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Abstract

The development of strategic emerging industries is important for China’s Economic structure 
optimization and low-carbon economy. The purpose of this paper is to scientifically evaluate the 
technological innovation efficiency of strategic emerging industries. A five-stage data envelopment 
analysis (DEA) model was proposed. The model combines the super slack-based-measure (SBM) 
-Tobit-Super SBM and bootstrap DEA, improving the classical DEA model as well as the popular  
four-stage DEA model method. The purpose of this study is to design a scientific and accurate method 
to evaluate the efficiency of technological innovation, considering the impact of environmental factors 
and statistical errors on the efficiency value.

Input indicators were considered from the perspectives of capital, labour, and land, and output 
indicators were considered from the perspectives of science, technology, and the economy. Environmental 
factors such as regional economic level, labour market, and financial support were excluded. The 
empirical results show that: (1) the five-stage DEA model eliminates environmental interference and 
avoids the impact of statistical noise to reduce outliers; (2) after eliminating environmental interference 
and statistical noise, the technological innovation efficiency of strategic emerging industries in the 
Eastern, Central, and Western regions of China show a “U-shaped” fluctuation, with the highest in 
the Eastern region (0.57), followed by the Western region (0.56), and the Central region (0.53); and 
(3) environmental factors have a significant impact on the innovation activities of China’s strategic 
emerging industries. 
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Introduction

China’s rapid economic growth has brought 
increasingly serious problems of environmental 
pollution and resource shortage, which are caused by the 
inappropriate economic development model. In order 
to speed up the building of a resource-conserving and 
environment-friendly society, the Chinese government 
has actively implemented the basic state policy of 
conserving resources and protecting the environment. 
On the one hand, in order to further implement 
“made in China 2025” and strengthen environmental 
regulations, enterprises that are not environmentally 
friendly in traditional industries such as electricity, 
steel, building materials, non-ferrous metals, chemical 
industry, petroleum and petrochemical, shipping, coal, 
printing and dyeing, paper making, leather making, dye, 
coking and electroplating will be phased out. On the 
other hand, we will vigorously promote the development 
of strategic emerging industries such as new generation 
of information technology, high-end equipment, new 
materials, biology, new energy, new energy vehicles, 
energy conservation and environmental protection, and 
digital creativity, with the goal of making these green 
and low-carbon industries leading industries. Fig. 1 
reports that during the 13th five-year plan period, China 
has set targets for ammonia-nitrogen emissions. By 
2020, the provinces of Hebei, Shanxi, Zhejiang, Henan, 
Beijing and Tianjin will have cut emissions by more 
than 16.1%, while the six provinces of Sichuan, Hebei, 
Guangdong, Shandong, Hunan and Jiangsu will have 
cut emissions by more than 1.25 thousand tons. 

Therefore, in order to save energy and reduce 
emissions to promote the transformation and 
upgrading of traditional industrial structure, we must 
vigorously strategic emerging industries. However, 
the strategic emerging industries are characterized 
by high technology content, large capital input and 
uncertain risks. Compared with developed countries, 
China's strategic emerging industries suffer from low 

technological innovation efficiency and unbalanced 
regional development. It is of great significance to 
the sustainable and healthy development of regional 
economy to study the technological innovation 
efficiency of China's strategic emerging industries 
to reduce resource waste and increase enterprise 
innovation output.

Research on the method of technological innovation 
efficiency is one of the hot topics in China and the 
world. In 1972, AFRIAT first put forward the concept 
of technological innovation efficiency, emphasizing 
the technical efficiency of R&D innovation activities.
[1]At present, there are mainly two kinds of methods 
to study the efficiency of technological innovation: 
one is the parameter estimation method based on the 
stochastic frontier production function (SFA) proposed 
by Aigner et al. (1977). [2] For example, Song G. et 
al. selected sample data of SMEs from 30 provinces 
in China, and measured their technical efficiency with 
stochastic frontier analysis method and found that 
Chinese SMEs are not technically efficient, but they 
have a growing trend. [3] Wang X. et al. based on 
nuclear density estimation and SFA model, analyzed 
the dynamic evolution trend of innovation efficiency 
and decomposition index and the influencing factors 
of innovation efficiency in Chinese universities 
from 2011 to 2015. [4] The other is a non-parametric 
estimation method represented by data envelopment 
method (DEA) proposed by Charne C. et al. [5] For 
example, Li H. et al. used a slack-based measure data 
envelopment analysis (SBM-DEA) model and a panel 
threshold model to study the impact mechanisms of 
environmental regulation on technological innovation.
[6] Shen N. et al. measure energy efficiency in China 
using the three-stage data envelopment analysis (DEA) 
model and then tests the convergence of China’s 
energy efficiency. [7] Su K. et al. analyzed the eco-
efficiency of industrial enterprises by using the super-
efficiency DEA model and spatial metrology. [8]  
Liu Y. et al. calculated the ecological efficiency of urban 

Fig. 1. A total emission control plan for ammonia nitrogen in all regions during the 13th five-year plan period.
Note: due to lack of data, Tibet is not included, Source: comprehensive work plan for energy conservation and emission reduction during 
the 13th five-year plan period
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agglomeration in the Yangtze River economic belt from 
2005 to 2015 with non-radial, non-angled DEA model 
with undesired output [9]. Teirlinck P. et al. examine the 
determinants of firm level output efficiency of R&D. 
And  their focus is on the space industry in Belgium, a 
highly geographically concentrated industry. [10] Shin 
J. et al. analyzed the effect of RMEC on innovation 
efficiency considering both innovation inputs and 
outputs. Also, they utilized data of 388 manufacturing 
enterprises in Korea, and performed data envelopment 
analysis and tobit regression analysis. [11] Lee J. et al  
focus on the collaboration efficiency that arises from the 
research and development efforts of small and medium-
sized enterprises (SMEs).They examine the stepwise 
effect of collaboration for the phases of innovation and 
confirmed that collaboration had different effects on 
R&D and commercialization. [12]

This paper focuses on the relevant methods of 
DEA model. Since the parameters of the model do not 
need to be estimated in advance, DEA model has the 
advantage of avoiding evaluation errors caused by non-
objective factors. At the same time, the model results 
can not only compare the effectiveness of different 
efficiency but also provide the improvement direction of 
inefficient unit. Undeniably, DEA model evaluation also 
has some limitations. According to Charnes A., DEA 
model requires homogeneous external environment 
between decision making units; otherwise, different 
decisions making units with the same efficiency value 
cannot be compared. In addition, it is difficult to 
identify measurement errors due to non-random mode, 
so the data of input and output of the model must be 
accurate and measurable. The DEA model does not 
consider random errors caused by data, measurement 
and luck. 

