenditures in the central region was 
only 2.40 from 2005 to 2015, which was 1/18 and 1/8 
of that in the eastern and western regions, respectively 
[40]. On the other hand, from the evolution trend, the 
intraregional differences in the three regions show a 
downward trend as a whole, which is consistent with 
the trend of the overall spatial non-equilibrium among 
provinces. Taking 2005 as the base year, in 2015, the 
average annual decline rates of the differences within 
the eastern, central and western regions were 1.6990%, 
3.2372% and 1.8994%, respectively.
(3) Interregional differences and evolution trends. 

Fig. 3 depicts the differences in the per capita 
transportation carbon emissions between the three 
regions and their evolution trends. It can be seen that 
the three interregional differences were stratified 
clearly during the sample period. Specifically, the 
difference between the eastern and central regions was 
the largest, with an average Dagum Gini coefficient of 
0.3814; the difference between the eastern and western 
regions was the second, with an average Dagum Gini 
coefficient of 0.3243; the difference between the central 
and western regions was the smallest, with an average 
Dagum Gini coefficient of 0.2438. The eastern region 
enjoys a superior geographical position and a high level 
of economic development with more frequent foreign 
trade activities and a large volume of passengers and 
freight. Its average annual road freight turnover during 

2005-2015 reached 1582.779 billion ton-kilometers, 
accounting for 40.65% of the national average annual 
road freight turnover [40], thus resulting in higher per 
capita transportation carbon emissions in the eastern 
region. The western region is rich in resources, leading 
to a large freight volume. However, the freight volume 
is not as large as the eastern region, so that its per 
capita transportation carbon emissions are lower than 
those in the eastern region. The central region is an 
important passenger and cargo distribution center 
in China with a large inter-provincial transportation 
volume. However, most of provinces in this region 
have a large population. Meanwhile, energy-saving 
and emission-reduction technologies are also widely 
used, resulting in lowest per capita transportation 
carbon emissions. The above is clearly shown in  
Table 3. Therefore, the difference between the eastern 
and central regions is the largest, followed by the 
difference between the eastern and western regions, 
finally the difference between the central and western 
regions. Additionally, the differences between the 
three regions have gradually narrowed down, with 
annual declines of 4.7180%, 3.6602%, and 2.3651%, 
respectively.

Sources of the Spatial Non-Equilibrium 
and their Contribution Rates

Next, the overall spatial non-equilibrium of 
China’s per capita transportation carbon emissions is 
decomposed into the intra-regional difference, the inter-
regional difference and the intensity of transvariation. 
The percentage of their growth rates to the overall 
difference growth rate in each year is their respective 
contribution rate. Fig. 4 depicts the evolution trends of 
the contribution rates. It can be seen that the contribution 
rate of the inter-regional difference showed a downward 
trend during 2005-2015. Moreover, the contribution 
rate of the intra-regional difference remained basically 

Fig. 4. Contribution rates of various sources.
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stable, while the contribution rate of the intensity 
of transvariation showed an overall upward trend, 
which has become the major contributor to the overall 
spatial non-equilibrium. This finding is also partly 
supported by Li and Jiang [45]. With the acceleration of 
urbanization in the undeveloped provinces in the central 
and western regions, the demands for transportation 
are gradually increasing, resulting in an increased 
energy consumption. Meanwhile, the underdeveloped 
provinces have a relatively backward technological 
level. In addition, the government prefers economic 
development rather than environmental protection, so 
their transportation carbon emissions have increased 
and failed to attract enough attention. While the 
eastern region has strong environmental improvement 
needs, thus gradually implementing energy-saving 
and emission-reduction technologies as well as 
environmental regulation policies. Its transportation 
carbon emissions are controlled to a certain extent 
[24]. Hence, the inter-regional difference is generally 
reduced. Due to the small change of differences in the 
urbanization process, population size, environmental 
regulation policies, etc. between the provinces within 
the three regions, the contribution rate of the intra-
regional difference has remained basically stable.

