
Introduction

With the increasing global climate change and urban 
heat island effects, high-temperature urban disasters 
have occurred frequently in various parts of the world 
in recent years. These have had significant negative 
impacts on the health and social economy of urban 
residents and have become one of the most important 
meteorological disasters experienced by cities [1, 2]. 
The world today, especially developing countries, is 
experiencing an unprecedented wave of urbanization. 
China’s urbanization rate was 10.6% in 1949 and 
reached 58.5% in 2017. Rapid urbanization has changed 

the surfaces and spatial structures of cities through 
increased building height, reduced green coverage, and 
compact urban forms [3, 4]. As a result, the heat balance 
has been destroyed [5, 6], exacerbating the heat island 
effect [7], which produces a series of urban problems. 
Among these, the deteriorating thermal environment 
of urban spaces has become one of the most significant 
features of climate change in modern cities worldwide, 
and poses a serious threat to urban air quality, energy 
consumption, and public health [8-10].

Urban spatial morphology most directly reflects 
the link between urban systems and environmental 
changes. The impervious urban surface, extracted via 
remote sensing, and the characteristics of constructed 
buildings, such as building height, building volume, 
building coverage ratio (BCR), floor area ratio 
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(FAR), and street space, are directly related to the 
urban microclimate (such as temperature and wind 
environment) and are often used as indicative factors 
to characterize the urban heat island effect [11]. In 
addition, the sky view factor (SVF) of urban street 
space is highly correlated with the urban heat island 
effect. The smaller the SVF, the greater the probability 
and intensity of the urban heat island effect [12-
14]. In terms of 3D urban landscape index, the 3D 
compactness index, distribution uniformity index, space 
crowded degree (SCD), and SVF have high correlations 
with the intensity of urban heat islands [15-16]. Zhao 
et al. [17] obtained mesoscale urban morphological 
parameters (UMPs) based on remote sensing data, 
and used urban abundance, vegetation fraction, and 
FAR to describe the urban morphology. Vegetation 
fraction and BCR were found to have a key impact 
on the surface thermal environment. Based on the 
measurement technology and geographic information 
system method, Hove et al. [18] divided the sample area 
into different urban forms and types and determined 
the influence of urban geometric characteristics such 
as BCR, green coverage ratio(GCR), average building 
height and SVF on local climate and thermal comfort. 
Giridharan et al. [19] used in-situ measured data to 
determine that the urban heat island effect increased 
with SVF. When the SVF exceeded 0.3, the change in 
the urban heat island was small. Ali-Toudert et al. [20] 
used the 3D climate model in ENVI-met to simulate the 
changes in the urban thermal environment and found 
that appropriate street aspect ratios can significantly 
improve the street-level microclimate. Berger et al. 
[21] used remote sensing technology to compare the 
influences of 2D and 3D UMPs on the surface thermal 
environment, and found that vegetation fraction and 
BCR had the highest correlations with the thermal 
environment with correlation coefficients of 0.79 and 
-0.79, respectively. Tong et al. [22] used measured data 
and geographic information system (GIS) technology to 
study the influences of UMPs, such as GCR and BCR, 
on the temperature in Tianjin. It was found that the 
average temperature increased with building height and 
reduction in street width. Existing studies on 3D urban 
temperatures and structures need to be strengthened. 
In particular, research cases using 3D temperatures and 
UMPs are rare. 

The objective of this study is focused on the 
relationships between temperature and urban 
morphological indicators at different heights, and 
to explore the influence of urban internal spatial 
morphology on the thermal environment. Urban 
morphological indicators from 2D and 3D perspectives 
at different spatial scales were used in the context of 
urban temperature study. The data and methods used to 
achieve the above goal are presented in Section Material 
and Methods. The accuracy of the model is evaluated 
in Section Model Accuracy Assessment. Thereafter, 
from the perspectives of spatial dependencies (Section 
Spatial Dependencies of UMP-Ta Relationship) and 

dependencies pertaining to land use type and scales 
(Section Land Use-type Dependencies of UMP-
Ta Relationships), and typical residential land, the 
relationships between the UMPs and air temperature 
(Ta) are discussed. The findings of this investigation are 
presented in Section Conclusions.