The external environment of strategic emerging 
industries, including factors such as the economy, 
culture, and policy, vary regionally in China. If the 
classical DEA model is used to evaluate the efficiency 
of technological innovation, different industries will 
be considered in homogeneous environments, or the 
influence of the operating environment on the production 
frontier will not be considered. However, both these 
approaches are inconsistent with the basic assumptions 
of DEA model. Some operating environments promote 
the technological innovation efficiency of production 
units, while others impede it. The influence of operating 
environments therefore needs to be taken into account 
when making decisions. It has become an important 
research trend in DEA model expansion in recent 
years to eliminate or separate the various impacts of 
environmental factors on the production efficiency of 
sample units.

Literature review shows that most of the studies 
use the multi-stage DEA modeling analysis framework 
to study the efficiency of technological innovation, 
including the DEA model from one stage to four stages. 
CHEN Y. et al used the one-stage DEA model of VRS 
radial to conduct a comparative study on technological 

innovation efficiency of different types of large and 
medium-sized industrial enterprises. [13] Bao Y. et al  
established a two-stage DEA model for the technology 
R&D stage and achievement transformation stage 
of product innovation, and conducted an empirical 
analysis on the innovation efficiency of China’s flat-
panel display industry and three flat-panel display 
enterprises including BOE, Infovision Optoelectronics 
(IVO) and Tianma data. [14] Qu G. et al. investigated 
the technological innovation efficiency of China-listed 
companies on the basis of controlling environmental 
factors based on the three-stage DEA model. The 
research shows that the overall technological innovation 
efficiency of China-listed companies is low, with the 
average value of less than 0.7. [15] Liao M. et al. took 
panel data of 30 provincial administrative regions in 
China from 2002 to 2012 as samples, and applied DEA 
model and four-stage DEA model to verify collaborative 
innovation efficiency of various provinces in China. [16]

Many studies have analysed the impact of 
environmental factors on efficiency by employing DEA 
models ranging from one to four stages. The one-stage 
DEA model, also known as the frontier separation 
method, groups the samples in advance according to one 
of the most important characteristics in the operating 
environment, and considers the impact of multiple 
environmental factors on the evaluation. However, the 
sample grouping of this method is prone to statistical 
errors. The two-stage DEA method is an improvement 
of the one-stage method. It first uses the classical DEA 
model to obtain results, and then uses the statistical 
regression method to eliminate environmental influence. 
However, this method tends to ignore the production 
information of excessive input and insufficient output. 

In 1999, Fried et al. proposed the three-stage  
(BCC-SFA-BCC) DEA model, which first calculates the 
efficiency value using the Banker, Charnes and Cooper’s 
model (BCC) model, then adjusts the input variable by 
using the SFA model to eliminate environmental factors, 
and finally re-calculates the efficiency value by using 
the adjusted input and output statistics. [17] However, 
the three-stage model truncates input relaxation 
variables, which easily leads to inconsistent parameter 
estimation. Subsequently, Fried et al. proposed the four-
stage DEA model method. [18] The main difference 
between this method and the three-stage DEA method 
is that Tobit regression replaces SFA regression in the 
second stage to ensure consistent parameter estimation. 
Nevertheless, the four-stage DEA model still cannot 
eliminate the impact of random error.

Many studies expand on the four-stage DEA 
model. Avkiran constructs the SBM-Tobit-SBM model 
by replacing the BCC model with the SBM model 
to eliminate the influence of environment. However, 
this model requires a regression model to predict 
the maximum and minimum values of the relaxation 
variate. Chen K. et al. construct the RAM-Tobit-
RAM model by combining the RAM and Tobit model 
to reduce statistical noise. [19] Fan D. et al. study  
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the energy efficiency of Chinese industrial enterprises 
by combining the four-stage DEA method with 
the bootstrapped DEA method. [20] Chen C. et al. 
evaluate agricultural technical efficiency with the four-
stage DEA method, and correct deviations with the 
bootstrapped DEA method. [21] Zhao J. et al. calculate 
the green efficiency of China’s economy in 30 provinces 
(as well as cities and autonomous regions) in 2016 by 
using the four-stage DEA model to eliminate the impact 
of external environmental variables. [22] Yu M. et 
al. use the four-stage DEA method to investigate the 
influence of the external environment on the production 
efficiency of the new energy vehicle industry. [23]  

The research above provides inspiration for this 
study. The four-stage DEA model proposed by Fried 
et al. obtains the relaxation variables calculated by 
the initial DEA model, adjusts the relaxation amount 
according to the environmental difference of decision-
making uncertainty (DMU), and then re-adjusts the 
input or output data and re-calculates the new data 
to eliminate the influence of environmental factors. 
However, there are still two significant problems with 
this model. First, it is impossible to eliminate the 
interference of statistical noise in the results. Second, 
the BCC model employed at the first stage has several 
shortcomings in dealing with technical inefficiencies 
and endogeneity. 

Therefore, this study will further improve the 
four-stage DEA model to effectively evaluate the 
technological innovation efficiency of China’s 
strategic emerging industries. The Super-SBM model 
is introduced to replace the BCC model, and the 
bootstrapped DEA method is introduced to carry out 
a repeated self-sampling test on the model to eliminate 
the influence of statistical noise. Accordingly, a five-
stage DEA model is constructed combining the Super 
SBM-Tobit-Super SBM and the bootstrapped DEA 
models. The main purpose of this paper is to evaluate 
the efficiency of technological innovation by building a 
more scientific and accurate model. By examining the 
effects of environmental factors and statistical errors 
on the efficiency of technological innovation, this 
paper will analyze the different effects of internal and 
external factors. Finally, the paper puts forward some 
policy Suggestions to promote the technical efficiency 
of strategic emerging industries.

