Original Research

Selection of Tolerant and Susceptible Wild Soybean (*Glycine soja* Siebold & Zucc.) Accessions under Waterlogging Condition using Vegetation Indices

Se-Hun Kim^{1#}, Pooja Tripathi^{1#}, Seongmin Yu¹, Jeong-Min Park¹, Jeong-Dong Lee¹, Yong Suk Chung², Gyuhwa Chung³, Yoonha Kim^{1*}

¹Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea ²Department of Plant Resources and Environment, Jeju National University, Jeju, South Korea ³Department of Biotechnology, Chonnam National University, Yeosu, South Korea

> Received: 28 September 2020 Accepted: 15 November 2020

Abstract

The waterlogging tolerance and susceptibility of 164 wild soybean accessions were evaluated. All plants were exposed to waterlogging conditions for 14 days, and visual score evaluation and detection of vegetation indices were performed at 14 and 21 days after waterlogging (DAW). According to our results, approximately 90% of the wild soybean accessions showed a visual score of 1.0-3.5 in both measurements. Among the 26 vegetation indices, only 17 showed statistically high correlation with visual score; however, the maximum P-value was less than -0.58. Therefore, correlation tests were re-performed using the selected wild soybean accessions (waterlogging-tolerant and waterloggingsusceptible accessions). As a result, significantly high P-values were detected for anthocyanin reflectance index (ARI1) (P = 0.98069 at 14 DAW; P = 0.86734 at 21 DAW), ARI2 (P = 0.98434at 14 DAW; P = 0.87934 at 21 DAW), photochemical reflectance index (P = -0.9801 at 14 DAW; P = -0.9268 at 21 DAW), and simple ratio pigment index (P = -0.8841 at 14 DAW; P = -0.81292at 21 DAW). Root morphological traits also showed significant differences between waterloggingtolerant and waterlogging-susceptible accessions. In waterlogging-tolerant accessions, root length was 3.7-5.5-fold higher than that in waterlogging-susceptible accessions. Furthermore, waterlogging-tolerant accessions showed a 14.3%-56.3% increase in projected area compared with in waterlogging-susceptible accessions.

[#]These authors equally contributed to this work

^{*}e-mail: kyh1229@knu.ac.kr

Graphical abstract

Evaluation of waterlogging tolerance and susceptible

Keywords: root morphological traits, vegetation index, waterlogging, WinRHIZO

Introduction

Waterlogging stress is a major problem for the production of various crops, including cotton [1, 2], maize [2], oats [3], soybean [4], and sugarcane [5]. For soybean, waterlogging can result in heavy yield loss (17%–57%); therefore, several waterlogging-tolerant cultivars have been screened by soybean breeders [6, 7]. Furthermore, candidate quantitative trait loci also have been reported; however, the detailed physiological and genetic mechanisms of waterlogging in soybeans remain unknown [6, 7].

Waterlogging stress is caused by high water levels in the cultivated field during heavy precipitation, river flooding, and excessive irrigation [4]. Flash waterlogging in well-drained field conditions does not hinder the growth and development of soybean plants; however, waterlogging for an extended period of long restricts ordinary growth and development of the crop [8]. Waterlogging conditions in arable land result in the covering of soil pores with water; this leads to anoxia or hypoxia in the soil [4, 8]. Basically, plants need to absorb oxygen from the soil for various processes, including mitochondrial physiological respiration, which generates energy resources, such as nicotinamide adenine dinucleotide and adenosine triphophate. In the absence of oxygen, plants switch to an alternative physiological process called fermentation, which produces ethanol and lactate [9, 10]. Even with this alternative pathway, plants are unable to survive long-term waterlogging stress due to the lack of energy resources [11]. To cope with this, plants induce morphological changes in their shoot and root for capturing or transferring oxygen from the atmosphere to the plant body, particularly in the root zone [4, 5,

11]. The production of aerenchyma cells in the shoot and root is the most common response to waterlogging, as observed in rice, maize, and soybean [2, 11, 12]. Therefore, selecting soybean accessions that can easily produce aerenchyma cells in their body during waterlogging conditions will aid in the development of waterlogging-resistant cultivars.