Material and Methods

Study Area

Jinan is located at 116°11′-117°58′E, 36°01′-37°32′N, 
to the south of the Yellow river and to the north 
of Taishan Mountain. It is the economic, political 
and cultural centre of Shandong Province, with a 
population of 7.46 million and an area of 7,998 km2 

in 2018, of which agricultural land, construction land, 
forest land, grazing and pasture land, waters and other 
land types account for 44.2%, 22.4%, 10.5%, 7.1%, 
6.3% and 6.3%, respectively [23]. The mean annual 
temperature is 14℃, and the average mean precipitation 
650-700 mm. The natural vegetation is evergreen 
coniferous and deciduous broadleaf forest, which are 
mainly distributed in the southern mountainous areas of 
the city. It belongs to the temperate monsoon climate 
region and is a typical four-season city. In summer, 
the outdoor environment is hot and stuffy, and the heat 
island effect is evident. The study area is located in the 
Jinan High-Tech Zone with an area of 1.8 km × 2.6 km 
(Fig. 1). The green space in this area is distributed on 
both sides of the road, forming a checkerboard pattern, 
with a greening rate of 40%. The main roads in the study 
area are perpendicular to the prevailing wind direction 
in Jinan, and there is no tall building at the intersection, 
which is convenient to provide natural ventilation for 
the dominant wind direction. The selected area includes 
a variety of land use types such as residential land, 
commercial land and green space. The urban land is 
complex, and it is one of the commercial activity areas 
with obvious heat island effect in Jinan, which is typical 
and representative. Therefore, the results of this study 
are also applicable to other areas of Jinan City.

Data Pre-Processing 

To obtain quantitative information, such as 
building height, accurately, the image control points 
are evenly distributed in the study area by connecting 
the Continuously Operating Reference Stations 
(CORS) of Shandong province with global positioning 
system (GPS) technology. The unmanned aerial 
vehicle (UAV) platform uses Phantom 4pro, equipped 
with a 20-megapixel Complementary Metal Oxide 
Semiconductor sensor, uses the UAV tilt photography 
technology to obtain the orthophoto map of the study 
area and Pix4D and Smart 3D for orthophoto stitching. 
It establishes the digital surface model (DSM) and real-
life 3D models of the study area. The digital elevation 
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model (DEM) of the study area is incorporated to 
calculate the heights of buildings and vegetation and 
to obtain information, such as road width and water 
area. Based on the above data, the ENVI-met model  
of the study area was established and the values  
of Ta at different heights were simulated. The 
meteorological data was measured using a handheld 
weather station, Kestrel 5500. The measurement points 
were located in different areas of the surface of the 
study area. Monitoring point 1 was located under a tree 
and monitoring point 2 was located by the side of the 
road.

Using the Spearman’s correlation analysis, 
the correlations between the UMPs and thermal 
environment were calculated. To study the scale 
relationship between the UMPs and urban thermal 

environment, and obtain enough samples, the study area 
was divided into 9 m × 9 m, 15 m × 15 m, 21 m × 21 m, 
30 m × 30 m, 51 m × 51 m, and 102 m × 102 m spatial 
statistical units in the GIS software. The relevant data, 
such as Ta and surface coverage, were included in the 
GIS to construct a multi-scale research database.

Urban morphological parameters are an effective 
way to measure the urban spatial form. In the present 
study, seven parameters commonly used in urban 
morphological research were selected: BCR, FAR, 
GCR, SCD [21, 24], cubic index, vegetation fraction, 
and SVF (Table 1) [25]. The surface coverage and 
other related data were integrated in ArcGIS, and the 
information of the buildings and vegetation of each 
statistical unit was calculated. The UMPs of each unit 
were then calculated as the basis for the subsequent 

Fig. 1. Study area and location of Jinan: a) location of Shandong Province in China; b) location of Jinan; c) Study area of Jinan, where 
d) is a typical residential land area,; ① and ② are field monitoring points.
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study of the spatial relationship between urban form 
and urban thermal environment.

Microclimate Model ENVI-Met

The 3D non-static fluid model, ENVI-met 
version 4.4.3, was used to simulate the urban thermal 
environment from the 3D level by simulating the 
dynamic process of building surface-plant-atmosphere 
interaction on the microscopic scale of the city. The 
main characteristic parameters in the study area, such 
as buildings, vegetation, and surface properties, were 
all placed in the main 3D model [26]. The distribution 
of temperature and calculation of relative humidity 
were based on the advection diffusion equation. The 
processes of turbulence and airflow exchange were 
based on two additional K-ε governing equations from 
Mellor and Yamada [27].