Material and Methods

In this study, the Super-SBM model proposed by 
Ton is employed to calculate the initial efficiency value 
at the first stage of the five-stage DEA model, since the 
Super-SBM model can order the effective decision units 
by permitting the efficiency value θ≧1. [24-25] The 
five-stage DEA model is constructed as an improvement 
of the four-stage DEA model studied and applied in 
China and abroad [26]. The next section provides more 
details of the methodology. 

Stage one: Calculate initial technology innovation 
efficiency based on Super-SBM model

The following formula is used for the calculation of 
China’s strategic emerging industries:

                 (1)

...where n is the number of samples, X = xij is the 
input vector, Y = yij is the output vector, m and k are 
the categories of input and output, respectively, λ is 
the column vector, and θ is the target technological 
innovation efficiency value. In addition, xi0(i = 1...m) and 
yi0(r = 1...k) are the elements of X and Y, respectively, 
and si

– and sr
+ represent the slack variables of input and 

output, respectively. This model can be used to estimate 
the technological innovation efficiency of China’s 
strategic emerging industries.

Stage two: Determine the direction of the impact of 
external environment on efficiency

The Tobit regression model can effectively 
distinguish the positive and negative influences of the 
external environment. Tobit first proposed the concept 
of the Censored Regression Model in 1958. At the same 
time, the economist A.S. Goldberger first applied the 
Tobit model in practice. The Tobit model has a very 
powerful feature in that the regression variables can 
be either continuous numerical variables or 0-1 type 
virtual variables, which is very convenient for studying 
environmental variables in DEA.

In this study, the number of Tobit regression 
models constructed is I. The total relaxation amount 
of input will be selected as the dependent variable, and 
external environment variables will be selected as the 
explanatory variable, where I is the number of input 
variables. This can be represented by the following 
formula:

 
(2)

...where Sik = (1 – θ̂   k )xik + sik– is the i-th relaxation 
variable measured in the first stage; Zik is the vector 
of exogenous environmental variables; αi is a constant 
term; βi is the coefficient vector to be evaluated; and μi 
is the error term.
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Stage three: Remove environmental factors and 
readjust the initial input variables

The corresponding fitting value can be obtained by 
substituting the relaxation variables of all input factors 
into formula (2). Using Ŝik = αi  +  βi Zik, the initial 
variable is adjusted. The formula is as follows:

          (3)

The purpose of this adjustment is to make the 
maximum fitting relaxation value Maxk{Ŝik} represent 
the worst environmental condition. 

1) When the environment is least conducive to 
efficiency, Maxk{Ŝik} – Ŝik = 0 and the adjusted input  
xik

adj = xik, that is, no adjustment is made to the initial 
input.

2) When the environment is conducive to efficiency, 
Maxk{Ŝik} – Ŝik > 0 and the adjusted input xik

adj > xik, 
which is equivalent to increasing the initial input. If the 
output remains constant, the increase in initial input 
reduces the efficiency value accordingly.

Therefore, the above adjustments can effectively 
“punish” DMUs with high efficiency due to the good 
external environment in order to remove the increase 
in efficiency caused by environmental factors. In the 
end, all DMUs are compared in the worst possible 
environment.

Stage four: Re-measure technological innovation 
efficiency value θ̂   

The adjusted input-output data were substituted 
into the Super SBM model to obtain the new θ̂    value. 
This represents the worst environment for the DM,U 
which is equivalent to the efficiency level achieved by 
a reduction in input at a percentage of at least (1 – θ̂   °).

The four-stage DEA method outlined above 
effectively “filters” the influence of exogenous 
environmental variables and realizes the ordering and 
comparison of effective unit values. In addition, it 
avoids the classification of environmental variables in 
advance. However, the effect of statistical noise cannot 
be eliminated, and there is still some deviation for the 
obtained efficiency value. 

Stage five: Build the bootstrapped random DEA 
model with environmental and statistical noise 

removed

DEA model uses the production frontier to 
estimate the efficiency value of decision making unit. 
The estimated result is relative efficiency, instead 
of the absolute "efficiency" concept in the statistical 
sense. KNIEP A et al. pointed out that the asymptotic 
distribution of efficiency values of DEA model is  
usually difficult to determine. Bootstrap method 

can infer the empirical distribution of DEA model 
estimates, and then correct the deviation of efficiency 
estimates and give its confidence interval. [27] The 
basic concept is: No assumptions are made on the 
unknown population; on the basis of the original data, 
the data generation process is simulated by repeated 
sampling, so that the approximate sample distribution 
of the original estimator is obtained, and the overall 
characteristics are further statistically inferred. 
Therefore, Bootstrap method is introduced in the fifth 
stage of this paper to modify the above four-stage  
model values. The model principles and methods are 
shown in the study of  Simar L. et al. [28]. The specific 
idea is: 

1) Use the input-output data with environmental 
variables excluded as the initial sample of bootstrap 
DEA, and then substitute them into the Super  
SBM model to calculate the sample efficiency score  
θ̂    o = (θ̂   1

o, θ̂   2
o,..., θ̂    No);

2) Repeat the putting-back-sampling method to 
extract a sample of native bootstrap with size N from  
θ̂    o : β̂  o* = (β̂  1b

o*  ,β̂  2b
o* , ..., β̂  Nb

o*  );
3) Smooth the native bootstrap sample to obtain the 

smooth bootstrap sample θ̂    o : β̂  o* = (θ̂   1b
o*  , θ̂   2b

o* , ..., θ̂   Nb
o*  ) 

Among them: 

In the above formula, h represents the smoothing 
parameter σ�θo the standard deviation of θ̂   o, and ε the 
random error.

4) Readjust the indicators, mainly by smoothing  
the sample  θ̂    o* = (θ̂   

1b
o* , θ̂   

2b
o* , ..., θ̂   

Nb
o*  ) according to 

θ̂   1b
o*  = (θ̂    o/θkb

o*) ∙ xk
adj, k = 1,2..., N.

5) Calculate the bootstrapped DEA efficiency value 
of the jth decision making unit θ̂   

jb
o*. The data source 

is selected from the adjusted input and original output 
data in step 4).

6) Repeat steps 2-5 for Q times (Q = 1000), then the 
statistics obtained by each DMU are:

7) Test the deviation of the initial value DMU θ̂   k
o and 

the adjusted efficiency value θ∆
k

o. The specific formula 
is as follows:
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Through adjustment by the above method, 
external environmental variables can be effectively 
eliminated. The four-stage technical efficiency value 
θ̂   0 can be re-calculated afterward. To further reduce 
the impact of random errors, the estimated value θ ∆0 

 
, excluding environmental factors and random errorsis 
finally obtained using the bootstrap model method on 
the basis of θ̂     0.