Dynamic Evolution of per Capita Transportation 
Carbon Emission

  
In order to more intuitively reflect the overall 

state and the dynamic evolution of China’s per capita 
transportation carbon emissions, Gaussian Kernel 
density function is used from a dynamic perspective, 
and 2005, 2010 and 2015 are selected as the sample 
observation years. Fig. 5 depicts Kernel density curves 
of the per capita transportation carbon emissions at the 
national and regional levels. It can be seen that there are 
significant differences in Kernel density curves at the 
national and regional levels:

(1) Kernel density curves at the national level, and 
in the central and western regions showed a trend of 
moving to the right as a whole. The peak value showed a 
downward trend and the span became larger, indicating 
that the per capita transportation carbon emissions at 
the national level and in the central and western regions 
have shown a growth trend on the whole; the proportion 
of provinces with low transportation carbon emissions 
was decreasing; on the contrary, the proportion of 
provinces with high transportation carbon emissions 
was increasing. Meanwhile, the shapes of Kernel 
density curves at the national level, and in the central 

Fig. 5. Kernel density curves. a) National level, b) Eastern region,  c) Central region, d) Western region.
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region changed from a sharp peak to a broad peak, and 
the bimodal curves were more and more prominent, 
indicating that the per capita transportation carbon 
emissions at the national level and in the central region 
diverged obviously. There were different levels of club 
convergence, and the cluster shifted from a low level to 
a higher level. The right tail portion of Kernel density 
curve in the western region also moved to the right, 
with a tendency to cluster at a higher carbon emissions 
level, which is consistent with the carbon emission 
changing pattern that the low carbon concentration 
areas in western region were narrowing from 2005 to 
2015 [41].

(2) Kernel density curve trend of the per capita 
transportation carbon emissions in the eastern region 
was different from the national level as well as the 
central and western regions. It shifted to the left on 
the whole, indicating that the per capita transportation 
carbon emissions were generally declining. The curve 
evolved from a broad peak to a sharp peak, and 
changed from a multimodal to a single peak, indicating 
that there was a convergence feature in the region. 
Meanwhile, the right tail part changed to the upper 
right side, indicating that the per capita transportation 
carbon emissions of some eastern provinces would be 
concentrated at a higher carbon emissions level.

Comparing Kernel density curves of the per capita 
transportation carbon emissions at the national level, 
and in the eastern, central and western regions, it can be 
found that the area of Kernel density curve distributed 
at a high level in the eastern region is successively 
larger than that at the national level, and in the western 
and central regions. At the same time, the tailing 
distribution of Kernel density curves at the national 
level, and in the eastern region was obvious followed by 
the western region. Kernel density curve in the central 
region did not have this characteristic, indicating that 
the central provinces didn’t obviously cluster in high-
carbon club. In general, these results not only indicate 
the concentration trend of the per capita transportation 
carbon emissions which is coincident to the analysis in 
Bai et al. [15], but also reveal the concentration law in 
different areas using the dynamic distribution of Kernel 
density curve.

The Solidification Effect of the Spatial 
Non-Equilibrium

Kernel density estimation cannot reflect the 
solidification effect of the spatial non-equilibrium of 
China’s per capita transportation carbon emissions. 
Therefore, following the Markov chains approach 
proposed by Quah [31], this study classifies the per 
capita transportation carbon emissions of all provinces 
into four types to explore the transition probabilities 
of different types in detail and judges the solidification 
effect of the spatial non-equilibrium. Specifically, the 
provinces with the per capita transportation carbon 
emissions below 50% of the national average are type 

I, called low level with an interval of (0, 0.0639]; the 
provinces with the per capita transportation carbon 
emissions between 50% and 100% of the national 
average are type II, called medium-low level with an 
interval of (0.0639, 0.1277]; the provinces with the per 
capita transportation carbon emissions between 100% 
and 150% of the national average are type III, called 
medium level with an interval of (0.1277, 0.1916]; the 
provinces with the per capita transportation carbon 
emissions above 150% of the national average are type 
IV, called high level with an interval of (0.1916, ∞). 
Then the Markov chains approach is used to further 
explore the solidification effect of the spatial non-
equilibrium.