Navier-Stokes equations:
      

    (1)
 

...where, Km and p' represent the local exchange 
coefficient and pressure perturbation parameter, 
respectively. The Coriolis parameter f describes 
the rotation of near-surface wind compared to the 
geostrophic wind components ug and vg. Su, Sv and Sw 
are local source/sink terms that model the wind drag 

of semi-permeable obstacles. When air flows through 
a porous body a pressure gradient along the direction i 
of the wind component ui (ui = u,v,w and i = 1,2,3) is 
generated [26]. 

Continuous equation:

                         (2)

Atmospheric turbulence:
            

           (3)

...where, K is the exchange coefficient, Q determines 
the exchange conditions between air and vegetation, 
E represents turbulence, ε represents dissipation, c1, c2 
and c3 are empirical constants, c1 = 1.44, c2 = 1.92 and 
c3 = 1.44. Pr and Th denote the production and 
dissipation of turbulent energy caused by wind shearing 
(Pr) and thermal stratification (Th) [26].

Using the high-tech zone (Fig. 1c) as the simulation 
area, the 3D model of the study area was established 
using ENVI-met. Table 2 lists the main input parameters 
of the model simulation.

The accuracy of the model was evaluated using the 
root mean square error (RMSE) and mean absolute 
percentage error (MAPE), as shown in Eqs. (3) and (4), 
respectively:

n
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Table 1. Summary of 2D and 3D UMPs considered in present study.

UMPs Abbrevia-
tion Description

2D

Building coverage 
ratio BA(B) Ratio of building area to total block area. Reflects the vacancy rate and building density within a 

certain land use range.
Green coverage 

ratio RA(G) Ratio of vegetation area to total block area. Reflects the ground greening of the site.

Vegetation fraction VF Ratio of vegetation projection area to total block area. Reflects the ground greening of the site.

Floor area ratio FAR Ratio of total floor area of the building to the area of the land on which it is located. An index to 
measure the intensity of land development.

3D

Cubic index CI Ratio of building volume to total block area. Reflects the degree of utilization of the sky above the 
city per area of the city unit.

Space crowded 
degree SCD

Ratio of the sum of building volumes to the product of the highest building height and total block 
area. Reflects the distribution density of the building in the 3D space. The larger the crowding 

value, the lower is the openness.

Sky view factor SVF
Proportion of visible sky within a given reference circle. Used to measure the extent of 3D open 
space. The geometric space parameter that reflects the degree of openness of urban space to the 

sky. The larger the value, the higher is the visibility of the sky.
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...where xi is analog value, xi ́ is measured value, n is 
number of observations, and RMSE and MAPE reflect 
the magnitude of simulation accuracy and prediction 
effect, respectively.

Correlation Analysis

The correlations between the urban thermal 
environment and urban spatial morphological 
parameters are determined using the Spearman’s 
correlation coefficients. The Spearman’s coefficient 
is used to measure the linear correlation between 
the ordered variables and is considered the Pearson 
correlation coefficient between the sorted variables. As 
the data is non-numeric, the original data (xi, yi) cannot 
be directly used, but using the quality of the data, the 
range of values is limited to between 1 and n [28], where 
rs represents the Spearman’s correlation coefficient, Ui 
and Vi represent the quality of the variables xi and yi, 
respectively, and Di represents the quality difference. 
The equations are as follows:

                     (6)

                          (7)

Results and Discussion

Model Accuracy Assessment

The measured temperature data is the meteorological 
data at a pedestrian height of approximately 1.5 m. Using 
ENVI-met to simulate the temperature distribution of 
the study area, the temperature data of the monitoring 
points with the same height as the measured data were 

selected for comparative analysis. It can be seen from 
Fig. 2 that the simulated temperature curve agrees well 
with the measured temperature curve. The RMSE of 
monitoring point 1 was 0.73 °C and MAPE was 1.92%. 
Monitoring point 2 is located on the side of the road and 
is significantly affected by pedestrians and vehicles, and 
hence, the MAPE is 3.75%.The correlation coefficient R2 
between the measured values   of the monitoring points 
1 and 2 and the simulated values   are 0.937 and 0.935, 
respectively, indicating high correlations. Existing 
research results show that the correlation coefficient 
R2 of the ENVI-met simulated temperature data and 
measured data is within the range 0.79-0.96, and the 
MAPE values of monitoring points 1 and 2 are both 
less than 5%, indicating that the ENVI-met simulation 
results are reliable. The application of ENVI-met 
simulation to analyze urban microclimate environments 
is feasible. Middel et al. used ENVI-met to simulate 
the urban thermal environments of three communities 
in Phoenix, Arizona, USA, with RMSEs in the range  
1.41-3.17ºC [29]. Lao et al. simulated the outdoor 
thermal environment in a typical block in Zhongshan 
City, and found that the RMSE was 0.31-0.52ºC and 
MAPE was 0.77-1.25% [30]. Lu et al. considered ENVI-
met suitable for medium- and small-scale microclimate 
environment simulations and did not verify the accuracy 
when simulating the microclimate environment in the 
North Xi’an area [31].