 Research Idea of the Five-Stage DEA Model

The idea of the five-stage DEA model constructed in 
this study is shown in Fig. 2.

Selection of Model Variables

Input Index

Selecting the appropriate input-output index is key 
to calculating the technological innovation efficiency of 
strategic emerging industries. The evaluation indicators 
of this study make references to the existing research 
results [29-30]. According to the Cobb-Douglas 
production function, the factors affecting innovation 

activities include three categories: capital, labour, and 
land. As for the investment elements of technological 
innovation activities, extant research usually considers 
research and development (R&D) resources. In this 
study, three secondary indicators, namely, internal 
R&D expenditure (IRDE), technology introduction 
expenditure (TIE), and domestic technology expenditure 
(DTE), are selected to measure the capital input of 
strategic emerging industries. 

In addition, the full-time equivalent of R&D 
personnel (RDP) accurately reflects the actual workload 
of innovation activities, and is a more scientific 
indicator than the number of R&D personnel selected 
as the labour input index in some studies. As for the 
land element measurement of innovation activities in 
strategic emerging industries, the fixed investment in 
technological innovation can be used as a reference. 
Considering that most R&D activities are realized 
through specialized R&D institutions, the number of 
R&D institutions (NRDI) is selected as the direct input 
indicator of innovation activities in this paper.

Output Index

The output activities of innovation should consider 
both market-oriented scientific and technological 
products and actual economic benefits. Therefore, the 
output indicators in this study are divided into scientific 
and technological output and economic output. The 
number of valid inventions PATENT is adopted to 

Fig. 2. Path diagram of the five-stage DEA model.
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measure the scientific and technological output of 
strategic new and emerging enterprises because it better 
reflects the quality of the output of innovation activities. 
At the same time, total PROFIT is selected as the 
secondary index of economic output to reflect the actual 
benefits of innovation activities.

Environmental Indicators

As for the selection of indicators of environmental 
variables, the research results of Bao et al. and Qiao 
are referenced. [31-32] Environmental indicators are 
selected from three categories: macroeconomic level, 
labour supply, and financial support. In terms of the 

macro economy, Referring to the research results of 
Bao et al., per capita GDP (ANGDP) is selected as the 
secondary index. [33] Generally, a higher regional per 
capita GDP is more favourable for the development 
of strategic emerging industries. The development of 
strategic emerging industries cannot be separated from 
the support of high-quality human resources. In terms 
of the labour market, the number of students with higher 
education per 100,000 population (EDU) is therefore 
selected as the secondary index. In terms of financial 
support, the ratio of the loan balance of financial 
institutions in the banking industry and local GDP 
(LOAN) is selected as a secondary indicator. Strategic 
emerging industries are capital-intensive industries, 

Table 1. Input-output index system.

Target 
classification Level indicators Secondary indicators Unit Symbol

Input 
indicators

Capital

Internal expenditure of R&D expenditure 10,000 yuan IRDE

Technology import outlay 10,000 yuan TIE

Purchase of domestic technology expenditure 10,000 yuan DTE

Labour Full-time equivalent of R&D personnel person year RDP

Land Number of R&D institutions NRDI

Output 
indicators

Output of science and technology Number of valid invention patents PATENT

Economic output
Main business income 100,000,000 

yuan INCOME

Total profit 100,000,000 
yuan PROFIT

Environmen-
tal variables

Macroeconomic level GDP per capita yuan ANGDP

Labour market supply Number of students enrolled in higher 
education per 100,000 population people EDU

Financial institution support Ratio of loan balance of financial institutions in 
the banking industry to local GDP ratio LOAN

Table 2. Descriptive statistics of input-output and environmental data from 2011 to 2016.

Variable Number Mean Standard deviation Minimum value Maximum value

RDP 168 19336.73 36108.51 18.6 210298

DTE 168 15438.93 52921.27 15 550664

NRDI 168 173.3155 337.5385 1 1992

TIE 168 656322.9 1274562 782 8406913

IRDE 168 656322.9 1274562 782 8406913

INCOME 168 4319.385 6968.697 16.9 37765.2

PROFIT 168 273.119 403.2471 0 2094

PATENT 168 4522.649 13790.69 2 117296

ANGDP 168 50411.97 22496.67 16413 118198

EDU 168 721.2474 543.0467 251.4405 3319.863

LOAN 168 1.246769 0.4196663 0.412139 2.544447
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and the greater the financial institutions’ support, the 
more conducive to industrial development. As shown in 
Table 1, the relevant indicator system of this study is 
constructed as follows.

Data Selection of Model Variables

Due to the short period of industrial development, 
there are no complete statistical datasets for strategic 
emerging industries in China. However, China’s 
statistics on high-tech industries are relatively robust, 
and strategic emerging industries are based on the 

concept of high-tech industries. Therefore, it is feasible 
to replace the input-output data of strategic emerging 
industries with relevant data from the China High-tech 
Industry Statistical Yearbook. Based on the availability 
and continuity of data, the time span of the data in this 
study is from 2011 to 2016. In addition, the external 
environment data involved are from the China Financial 
Yearbook and China Statistical Yearbook.

Due to the serious lack of relevant data, the data 
of Tibet, Qinghai, and Gansu provinces as well as 
those of Hong Kong, Macao, and Taiwan are excluded. 
Descriptive statistics of samples are shown in Table 2.

Table 3. Statistics of technical innovation efficiency values measured by different models from 2011 to 2016.