Many plant breeders have evaluated waterloggingtolerant and waterlogging-susceptible soybean (Glycine max) accessions generated via mapping population and reported several QTLs in chromosome 3, 5, 10, 11, 13, and 18, which are linked to waterlogging tolerance [7, 13-15]. However, the evaluation of waterlogging resistance and production of mapping population in wild soybeans (Glycine soja) remain unexplored to date. Wild soybeans are grown in a complex geography as well as in a wide range of climatic conditions; therefore, they often show improved stress tolerance than other cultivars [16]. Additionally, wild accessions confer to a wide range of genetic resources in major crops and are regarded as an important resource for plant breeding [17]. Wild soybean is used as food and feed with *Glycine max* and is also regarded as the progenitor of Glycine max [18]. Therefore, wild soybean has been considered a treasure of genetic resources, with high oil content, disease resistance, and environmental stress tolerance [18]. Despite wild soybean being an important genetic resource, adequate information on its resistance to waterlogging conditions is lacking. Therefore, this experiment was performed to evaluate waterlogging tolerance and sensitivity in wild soybean accessions. A total of 164 wild soybean accessions were evaluated using a state-of-the-art technology for wild soybean phenotyping.

Experimental Procedures

Plant Materials and Growth Conditions

Initially we planted 466 wild soybean seeds per replication; however, the data for only 164 seeds for three replications were obtained as the germination rate was low (Fig. 1). Accessions were donated by the Gene Bank of Korea, plant introduction (PI) was from USDA-ARS, Chung's wild germplasm collection (CW) was from Chonnam National University, Korea [19], and YWSs were from Yeungnam University (Prof. Eui-Ho Park) (Table S1). Seeds were scarified with a help of a nail clipper to enhance water uptake. The seeds were sown into polyvinyl chloride (PVC) pipes [6 cm (diameter) \times 40 cm (height)] containing horticultural soil (Tobirang, Baekkwang Fertility, South Korea). When the seeds germinated, all pots were placed in a greenhouse located in the research center of Kyungpook National University, Daegu, South Korea. When the wild soybeans reached the V1 growth stage, all pots were placed in a pool of water for 2 weeks to ensure waterlogging conditions. Our experiment was conducted in three replicates per accession (n = 1). The 326, 339, and 335 wild soybean accessions were germinated in each replication. During the three replicates, only 164 wild soybean accessions were consistently germinated due to non-uniform seed germination (Fig. 1). The experiment began on June 3, 2019 and ended on September 5, 2019.

Analysis of Vegetation Index, Chlorophyll Content, and Visual Scores

To evaluate stress levels, we measured vegetation indices, chlorophyll content, and visual scores of

Fig. 1. Information on the number of germinated seeds for the three replicates. We used 164 seeds to evaluate waterlogging tolerance and susceptibility.

soybean plants before and after waterlogging [(14 and 21 days after waterlogging (DAW)]. First, we measured various vegetation indices using PolyPen (RP410, Photon Systems Instruments, Czech Republic). To gather uniform data, we selected the second trifoliate leaf from every plant for measurement, and the average value of three different points was used for analysis. We used a chlorophyll meter (MC-100, Apogee Instruments Inc., USA) for determining the chlorophyll content and used the same leaf position for chlorophyll content measurement. All relevant data were collected from three replicates (n = 3). The equation of vegetation indices is shown in Table S2. In addition, we assessed the visual scores of soybean plants at 14 and 21 DAW and used a 1-5 scoring scale based on the extent of plant damage (Fig. 2). The wild soybean accessions were exposed to waterlogging for 14 days and scored 1 to 5 based on the damage symptom at 14 and 21 DAW. A visual score of 1 indicates no plant damage (healthy plant), score 3 indicates a 50% change in leaf color, and 5 indicates more than 80% of leaf color is yellow and red. Data were collected three times and are presented as the average±standard error (n = 3).

Determination of Shoot and Root Phenotype

Shoot and root samples were harvested at 21 DAW. We cut the shoot and root with a pair of scissors and immediately captured shoot images at a mini-studio to prevent drying of the leaves. The collected shoot images were analyzed using the WinRHIZO pro software (Regent Instruments Inc. Canada). For root collection, we poured soil from the pipes into a sieve and carefully removed the root from the soil. The collected roots were thoroughly washed with clean water to remove adhering soil particles and were stored in a plastic bag with distilled water to prevent them from drying. Root morphological traits were analyzed using the WinRHIZO pro software with captured images from a scanner (Expression 12000XL, Epson, Japan). The soil particles were further removed from the root samples and placed in a transparent tray (30 cm long \times 20 cm wide) containing clean water for scanning.

Statistics Analysis

To determine the differences in data, we performed analysis of variance (ANOVA) (SAS release 9.4; SAS, Gary, NC, USA) for the visual scores and all phenotypic data. Mean value differences were determined using the Student's t-test at significance levels of P<0.05 and P<0.01. In addition, correlation analysis was conducted at a significance level of P<0.05. We performed statistical analysis with the data from the three replicates in order to obtain reliable results.