Table 5 shows the maximum likelihood estimates 
of Markov chains transition probabilities of China’s 
per capita transportation carbon emissions. It can 
be seen that the transition probabilities on the main 
diagonal of the transition probability matrix was much 
higher than those on the non-main diagonal. This 
indicated that the mobility between various types was 
relatively low, and these types were relatively stable. 
In a sense, the solidification effect of the same types 
was significant especially in the types with higher per 
capita transportation carbon emission, which mean 
provinces with higher per capita transportation carbon 
emissions always maintain higher levels and drop in 
a high-carbon trap. At the same time, the different 
types often transferred in the adjacent interval, and the 
probability of transferring across the interval was small. 
This indicates that the state transition of transportation 
carbon emissions was a gradual process, and the 
possibility of dramatically transition was small. In 
other words, there was a certain degree of solidification 
between adjacent types, which is also consistent with 
the findings of Zhou et al. [46]. To be specific, for 
the low level type at the initial stage, 72.41% of the 
provinces remained unchanged at the end of the year, 
while 27.59% transferred to the medium-low level; for 
the medium-low level type at the initial stage, 85.29% 
of the provinces remained unchanged at the end of the 
year, while 2.21% fell to the low level and 12.50% rose 
to the medium level; for the medium level type, 84.06% 
of the provinces remained unchanged at the end of the 
year, while 7.25% fell to the medium-low level, and 
8.70% rose to the high level; for the high level type, 
94.59% of the provinces remained unchanged at the 
end of the year, while 5.41% fell to the medium level. 
In general, the provinces with medium and high levels 
were in a more stable status than the provinces with a 
low level, which implied the solidification effect with 
medium and high levels was stronger than low levels. 
Moreover, the provinces at the low and medium-low 
levels more likely transferred to the medium and high 
levels. This meant that the provinces with lower per 
capita transportation carbon emissions at the initial stage 
more likely grew into such provinces with medium- 
and high-carbon emissions, while the provinces with 
medium- and high-carbon emissions were unlikely to 
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significantly reduce their carbon emissions, resulting in 
a narrowing of the spatial non-equilibrium in per capita 
transportation carbon emissions between provinces in 
China. Meanwhile, China’s provincial carbon emission 
transfer has spatial clustering characteristics [47]. The 
provinces at the high carbon cluster have environmental 
dumping and transfer effects on adjacent areas. The 
saturation of their traffic and environmental carrying 
capacity will squeeze out some of the transportation 
needs, which will have a negative external impact on 
the transportation carbon emissions in the surrounding 
provinces that undertake their carbon emission transfer 
[48]. It may form a “high carbon emissions trap” that 
will eventually limit China’s transportation sector to 
achieve carbon emission reduction.

Additionally, the classification of types and intervals 
in Markov chains approach is somewhat random, and 
the changes of the two may affect Markov chains 
transition probability matrix, thus have an influence 
on the conclusion of the study to a certain degree. As 
a result, the robustness of the above Markov chains 
analysis results is tested by repeatedly changing the 
number of types and the interval range in this paper. 
(i) First, do not change the number of types. Still 
classify the per capita transportation carbon emissions 
of all provinces into four types, but change the interval 
range. Specifically, the provinces with the per capita 
transportation carbon emissions below 50% of the 
national average are type I, called low level with an 
interval of (0, 0.0639]; the provinces with the per 
capita transportation carbon emissions between 50% 
and 125% of the national average are type II, called 
medium-low level with an interval of (0.0639, 0.1596]; 
the provinces with the per capita transportation carbon 
emissions between 125% and 175% of the national 
average are type III, called medium level with an 
interval of (0.1596, 0.2235]; the provinces with the per 
capita transportation carbon emissions above 175% of 
the national average are type IV, called high level with 
an interval of (0.2235, ∞). On this basis, recalculate 
Markov chains transition probability matrix. The results 
are shown in Table 6. (ii) Change the number of types. 
Classify the per capita transportation carbon emissions 
of all provinces into three and five types, respectively, 
and also change the interval range. Specifically, when 
classifying them into three types, the provinces with 
the per capita transportation carbon emissions below 
75% of the national average are type I, called low level 
with an interval of (0, 0.0958]; the provinces with the 
per capita transportation carbon emissions between 
75% and 150% of the national average are type II, 
called medium level with an interval of (0.0958,0.1916]; 
the provinces with the per capita transportation carbon 
emissions above 150% of the national average are type 
III, called high level with an interval of (0.1916, ∞); 
when classifying them into five types, the provinces 
with the per capita transportation carbon emissions 
below 50% of the national average are type I, called 
low level with an interval of (0, 0.0639]; the provinces 