Table 2. Main input parameters of model simulation.

Input parameters Value

Model 
parameter 

setting

Simulation start date 2019.6.13 (total 
simulation 24 h)

Minimum temperature 22ºC (at 4:00)

Maximum temperature 33ºC (at 14:00)

Initial 
parameter 

setting

Minimum relative 
humidity 10% (at 14:00)

Maximum relative 
humidity 35% (at 6:00)

Wind speed 10 m above 
ground 2.5 m/s

Wind direction East wind
Fig. 2. Comparison between measured data and simulated data of 
monitoring points in study area.

Temperature
Evaluation index

RMSE/ºC MAPE/% Correlation 
coefficient (R2)

Monitoring 
point 1 0.73 1.92 0.937

Monitoring 
point 2 1.35 3.75 0.935

Table 3. Quantitative evaluation of simulation results of ENVI-
met model.
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Spatial Dependencies of UMP-Ta Relationships

Fig. 3 shows the Spearman’s coefficients between 
the UMPs and Ta for the statistical units of 20 m × 20 m,
50 m × 50 m, and 100 m × 100 m (model simulation 

grid resolution is 10 m × 10 m × 5 m). The results 
show that the Spearman’s correlation coefficients of 
BCR (Fig. 3a) and SCD (Fig. 3f) with Ta increase with 
distance from the ground at all three spatial scales. 
When the distance from the ground is higher than  

Fig. 3. Spearman’s correlation coefficients between UMPs and thermal environment at different spatial scales. a) BCR, b) GCR, c) 
Vegetation fraction, d) Floor area ratio, e) Cubic index, f) Space crowded degree, g) Sky view factor.

a)

c)

e)

g)

b)

d)

f)
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12.5 m, the positive correlation reaches a confidence 
level of 0.05. Among these, the correlation coefficients 
are the highest at the 100 m × 100 m spatial scale, 
reaching 0.37 and 0.26 for BCR and SCD, respectively. 
The Spearman’s correlation coefficients of FAR  
(Fig. 3d) and cubic index (Fig. 3e) with Ta are at the 
scales of 50 m × 50 m and 100 m × 100 m. At a height of 
12.5 m, there is a significant negative correlation at the 
0.05 confidence level. At heights exceeding 17.5 m and 
27.5 m from the ground, there is a significant positive 
correlation. Among these, the correlation coefficient is 
the highest at the 50 m × 50 m spatial scale and reaches 
0.35. Due to the large difference between the simulated 
temperature of the building and the surrounding 
temperature, the abnormal temperature value at each 
height is eliminated. When the distance from the ground 
is less than 12.5m, there are many grids of buildings, 
and there are many abnormal temperature values that 
need to be eliminated. Therefore, the four indicators 
related to building distribution, BCR, FAR, SCD, and 
cubic index, have low correlation with temperature. 
When the distance from the ground is more than 12.5m, 
the number of grids of buildings gradually decreases, 
and the abnormal temperature values that need to be 
eliminated decrease accordingly, and the correlation 
between the four indicators and the temperature also 
shows an upward trend. 