The serial 
number DMU

2011 2012 2013

Super 
SBM Four-stage Five-stage Super 

SBM Four-stage Five-stage Super 
SBM Four-stage Five-stage

1 Beijing 1.01 0.78 0.84 1.2 0.7 0.9 1.01 0.66 0.86

2 Tianjin 1.14 0.69 0.85 1.15 0.54 0.88 1.02 0.61 0.97

3 Hebei 0.53 0.8 0.55 0.48 0.71 0.56 0.36 0.66 0.51

4 Liaoning 1.02 0.48 0.36 0.76 0.46 0.37 0.44 0.42 0.38

5 Shanghai 1.26 1.23 0.97 1.05 0.92 0.83 1.07 0.86 0.71

6 Jiangsu 0.7 1.35 0.85 0.41 1 0.88 0.39 1.04 0.86

7 Zhejiang 0.31 0.95 0.92 0.26 0.75 0.79 0.3 0.71 0.74

8 Fujian 0.39 0.7 0.73 0.34 0.67 0.75 0.3 0.66 0.75

9 Shandong 0.55 0.57 0.74 0.44 0.6 0.77 0.34 0.59 0.72

10 Guangdong 1.95 1.16 0.85 1.48 1.1 0.88 1.05 1.13 0.85

11 Guangxi 1.1 1.05 0.79 1.07 1 0.77 1.02 1 0.71

12 Hainan 0.39 0.28 0.48 0.27 0.35 0.47 0.36 0.22 0.55

13 Shanxi 1.01 0.33 0.52 1.03 0.89 0.76 0.56 0.3 0.47

14 Inner Mongolia 1.2 1.56 0.63 1.52 1 0.7 1.08 1 0.7

15 Jilin 1.06 0.85 0.82 1.13 1 0.8 1.04 1.02 0.73

16 Heilongjiang 0.37 0.35 0.27 0.25 0.34 0.26 0.21 0.31 0.22

17 Anhui 0.36 0.28 0.42 0.41 0.56 0.71 0.57 0.66 0.79

18 Jiangxi 1.61 0.31 0.51 1.61 0.47 0.53 1 0.48 0.65

19 Henan 1 1.06 0.78 1.24 1 0.76 1 1.01 0.75

20 Hubei 0.56 0.28 0.78 0.45 0.22 0.68 0.34 0.21 0.68

21 Hunan 0.64 0.63 0.68 0.44 0.63 0.65 0.43 0.31 0.46

22 Chongqing 0.69 0.77 0.92 1.06 0.69 0.91 0.75 0.94 0.95

23 Sichuan 1.07 1.06 0.88 0.56 1 0.95 0.52 0.53 0.82

24 Guizhou 1.02 1.15 0.75 1.19 0.4 0.83 0.62 0.18 0.53

25 Yunnan 1.11 0.42 0.63 1.14 0.3 0.7 1.01 1.03 0.85

26 Shaanxi 0.37 0.56 0.55 0.26 0.53 0.53 0.26 0.54 0.57

27 Ningxia 1.14 0.16 0.24 0.27 0.05 0.11 0.19 0.06 0.2

28 Xinjiang 0.6 0.06 0.09 0.3 0.15 0.59 0.45 0.19 0.49
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Results and Discussion

Stage 1: Super SBM model measurement analysis 
considering environmental and statistical noise 

Based on the data of 28 provinces in China from 
2011 to 2016, the Super SBM four-stage DEA model 
and five-stage DEA model are used to calculate the 
technological innovation efficiency of China’s strategic 
emerging industries (see Table 3).

As shown in Table 3, without excluding 
environmental and statistical noise, the original 
input-output data can be substituted into the Super 

SBM model to calculate the technological innovation 
efficiency value of strategic emerging industries 
in 28 provinces of China (θ). Chronologically, the 
maximum and minimum values of θ in 2011 were 
1.95 (Guangdong) and 0.31 (Zhejiang), respectively. In 
2012, they were 1.61 (Jiangxi) and 0.25 (Heilongjiang), 
respectively. In 2013, they were 1.08 (Inner Mongolia) 
and 0.19 (Ningxia), respectively. In 2014, they were 
1.61 (Jiangxi) and 0.2 (Shaanxi), respectively. In 2015, 
they were 1.09 (Shanghai) and 0.29 (Heilongjiang), 
respectively. In 2016, they were 2.13 (Jilin) and 0.3 
(Shaanxi), respectively. In addition, from the perspective 
of the six-year efficiency mean of each province, Jilin 