Fig. 2. Evaluation of waterlogging tolerance in wild soybeans. The wild soybean accession were exposed to waterlogging for 14 days and scored 1–5 based on the damage symptoms at 14 and 21 days after waterlogging. A visual score of 1 indicates no plant damage (healthy plant), score of 3 indicates a 50% change in leaf color was changed, score of 5 indicates over 80% of leaf color is yellow and red.

Results

Influence of Waterlogging Stress on Chlorophyll Content and Vegetation Index

According to ANOVA, all vegetation indices and chlorophyll contents showed significant differences in the 164 wild soybean accessions before waterlogging treatment (BW) (Table 1). At 14 and 21 DAW, all vegetation indices and chlorophyll contents showed significant differences at in 164 wild soybean accessions (P<0.0001) (Tables 2 and 3).

Selection of Waterlogging-Tolerant and Waterlogging-Susceptible Accessions

The condition of the plants was visually analyzed and rated on a scale of 1-5. Score 1 indicated that all plants showed no stress injury and score 5 denoted dead plants [20] (Fig. 2). The 466 wild soybeans were evaluated for waterlogging tolerance and susceptibility at an early growth stage. Based on leaf injury (yellow and red spots), score (1.0-2.0) was regarded as resistant to waterlogging and score (2.1-4.0) was regarded as moderately resistant to waterlogging. Likewise, score (4.1-5.0) was considered as susceptible to waterlogging. In this study, 22.0%, 75.6%, and 2.4% of wild soybean accessions were evaluated as resistant, moderately resistant, and susceptible to waterlogging, respectively at 14 DAW (Fig. 3). At 21 DAW, 34.8%, 64.0%, and 1.2% of wild soybean accessions were resistant, moderately resistant, and susceptible to waterlogging, respectively (Fig. 3). Most of the wild soybean accessions were resistant or moderately resistant when exposed to waterlogging for 14 days, whereas only 1.2% of soybean accessions were extremely susceptible to waterlogging stress. Based on the visual scores, five accessions that were highly tolerant to waterlogging stress (CW11598, CW14633, YWS 76, YWS 469, and YWS 602) and 3 accessions that were sensitive to waterlogging stress (CW11948, YWS 85, and YWS 545) were selected.

Correlation Test between the Visual Scores and Vegetation Indices in 164 Wild Soybean Accessions

A correlation analysis test between various vegetation indices and visual scores was performed to identify appropriate vegetation indices for stress resistance prediction. As shown in Table 4, many vegetation indices showed high correlation with visual scores. At 14 DAW, all vegetation indices, except chlorophyll content, (r = -0.06056, P < 0.411) showed significant correlation with visual scores (Table 4). In particular, photochemical reflectance revealed the index (PRI) highest correlation (r = -0.57181, P < 0.0001) with visual scores (Table 4). The same result was observed at 21 DAW; however, the correlation values of each vegetation index generally decreased compared with those at 14 DAW (Table 4). Similar to 14 DAW, the correlation between PRI and visual score showed a maximum value (r = -0.37995,