In contrast, the Spearman’s correlation coefficients 
of relative area of grass (Fig. 3b) and vegetation fraction 
(Fig. 3c) with Ta at the three spatial scales decrease 
with height from the ground. When the height from 
the ground is greater than 12.5 m, the correlation is 
not significant at the spatial scale of 100 m × 100 m. 
 However, it can reach -0.22 at the spatial scale of  
50 m × 50 m. The Spearman’s correlation coefficient 
of SVF and Ta decreases with increase in height from 
the ground. When the height is lower than 12.5 m, 
there is a significant positive correlation. When the 
height exceeds 27.5 m, there is a significant negative 
correlation at the 0.05 confidence level. Among the 
seven UMPs, the FAR and cubic index are the most 
affected by the spatial scale. Taking a distance of  
3.5 m from the ground as an example, the correlation 
coefficients between cubic index and Ta are -0.01, -0.23, 
and -0.41 at the scales of 20 m × 20 m, 50 m × 50 m, and  
100 m × 100 m, respectively. In comparison, the SVF 
index is less affected by the spatial scale. Existing 
research shows that the relationship between SVF and 
surface temperature is mainly negative [32]. Berger 
et al. studied the effect of SVF in Berlin and Cologne 
on the surface temperature during the four seasons, 
and found that the larger the SVF, the lower the 
surface temperature [21]. However, some studies have 
shown that the two factors are significantly positively 
correlated. For instance, Yan et al. determined that the 
increase in SVF increases the daytime temperature [33].
Land Use-type Dependencies of UMP-Ta Relationships

The study area includes residential land, commercial 
land, green space, roads, and other land use types. 

The building heights in the study area are in the 
range 3-91 m, and the urban thermal environment 
and 3D morphology of the city are complicated  
(Figs 4 and 5). At 10:00 a.m. in June, the solar altitude 
angle is approximately 58°. The shade effect of the 
building at this time is a key factor affecting the urban 
temperature. The Spearman’s correlation coefficients 
of the UMPs and Ta for residential land, commercial 
land, and the entire study area were calculated on  
a 20 m × 20 m spatial scale. When the height from the 
ground is lower than 22.5 m, except for the SCD of the 
residential land, the correlations of all other parameters 
reach a confidence level of 0.05. When the height 
from the ground is lower than 12.5 m, the BCR of 
commercial land (Fig. 6a) has no significant correlation 
with Ta. However, the FAR (Fig. 6d) and cubic index 
(Fig. 6e) are significantly negatively correlated with 
Ta at the 0.05 confidence level. At this time, Ta is 
mainly affected by the shadow of the building. When 
the height from the ground is higher than 12.5 m, 
the correlations between Ta and BCR (Fig. 6a), GCR 
(Fig. 6b), FAR (Fig. 6d), and SCD (Fig. 6f) of commercial 
land suddenly increase. At this time, the shade effect of 
the building is weakened, and the peak values   of BCR, 
GCR, vegetation fraction, and SCD appear near 17.5 m, 
and are 0.47, -0.3, -0.3, and 0.59, respectively. When the 

Fig. 4. Distribution of temperature field in study area.

Fig. 5. Distribution of building height in study area.
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height is lower than 12.5 m, the correlation between the 
spatial morphological parameters of residential land and 
Ta is higher than that of commercial land, except for 
SCD (Fig. 6f). This may be because commercial land 
buildings are mainly high-rise buildings, with high land 

use efficiency, less vegetation, and mostly lawns. The 
GCR and vegetation fraction have similar effects on 
the thermal environment. The Spearman’s correlation 
coefficient between the SCD of residential land and 
Ta changes from a significant negative correlation to 

Fig. 6. Spearman’s correlation coefficients between UMPs and thermal environment under different land use types. a) BCR, b) GCR, c) 
Vegetation fraction, d) Floor area ratio, e) Cubic index,f) Space crowded degree, g) Sky view factor.
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Fig. 7. Simulation data of meteorological values in residential areas.

Fig. 8. Spearman’s correlation coefficients between UMPs and thermal environment at different spatial scales. a) BCR, b) GCR, c) 
Vegetation fraction, d) Floor area ratio, e) Cubic index, f) Space crowded degree
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an irrelevance with increase in height. This is related 
to the model grid resolution. When the network 
resolution is 10 m × 10 m × 5 m, the vegetation canopy 
is ignored to a certain extent, resulting in extremely 
high information repetition rates between the GCR and 
vegetation fraction. In mathematical statistics, some 
spatial morphological indices and thermal environment 
have scale relationships.

UMP-Ta Relationships of Typical 
Residential Land

In view of the various types of land in the study 
area, differences in building heights, and the complex 
urban thermal environment and 3D morphology of the 
city, we conducted a thorough study using a typical 
residential land as the study area (Fig. 1b). The grid 
resolution of the ENVI-met model was set to 3 m ×  
3 m × 5 m for fine simulation. Considering the sampling 
scales at each level, the multi-scale spatial statistical 
units of this study were 9 m × 9 m, 15 m × 15 m,  
21 m × 21 m, 30 m × 30 m, 51 m × 51 m, and  
102 m ×102 m. The average daily temperature in this 
area is 29.5ºC, and the average temperature difference at 
the same time is 1.4ºC. The daytime wind environment 
is relatively stable with an average wind speed of 
approximately 0.84 m/s, and hence the influence of the 
wind environment on the thermal environment can be 
excluded (Fig. 7).