Serial 
number DMU

2014 2015 2016 2011-2016 average

Super 
SBM

Four- 
stage

Five- 
stages

Super 
SBM

Four- 
stage

Five- 
stage

Super 
SBM

Four- 
stage

Five- 
stage

Super 
SBM

Four- 
stage

Five- 
stage

1 Beijing 1.45 0.62 0.87 1.07 0.52 0.77 1.08 0.54 0.8 1.12 0.64 0.84

2 Tianjin 1.13 0.59 0.9 1.03 0.47 0.69 1.5 0.47 0.64 1.15 0.56 0.82

3 Hebei 0.35 0.66 0.52 0.35 0.66 0.46 0.41 0.65 0.41 0.41 0.69 0.5

4 Liaoning 0.51 0.48 0.42 0.81 0.5 0.46 0.91 0.56 0.66 0.74 0.48 0.44

5 Shanghai 1.05 0.85 0.72 1.09 0.85 0.76 1.63 0.83 0.88 1.17 0.92 0.81

6 Jiangsu 0.4 1 0.9 0.44 1.26 0.85 0.51 1 0.87 0.48 1.1 0.87

7 Zhejiang 0.29 0.72 0.71 0.29 0.7 0.64 0.48 0.74 0.76 0.32 0.76 0.76

8 Fujian 0.28 0.65 0.75 0.33 0.64 0.7 0.42 0.7 0.85 0.34 0.67 0.76

9 Shandong 0.37 0.6 0.73 0.46 0.62 0.7 1.01 1 0.92 0.53 0.66 0.76

10 Guangdong 1.21 1.2 0.9 1.06 1.28 0.94 1.04 1 0.88 1.28 1.15 0.88

11 Guangxi 1 1 0.76 1 1.09 0.71 1.62 1 0.71 1.13 1.02 0.74

12 Hainan 0.69 0.87 0.91 0.51 0.28 0.8 0.44 0.19 0.5 0.44 0.37 0.62

13 Shanxi 1.04 1 0.81 1.01 0.7 0.83 1.13 0.34 0.45 0.96 0.59 0.64

14 Inner Mongolia 1.59 1 0.78 0.37 0.13 0.18 0.39 0.1 0.15 1.01 0.8 0.52

15 Jilin 1.56 1 0.8 1.02 1.04 0.73 2.13 0.69 0.63 1.31 0.93 0.75

16 Heilongjiang 0.21 0.31 0.23 0.44 0.38 0.29 0.62 0.37 0.44 0.35 0.34 0.29

17 Anhui 0.53 0.55 0.81 0.55 0.37 0.64 1.03 1 0.88 0.58 0.57 0.71

18 Jiangxi 0.36 0.46 0.63 0.72 0.87 0.8 1.4 1 0.8 1.12 0.6 0.65

19 Henan 0.61 1 0.78 1.08 1.08 0.75 0.7 1 0.79 0.93 1.02 0.77

20 Hubei 0.45 0.22 0.7 0.51 0.25 0.73 1.01 0.31 0.98 0.55 0.25 0.76

21 Hunan 0.43 0.3 0.61 0.37 0.27 0.46 1.01 0.47 0.74 0.55 0.44 0.6

22 Chongqing 1.02 1 0.9 0.57 0.61 0.8 0.61 0.65 0.83 0.78 0.78 0.89

23 Sichuan 0.62 1 0.97 0.62 0.42 0.72 1.03 0.67 0.92 0.74 0.78 0.88

24 Guizhou 1.01 0.23 0.66 0.53 0.2 0.55 0.5 0.23 0.63 0.81 0.4 0.66

25 Yunnan 0.59 0.23 0.54 1 1 0.88 0.51 0.34 0.7 0.89 0.55 0.72

26 Shaanxi 0.2 0.55 0.58 0.3 0.56 0.57 0.3 0.62 0.63 0.28 0.56 0.57

27 Ningxia 1.02 0.19 0.64 0.49 0.11 0.31 1.57 0.19 0.7 0.78 0.13 0.37

28 Xinjiang 0.49 0.21 0.42 0.8 0.15 0.5 1 0.14 0.47 0.64 0.15 0.43

Table 3. Statistics of technical innovation efficiency measured by different models from 2011 to 2016.
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is the largest, with an average of 1.31, and Ningxia is 
the smallest, with an average of 0.13. This also indicates 
that compared with the classical BCC models, the Super 
SBM model can both distinguish the effectiveness of 
different efficiency values and order them.

Stage 2: Tobit model used to eliminate 
environmental factors

Due to the influence of external environmental 
factors, the efficiency value calculated by the Super 
SBM model does not objectively reflect the true 
efficiency of technological innovation in strategic 
emerging industries in different regions of China.

At the first stage, the result θ of the Super SBM 
model was selected as the dependent variable, and 
ANGDP, EDU and LOAN were selected as independent 
variables to build the panel Tobit model. Input slack is 
the input of various resources to achieve the goal of 
innovation. Therefore, the input slack can be taken as 
the opportunity cost of strategic emerging industries. If 
there is a positive correlation between the explanatory 
variable θ and the input slack variable, it means that 
the greater the input slack variable, the greater the 
opportunity cost, and the more detrimental to the 
improvement of technological innovation efficiency, and 
vice versa.  

As shown in Table 4, according to the number 
of dependent variables, this study constructed five 
Tobit regression models (models 1-5). Specifically, the 
environmental variable per capita GDP (ANGDP) was 
significant at the 5% level in all models, and ANGDP 
was positively correlated with all explained variables. 
This shows that GDP per capita has a significant 
impact on the original input slack variable of the DEA 
model. Due to the imbalance of economic development 
in different regions in China, the higher the GDP per 
capita in the region, the greater the impact on the input 

index. The number of higher education students per 
100,000 population (EDU) has different influences on 
the input slack variable. EDU has a significant effect 
at the 5% level in model 4 only and has no significant 
effect in the other models. Finally, financial institution 
support (LOAN) is not significant in model 1 and model 
2, but significant in models 3, 4, and 5 at the levels 
of 5%, 10%, and 5%, respectively. This indicates that 
financial support has a significant impact on the number 
of R&D institutions (NRDI), expenditure on technology 
introduction (TIE), and internal expenditure on R&D 
expenditure (IRDE ), and the correlation is negative.

Stages 3 and 4: Input variables adjusted and DEA 
value re-calculated

The fitting value of the Tobit model in the second 
stage was used to re-adjust the input variable, and the 
adjusted input data and original output index were 
substituted into the Super SBM model to obtain the new 
technical innovation efficiency value (see Table 3 for 
details).

4.3.1 From Table 3 and Table 5, it can be seen that 
the efficiency mean obtained by the four-stage DEA 
method decreases in most regions after the removal 
of environmental factors. The efficiency values of 19 
provinces and cities, including Beijing, Tianjin, Shanxi, 
Inner Mongolia, Liaoning, Jilin, Shanghai, Guangdong, 
and Guizhou, were lower than those before the 
adjustment, accounting for 64.29% of the total number 
of samples. The efficiency values of Hebei, Zhejiang, 
Jiangsu, Shandong, Fujian, Henan, Sichuan, and Shaanxi 
decreased by 0.04, 0.09, 0.13, 0.28, 0.28, 0.33, 0.44, and 
0.62, respectively. Chongqing’s efficiency value did 
not change. This indicates that the technical efficiency 
value measured by a single Super SBM model can be 
quite significantly affected by environmental factors, 
and a large number of favorable external environment 

Table 4. Tobit regression results. 

Explanatory 
variables

RDP 
(model 1) Prob DTE 

(model 2) Prob NRDI
(model 3) Prob TIE 

(model 4) Prob IRDE 
(model 5) Prob

Constant term
33867.41

0.00 
51473.10

0.00
307.97

0.00 
1088468

0.00 
1177309

0.00 (18.35) * 
* *

(18.16) * 
* * (17.82) * * * (19.03) * * * (17.96) * 

* *

ANGDP
0.68

0.00 
0.61

0.00
0.01

0.00 
23.00

0.00 
24.79

0.00 
(5.19)* ** (3.04) * * * (6.21) * * * (5.45) * * * (5.43) * * *

EDU 2.31
 (0.52) 0.28 

7.39
0.18

0.03
0.50 

312.35
0.03 

156.34
0.35

(-1.09) (-0.67) (2.18) * * (-1.01)

LOAN 11431.95 
(2.04) 0.31 

8583.53
0.21

151.5292
0.00 

347282.2
0.05 

396697.6
0.04 

(-1.01) (2.98) * * (1.93) * (2.04) * *

Logarithmic likeli-
hood ratio 1990.66 —— 2060.98 —— 1201.02 —— 2573.629 —— 2586.81 ——

Note: *, ** and *** mean significant at the level of 10%, 5% and 1% respectively; Numbers in parentheses are the z-statistics.
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factors “falsely” increases the technical efficiency value 
of many provinces.