Table 1. Analys	is of variance	e (ANC	VA) results of	f the veg	etation ind	lices of the 16	4 wild soyb	ean ac	cessions. All d	ata were	collected	l before water	logging treat	ment.			
Vegetative index	Source of variation	df	Mean Square	<i>F</i> - Value	<i>P</i> -value	Vegetative index	Source of variation	df	Mean Square	<i>F</i> - Value	<i>P</i> - value	Vegetative index	Source of variation	df	Mean Square	<i>F</i> - Value	<i>P</i> -value
	Var ¹	163	6407.633	7.62	<.0001	INE	Var	163	0.03432287	8.72	<.0001	CLDI	Var	163	0.00461885	7.62	<.0001
Chiorophyll	Rep^2	12	38806.351	46.14	<.0001	IWIZ	Rep	5	0.02367072	6.01	0.0152		Rep	5	0.00000116	0	0.9651
	Var	163	0.00758236	8.28	<.0001	CDDT	Var	163	0.00784379	4.51	<.0001	INC	Var	163	0.22445043	7.75	<.0001
	Rep	10	0.00148598	1.62	0.2045		Rep	0	0.00908618	5.22	0.0236	IMD	Rep	7	0.06573764	2.27	0.1339
G	Var	163	1.8398325	8.06	<.0001	IOUN	Var	163	0.00061671	3.72	<.0001	CMC.	Var	163	0.20909681	8.03	<.0001
NC	Rep	7	0.1670393	0.73	0.3937	IDAN	Rep	7	0.0000004	0	0.9872	GMZ	Rep	5	0.08438909	3.24	0.0737
MCADH	Var	163	0.00443364	3.09	<.0001	100	Var	163	0.00032002	7.6	<.0001	1014	Var	163	0.05932817	7.25	<.0001
MCANI	Rep	7	0.0011741	0.82	0.3669	IM	Rep	2	0.00027923	6.63	0.0109	INN	Rep	2	0.00498608	0.61	0.4362
	Var	163	0.00306656	6.14	<.0001		Var	163	0.00209454	4.44	<.0001		Var	163	0.01525476	7.5	<.0001
IVACU	Rep	12	0.00002972	0.06	0.8076		Rep	0	0.00258569	5.48	0.0205	AKIZ	Rep	5	0.00106986	0.53	0.4693
ζ	Var	163	0.26293202	6.67	<.0001	1	Var	163	0.24416801	7.66	<.0001	1 av	Var	163	4.2361635	8.69	<.0001
5	Rep	2	0.09155693	2.32	0.1294	CULI	Rep	2	0.34213791	10.74	0.0013		Rep	2	0.1442406	0.3	0.5871
	Var	163	0.02483411	5.65	<.0001	(m) (Var	163	0.00696887	8.49	<.0001	CIGS	Var	163	4.6979871	8.73	<.0001
MCAN	Rep	2	0.03137675	7.14	0.0083	2012	Rep	2	0.00361835	4.41	0.0373		Rep	2	0.2028623	0.38	0.5401
ICADT	Var	163	0.0166351	5.51	<.0001	T in T	Var	163	0.00433383	6.97	<.0001	IVUd	Var	163	0.00213862	5.14	<.0001
TCAIN	ţ	, 				THAT	1						ţ	,			

Var: variety, Rep: replication

0.834

0.04

0.00001834

2

Rep

0.7376 <.0001 <.0001

0.11 8.21

0.00007006 0.01015558 0.02274902

Rep

0.0117

6.51

0.01965736 6.0645512 0.8940429

Rep Var

2 163 18.39

2

Var Rep

Lic2

<.0001 0.4963

3.15 0.46

2 163

2

Rep

IVI

Ξ	
Ð	
ц	
1	
5	
<u>e</u>	
7	
b0	
Ē	
·E.	
Sn	
gu	
2	
1	
B	
9	
\geq	
-	
5	
Æ.	
F	
~	
1	
ä	
Ŭ,	
ব	
—	
q	
O D	
5	
ŏ.	
Ĭ	
ŏ	
~	
Le Le	
ē	
\geq	
-	
ta	
al	
Ğ,	
_	
Г	
\triangleleft	
IS	
Ä	
10	
Ś	
S	
8	
ŏ	
g	
С	
at	
ö	
ā	
\geq	
0	
∞	
Ч	
_	
.2	
.W	
4 wi	
64 wi	
164 wi	
e 164 wi	
he 164 wi	
the 164 wi	
of the 164 wi	
of the 164 wi	
s of the 164 wi	
ses of the 164 wi	
ices of the 164 wi	
dices of the 164 wi	
ndices of the 164 wi	
indices of the 164 wi	
n indices of the 164 wi	
on indices of the 164 wi	
tion indices of the 164 wi	
ation indices of the 164 wi	
station indices of the 164 wi	
getation indices of the 164 wi	
egetation indices of the 164 wi	
vegetation indices of the 164 wi	
f vegetation indices of the 164 wi	
of vegetation indices of the 164 wi	
of vegetation indices of the 164 wi	
ts of vegetation indices of the 164 wi	
alts of vegetation indices of the 164 wi	
sults of vegetation indices of the 164 wi	
esults of vegetation indices of the 164 wi	
results of vegetation indices of the 164 wi	
.) results of vegetation indices of the 164 wi	
A) results of vegetation indices of the 164 wi	
VA) results of vegetation indices of the 164 wi	
OVA) results of vegetation indices of the 164 wi	
JOVA) results of vegetation indices of the 164 wi	
NOVA) results of vegetation indices of the 164 wi	
ANOVA) results of vegetation indices of the 164 wi	
(ANOVA) results of vegetation indices of the 164 wi	
e (ANOVA) results of vegetation indices of the 164 wi	
ce (ANOVA) results of vegetation indices of the 164 wi	
nce (ANOVA) results of vegetation indices of the 164 wi	
ance (ANOVA) results of vegetation indices of the 164 wi	
riance (ANOVA) results of vegetation indices of the 164 wi	
ariance (ANOVA) results of vegetation indices of the 164 wi	
variance (ANOVA) results of vegetation indices of the 164 wi	
f variance (ANOVA) results of vegetation indices of the 164 wi	
of variance (ANOVA) results of vegetation indices of the 164 wi	
s of variance (ANOVA) results of vegetation indices of the 164 wi	
sis of variance (ANOVA) results of vegetation indices of the 164 wi	
ysis of variance (ANOVA) results of vegetation indices of the 164 wi	
Ilysis of variance (ANOVA) results of vegetation indices of the 164 wi	
alysis of variance (ANOVA) results of vegetation indices of the 164 wi	
unalysis of variance (ANOVA) results of vegetation indices of the 164 wi	
Analysis of variance (ANOVA) results of vegetation indices of the 164 wi	
. Analysis of variance (ANOVA) results of vegetation indices of the 164 wi	
2. Analysis of variance (ANOVA) results of vegetation indices of the 164 wi	
e 2. Analysis of variance (ANOVA) results of vegetation indices of the 164 wi	
ole 2. Analysis of variance (ANOVA) results of vegetation indices of the 164 wi	
able 2. Analysis of variance (ANOVA) results of vegetation indices of the 164 wi	
Table 2. Analysis of variance (ANOVA) results of vegetation indices of the 164 wi	