with the per capita transportation carbon emissions 
between 50% and 100% of the national average are type 
II, called medium-low level with an interval of (0.0639, 
0.1277]; the provinces with the per capita transportation 
carbon emissions between 100% and 150% of the 
national average are type III, called medium level 
with an interval of (0.1277, 0.1916]; the provinces 
with the per capita transportation carbon emissions 
between 150% and 200% of the national average are 
type IV, called medium-high level with an interval of  
(0.1916, 0.2554]; the provinces with the per capita 
transportation carbon emissions above 200% 
of the national average are type V, called high 
level with an interval of (0.2554, ∞). Based on 
the above classification of three and five types, 
respectively recalculate Markov chains transition 
probability matrices. The results are shown in  
Table 7 and Table 8, respectively. It can be seen from 
the Tables 6-8 that after changing the number of types 
and the interval range, the recalculated Markov chains 
transition probability matrices are highly consistent 
with the previous research conclusions. In other words, 
(i) the transition probabilities on the main diagonal 

Table 5. Markov chains transition probability matrix.

t/t+1
Sample 
observa-

tions
Type I Type II Type III Type IV

Type I 58 0.7241 0.2759 0.0000 0.0000

Type II 136 0.0221 0.8529 0.1250 0.0000

Type III 69 0.0000 0.0725 0.8406 0.0870

Type IV 37 0.0000 0.0000 0.0541 0.9459

Table 6. Markov chains transition probability matrix based on 
four types of classification.

t/t+1
Sample 
observa-

tions
Type I Type II Type III Type IV

Type I 58 0.7241 0.2759 0.0000 0.0000 

Type II 184 0.0163 0.9457 0.0380 0.0000 

Type III 33 0.0000 0.0606 0.8485 0.0909 

Type IV 25 0.0000 0.0000 0.0000 1.0000 

t/t+1 Sample ob-
servations Type I Type II Type III

Type I 122 0.8607 0.1393 0.0000 

Type II 141 0.0142 0.9433 0.0426 

Type III 37 0.0000 0.0541 0.9459 

Table 7. Markov chains transition probability matrix based on 
three types of classification.
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are much higher than those on the non-main diagonal, 
which means the amount of per capita transportation 
carbon emissions has a higher solidification degree in a 
certain province, and always maintains a same level for 
a long time; (ii) the solidification effect shows obvious 
difference for different types. The provinces with per 
capita transportation carbon emissions at the medium 
to high levels have a stronger solidification effect 
and a more stable state than the low-level provinces, 
which is reflected in that the transition probabilities of 
types III, IV, and V on the main diagonal are higher 
than that of type I; (iii) the provinces with per capita 
transportation carbon emissions at low and medium-
low levels have a higher probability of transferring to 
the medium and high levels. The above results indicate 
that in the analysis of Markov chains, the change of the 
number of types and the interval range does not affect 
the conclusion of this paper, that is, the research results 
of Markov chains are highly robust.

Conclusions and Policy Implications

In this paper, the Dagum Gini coefficient and Kernel 
density estimation are used to analyze the spatial non-
equilibrium of China’s per capita transportation carbon 
emissions, which includes its sources and dynamic 
evolution over the 2005-2015 period. Most importantly, 
Markov chains approach is applied to investigates the 
solidification effect of the spatial non-equilibrium for 
the first time. The main results are as follows:

(1) According to the obtained Dagum Gini 
coefficients, the overall difference, intra-regional 
difference and inter-regional difference of China’s 
per capita transportation carbon emissions showed a 
significant downward trend during the sample period, 
and the intensity of transvariation gradually became the 
main source of the spatial non-equilibrium.