From the ranking perspective, the efficiency mean 
of the four-stage DEA model excluding environmental 
factors dropped in 15 provinces and rose in 14 
provinces. From the progress perspective, Jiangsu, 
Zhejiang, and Fujian saw the largest rise in the ranking, 
with the ranking of the sample improving from 22, 27, 
and 26 to 2, 10, and 12, respectively. Ningxia, Guizhou, 
and Xinjiang saw the biggest declines, dropping by 
14, 11, and 10 places, respectively. Compared with 
the original calculation results, the adjusted efficiency 

value is more consistent with reality. This shows that if 
external environmental factors are not controlled, it is 
difficult for the classical DEA model to reflect the real 
efficiency values of some provinces.

Stage 5: Bootstrapped model

Table 3 reflects the revised bootstrapped DEA model 
results. The statistics show that in further correcting the 
four-stage DEA model, the five-stage model innovates 
in two ways. First, it further optimizes the overall 
distribution of the 28 provincial efficiency values. 

Table 5. Changes in efficiency mean ranking.

Serial 
number

Provinces
(and cities)

Super 
SBM

Ranking 1:
efficiency value

Four- 
stage

 Rank-
ing 2

Changes after 
adjustments

Five- 
stage Ranking 3 Changes after 

adjustments 

1 Beijing 1.12 6 0.64 14 ↓ 0.84 5 ↑

2 Tianjin 1.15 4 0.56 18 ↓ 0.82 6 ↓

3 Hebei 0.41 24 0.69 11 ↑ 0.50 24 —

4 Liaoning 0.96 9 0.59 16 ↓ 0.64 19 ↓

5 Shanghai 1.01 8 0.80 7 ↑ 0.52 23 ↓

6 Jiangsu 0.74 15 0.48 21 ↓ 0.44 25 ↓

7 Zhejiang 1.31 1 0.93 5 ↓ 0.75 13 ↓

8 Fujian 0.35 25 0.34 25 ↓ 0.29 28 ↓

9 Shandong 1.17 3 0.92 6 ↓ 0.81 7 ↓

10 Guangdong 0.48 22 1.10 2 ↑ 0.87 4 ↑

11 Guangxi 0.32 27 0.76 10 ↑ 0.76 10 ↑

12 Hainan 0.58 18 0.57 17 ↑ 0.71 16 ↑

13 Shanxi 0.34 26 0.67 12 ↑ 0.76 12 ↑

14 Inner Mongolia 1.12 7 0.60 15 ↓ 0.65 18 ↓

15 Jilin 0.53 21 0.66 13 ↑ 0.76 9 ↑

16 Heilongjiang 0.93 10 1.02 3 ↑ 0.77 8 ↑

17 Anhui 0.55 19 0.25 26 ↓ 0.76 11 ↑

18 Jiangxi 0.55 20 0.44 22 ↓ 0.60 21 ↓

19 Henan 1.28 2 1.15 1 ↑ 0.88 2 —

20 Hubei 1.13 5 1.02 4 ↑ 0.74 14 ↓

21 Hunan 0.44 23 0.37 24 ↓ 0.62 20 ↑

22 Chongqing 0.78 13 0.78 9 ↑ 0.89 1 ↑

23 Sichuan 0.74 16 0.78 8 ↑ 0.88 3 ↑

24 Guizhou 0.81 12 0.40 23 ↓ 0.66 17 ↓

25 Yunnan 0.89 11 0.55 20 ↓ 0.72 15 ↓

26 Shaanxi 0.28 28 0.56 19 ↑ 0.57 22 ↑

27 Ningxia 0.78 14 0.13 28 ↓ 0.37 27 ↓

28 Xinjiang 0.64 17 0.15 27 ↓ 0.43 26 ↓

Note: “↑” means efficiency ranking improved, “↓” means efficiency ranking decreased, and “—” means no change in efficiency  
ranking
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The adjusted standard deviation of efficiency value is 
0.16 in the five-stage model and 0.6 in the four-stage. 
Therefore, the standard deviation has been reduced by 
0.44. Second, the five-stage model measurement shows 
that the average technological innovation efficiency 
value of 28 provinces from 2011 to 2016 is less than 
1, which is highly consistent with the characteristics 
of strategic emerging industries in the early stages of 
development.

In addition, the efficiency value optimization of 
the five-stage DEA model can be further reflected in  
Table 5. For example, the efficiency means measured 
by the single DEA method include: 0.48 for Jiangsu, 
ranking 22nd; 0.32 for Zhejiang, ranking 27th; 0.34 for 
Fujian, ranking 26th; and 0.81 for Guizhou, ranking 
12th, which are inconsistent with reality. The results 
measured by the five-stage DEA model are: 0.87 for 
Jiangsu, ranking 4th; 0.76 for Zhejiang, ranking 10th; 
0.76 for Fujian, ranking 12th; and 0.66 for Guizhou, 
ranking 17th. Likewise, the results measured by the 
four-stage DEA model include 0.64 for Beijing, ranking 
14th, and 0.56 for Tianjin, ranking 18th. This method 
lowers the values as well as the rankings of the two 
cities. In contrast, the efficiency means of Beijing 
and Tianjin adjusted by the five-stage model are 0.84, 
ranking 5th, and 0.82, ranking 6th, respectively. It shows 
that the bootstrapped model with self-sampling repeated 
1,000 times can effectively eliminate random errors 
and deliver more stable results. As shown in Fig. 2, 
the result curve of the five-stage model eliminates the 
outliers, and the result is more stable compared with 
the other two models after eliminating environmental 
factors and random errors.

To summarize, there are significant deviations in the 
results for all versions of the DEA model from single- 
to four-stage, and the five-stage DEA model constructed 
in this study can provide more accurate results.

Finally, as shown in Fig. 3, the results measured 
by the four-stage DEA and Super SBM models reveal 
that differences in provincial technological innovation 
efficiency show a “U-shaped” fluctuation. After the 
elimination of environmental factors and statistical 
deviation, however, the five-stage DEA model results 
remain relatively stable. The results show that 1) 

environmental factors and statistical deviation do have  
a significant effect on technological innovation 
efficiency; and 2) the technological innovation efficiency 
of strategic emerging industries is significantly affected 
by external environmental factors such as economic 
development, labour supply, and financial policy. To 
develop strategic emerging industries, it is necessary 
to consider the fact that the industry is at the initial 
stage. To promote industrial innovation, it is crucial 
to create environmental factors conducive to industrial 
development.