The Spearman’s correlation coefficients of BCR 
(Fig. 8a), FAR (Fig. 8d), and cubic index (Fig. 8e)  
with Ta have no significant correlation in the space of 
51 m × 51 m and 102 m × 102 m. At a spatial scale 
of 9 m × 9 m, the correlations reach a confidence level 
of 0.05 when the height above the ground is 4.5 m, 
and the values for BCR, FAR and cubic index reach 
0.46, 0.44, and 0.44, respectively. The correlations of 
GCR (Fig. 8b), vegetation fraction (Fig. 8c), and SVF  
Fig. 8g) with Ta at heights lower than 22.5 m above 
the ground reach a confidence level of 0.05. Among 
these, the correlation was highest at the spatial scale of  
51 m × 51 m, reaching -0.49, -0.62, and 0.82, 
respectively, for GCR, vegetation fraction, and SVF 
with Ta. However, as the spatial scale increases to 
102 m × 102 m, the correlations are only significantly 
relevant at heights lower than 1.5 m from the ground. 
Comparing the selected 2D and 3D morphological 
parameters, SVF can comprehensively characterize 
the internal structure of the city. This is because it 
integrates information such as building height, BCR, 
and vegetation height. Hence, it has a significant impact 
on the urban thermal environment and the highest 
correlation with Ta. The correlations between the UMPs 
and Ta are significantly affected by the model grid 
resolution and spatial scale, i.e., the statistical analysis 
unit. Compared with the simulation grid resolution 
of 10 m × 10 m × 5 m in Section 3.2, the vegetation 
fraction under the condition of 3 m × 3 m × 5 m can 
consider the projection area of the canopy, and hence, 

its correlation with Ta is higher than that of GCR. The 
3D morphology adds height information on the basis 
of the 2D pattern parameters. Generally, the impact of 
BCR and cubic index on the thermal environment is 
more significant [34], but the Spearman’s correlation 
coefficient between BCR and Ta is always higher than 
that between the cubic index and Ta. Berger et al. 
obtained the surface temperature data through Landsat 
ETM+ [21]. The correlation between the 2D parameters 
obtained was mostly higher than that between the 3D 
parameters. The authors believed that the maximum 
deviation of the zenith angle between the airborne 
ETM+ sensor and the city edge when viewing the city 
was 7.4°. As a result, the horizontal city surface was 
oversampled, and finally the 2D parameters were more 
closely related to the morphological parameters than 
the 3D parameters were. The 3D urban environment 
obtained in the simulated environment in the present 
study compensates for the defects of Berger’s horizontal 
urban surface being oversampled and vertical urban 
surface being undersampled.

Conclusions

In this study, numerical simulation and GIS methods 
were combined to simulate the thermal environment. 
The grid resolutions are 10 m × 10 m × 5 m and  
3 m × 3 m × 5 m, respectively, which are used to 
simulate and analyze the urban thermal environment of 
the study area and its residential areas. And calculate 
the Spearman correlation coefficient between UMP and 
Ta under different spatial scales. The main conclusions 
are as follows:

In the vertical direction, the correlations of the 
UMPs with Ta are closely related to vegetation height 
and building height. The shade effect of buildings is 
the key factor affecting urban temperature. The 3D 
morphologies of vegetation and buildings have different 
influences on the temperature. At heights greater than 
12.5 m, the BCR and SCD have significant positive 
correlations with Ta. At heights lower than 12.5 m, the 
GCR and vegetation fraction have significant negative 
correlations with Ta.

The correlations between the UMPs and Ta are 
significantly affected by the grid resolution and spatial 
scale of the model, i.e., the statistical analysis unit. As 
the spatial scale increases, the FAR and cubic index are 
no longer related to Ta. When the grid resolution of the 
model is large, the information repetition rate between 
the GCR and vegetation fraction is high, and the 
difference between their influences on Ta is not evident.

Among the urban spatial morphological indices, 
3D SVF has the highest correlation with Ta. The cubic 
index, SCD, BCR, and FAR show significant positive 
correlations with Ta. The vegetation fraction considers 
the projected area of the canopy and its performance 
is stronger than that of GCR. It shows a significant 
negative correlation with Ta.
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