(2) Kernel density estimation indicated that the per 
capita transportation carbon emissions in the whole 
China as well as the eastern, central and western 
regions have shown an overall growth trend. The per 
capita transportation carbon emissions at the national 
level obviously diverged on the whole; the eastern 
region had a tendency to cluster from low to high 
levels; the central region had a more obvious divergence 

characteristic; the western region generally clustered at 
a high level.

(3) Markov chains analysis showed that the state 
mobility of China’s per capita transportation carbon 
emissions was low, which indicated the solidification 
effect among various types was relatively strong. 
Meanwhile, the provinces at the low and medium-low 
levels more likely transferred to the medium and high 
levels.

Based on the above conclusions, we propose the 
following policy recommendations:

According to the growth trend of the per capita 
transportation carbon emissions in the central and 
western regions, undeveloped provinces should pay 
more attention to the transportation carbon emissions 
and handle the relationship between the economic 
development and the ecological environment. They 
should reconstruct the transportation structure in 
the process of rapid urbanization and increase the 
investment in science and technology for traffic 
innovations. Meanwhile, the use of clean energies and 
energy-saving technologies also should be promoted 
to reduce the energy intensity and improve the 
energy efficiency [49-50], thus guiding the sustainable 
development of transportation sector.

Moreover, differentiated transportation carbon 
emission reduction policies should be formulated 
according to the initial carbon emission level, the 
economic development stage, as well as the scientific 
and technological innovation ability in the eastern, 
central and western regions. The eastern region with 
a high initial level should shoulder more responsibility 
for transportation carbon emission reduction. To be 
more specific, it should accelerate the transformation 
of economic structure with its first-mover advantage, 
strengthen regional environmental governance, use big 
data to monitor the transportation carbon emissions 
in real time and optimize transportation patterns. 
Meanwhile, it also should increase the investment in 
environmental protection technology, talents and R&D, 
promote the development of low-carbon transportation 
industry, form propagable experience and technologies 
and strive to reduce the growth rate of transportation 
carbon emissions. Considering that the provinces with a 
low initial level of transportation carbon emissions more 
likely grows into medium- and high-carbon provinces, 

Table 8. Markov chains transition probability matrix based on five types of classification.

t/t+1 Sample 
observations Type I Type II Type III Type IV Type V

Type I 58 0.7241 0.2759 0.0000 0.0000 0.0000 

Type II 136 0.0221 0.8529 0.1250 0.0000 0.0000 

Type III 69 0.0000 0.0725 0.8406 0.0870 0.0000 

Type IV 17 0.0000 0.0000 0.1176 0.7647 0.1176 

Type V 20 0.0000 0.0000 0.0000 0.0000 1.0000 
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the central and western regions must curb the trend 
of increased carbon emissions. They should rationally 
plan the urban structure while vigorously developing 
the economy, gradually improve the transportation 
structure and the carrying capacity of the existing 
transportation system. Moreover, the provinces with 
a large population can moderately control the number 
of private cars. They can selectively learn from the 
experience and technologies of the eastern region. In 
order to harmoniously reduce the transportation carbon 
emissions, the eastern region should provide technology 
and talent support to form a regional experience sharing 
and joint mutual assistance mechanism.

Additionally, Markov chains analysis show that the 
solidification effect is relatively strong which can be 
equivalent to a small probability of transferring across 
the carbon emission types. Therefore, according to 
the characteristics of transportation carbon emissions 
in different provinces, the matching policies should 
be selected to implement more strict carbon reduction 
measures in such provinces with a low carbon level 
transferring to the medium carbon level. Meanwhile, 
the solidification effect of high-carbon provinces should 
be paid more attention, so as to reduce their impacts 
on neighboring provinces, and prevent the high-carbon 
cluster from expanding in the geospatial space.
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