Comparison of Different Models Based 
on Regions 

As shown in Table 6, the technological innovation 
efficiency of strategic emerging industries in the three 
regions of China (Eastern, Central, and Western) 
showed a “U-shaped” fluctuation from 2011 to 2016. 
Comparing the average technological innovation 
efficiency of the three regions, the result calculated by 
the single Super SBM is East>Middle>West. With the 
effects of environmental factors and random errors 
removed, the results of the five-stage model show that: 
the Eastern region is the highest (0.57), the Western 
is second (0.56), and the Central is lowest (0.53). 
Nationally, the efficiency means of the Super SBM, 
four-stage model, and five-stage model measurements 
are 0.78, 0.60, and 0.55, respectively. The contribution 
of environmental factors to the average technology 
innovation efficiency is 0.18, and of statistical noise, 
0.05. From the perspective of the Eastern region, the 
contribution of external environmental factors to the 
average efficiency of technological innovation is 0.17, 
with a contribution rate of 21%, and of statistical noise 
0.08, with an impact rate of 9.9%.

This reveals that the development of China’s strategic 
emerging industries is significantly affected by external 
policies, the economy, and other macro environmental 
factors, and the government’s support and cultivation of 
strategic emerging industries have a significant impact 
on promoting industrial innovation. At the same time, 
if the environmental factors and statistical errors are 
excluded, industrial innovation in the Eastern, Central 

Fig. 3. Comparison of efficiency means by different models.
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and Western regions is not significantly different. This 
also indicates that to accurately measure the value of 
industrial technological innovation, it is necessary to 
consider different industries in the same environment. 
Finally, according to the calculation of the five-stage 
DEA model, the actual technological innovation 
efficiency of China’s strategic emerging industries 
is lower than 0.6, and there is a large redundancy in 
resource allocation. Therefore, to further improve 
productivity by advanced technology is important to the 
promotion of industrial development.

Conclusions

The classical single DEA model has the disadvantage 
of ignoring environmental influence and statistical 
noise. The mainstream four-stage DEA model based 
on the BCC-Tobit-BCC paradigm involves technical 
inefficiencies and is unable to deal with endogeneity 
due to the BCC model. To focus on the environmental 
factors affecting technological innovation in strategic 
emerging industries and reduce statistical noise, this 
study constructed a five-stage model combining the 
Super SBM-Tobit-Super SBM model and Bootstrap 
DEA. In order to verify the effectiveness of the model, 
this study empirically measured the technical efficiency 
of strategic emerging industries in 28 provinces and 
cities by using statistical yearbook data from 2011 to 
2016. It finds the following:

(1) The technology innovation efficiency of strategic 
emerging industries in 28 provincial regions of China 
is insufficient after environmental factors and statistical 
noise are eliminated using the five-stage model. The 
highest average efficiency is that of Chongqing at 0.89, 
followed by Guangdong at 0.88, and the lowest is that 
of Heilongjiang at 0.29. This indicates that there is 

significant redundancy in investment in technological 
innovation in China’s strategic emerging industries, and 
efficiency must be improved.

(2) When measuring the technological innovation 
efficiency of strategic emerging industries, there are 
significant differences among the single DEA method, 
the four-stage DEA method, and the five-stage DEA 
method. Without eliminating environmental factors 
and statistical errors, technical innovation efficiency 
is overestimated and does not objectively reflect the 
reasons for lack of innovation. The five-stage DEA 
model constructed in this study not only absorbs the 
advantages of the four-stage DEA model in “flattening” 
environmental interference, but also avoids the impact 
of random factors. The five-stage DEA model can avoid 
the emergence of outliers.

(3) After eliminating the environmental factors  
and statistical noise, the technological innovation 
efficiency of China’s strategic emerging industries 
shows a “U-shaped” fluctuation in three regions, with 
the highest in the Eastern (0.57), the medium in the 
Western (0.56), and the lowest in the Central region 
(0.53).

(4) A comparison between the results of the 
five-stage DEA model and other models shows that 
environmental factors have a significant impact on 
China’s strategic emerging industries. If environmental 
factors are excluded in different regions, the innovation 
efficiency of enterprises in strategic emerging 
industries will turn out to be the same, which is in line 
with development characteristics at the initial stage of 
China’s strategic emerging industries. Therefore, the 
government can significantly promote innovation-driven 
development through funds, policies and the creation of 
high-quality financial services environments.

In order to promote the improvement of technological 
innovation efficiency of strategic emerging industries, 

Table 6. Comparison of efficiency means of different regions.

Area Model 2011 2012 2013 2014 2015 2016 Mean

Eastern 
region

Super SBM 0.86 0.78 0.82 0.73 0.73 0.92 0.81

Four-stage 0.74 0.63 0.61 0.67 0.64 0.62 0.65

Five-stage 0.54 0.57 0.58 0.56 0.51 0.66 0.57

Central 
region

Super SBM 0.87 0.86 0.68 0.75 0.66 0.98 0.80

Four-stage 0.63 0.68 0.59 0.65 0.57 0.59 0.62

Five-stage 0.50 0.55 0.51 0.58 0.50 0.55 0.53

Western 
region

Super SBM 0.86 0.78 0.64 0.71 0.64 0.79 0.74

Four-stage 0.60 0.55 0.59 0.59 0.44 0.41 0.53

Five-stage 0.58 0.56 0.53 0.52 0.55 0.60 0.56

National

Super SBM 0.86 0.81 0.71 0.73 0.68 0.90 0.78

Four-stage 0.65 0.62 0.60 0.64 0.55 0.54 0.60

Five-stage 0.54 0.56 0.54 0.55 0.52 0.60 0.55
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it is necessary for government departments to provide 
financial subsidies to strategic emerging industries at 
the embryonic stage. At the same time, tax incentives 
and lowering the threshold will also benefit to support 
R&D activities in strategic emerging industries. Finally, 
Banks and other credit departments are necessary 
to design diversified financing products which will 
promote the innovative development of strategic 
emerging industries.
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