				2									202				
Vegetative	Source of	Чt	Mean	F-	D violuo	Vegetative	Source of	ηt	Mean	F-	D violuo	Vegetative	Source of	Ч£	Mean	F-	Ρ-
index	variation	ŝ	Square	Value	I -Value	index	variation	ŝ	Square	Value	I -Value	index	variation	6	Square	Value	value
	Var ¹	163	7371.372	2.63	<.0001	INT	Var	163	0.050567	2.49	<.0001	CTD1	Var	163	0.006089	2.52	<.0001
Cnioropnyn	Rep^2	2	521328.2	186.11	<.0001		Rep	7	0.734959	36.14	<.0001		Rep	7	0.035141	14.53	<.0001
	Var	163	0.018603	2.63	<.0001	CBDT	Var	163	0.036505	2.84	<.0001	- ENC	Var	163	0.257567	2.43	<.0001
IAUN	Rep	5	0.013898	1.96	0.1185	SFKI	Rep	5	0.055608	4.33	0.005	GMI	Rep	5	0.28723	2.72	0.0443
g	Var	163	2.336441	2.66	<.0001	IOUN	Var	163	0.000525	1.88	<.0001	940	Var	163	0.302928	2.56	<.0001
YC	Rep	5	3.031965	3.45	0.0165	IDAN	Rep	5	0.001813	6.51	0.0003	GMZ	Rep	5	0.982214	8.3	<.0001
	Var	163	0.013407	2.21	<.0001	Ida	Var	163	0.001627	2.78	<.0001	10.4	Var	163	0.268516	3.08	<.0001
MUAKII	Rep	5	0.752067	123.91	<.0001	L'KI	Rep	5	0.054324	92.96	<.0001	AKII	Rep	7	0.812543	9.32	<.0001
	Var	163	0.007092	2.43	<.0001	ICON	Var	163	0.01286	2.84	<.0001		Var	163	0.05851	3.11	<.0001
IVACU	Rep	2	0.080559	27.63	<.0001	NFCI	Rep	7	0.006908	1.52	0.2073	AK12	Rep	7	0.254077	13.49	<.0001
(Var	163	0.572271	2.43	<.0001	č	Var	163	0.508289	2.44	<.0001	Hay	Var	163	2.382385	2.64	<.0001
د	Rep	5	37.80984	160.71	<.0001	CILI	Rep	7	31.22846	150.03	<.0001	CKII	Rep	5	97.40037	107.84	<.0001
	Var	163	0.040674	2	<.0001		Var	163	0.022111	2.68	<.0001		Var	163	2.417497	2.6	<.0001
MCAN	Rep	2	5.326759	261.94	<.0001	CUIZ	Rep	7	0.117936	14.29	<.0001		Rep	5	115.8652	124.39	<.0001
TCADT	Var	163	0.031382	2.1	<.0001	1.51	Var	163	0.008754	2.46	<.0001	IMU	Var	163	0.00512	2.39	<.0001
ICAM	Rep	2	3.408751	227.96	<.0001		Rep	2	0.11077	31.09	<.0001		Rep	2	0.089973	42.03	<.0001
IAT	Var	163	18.96063	2.27	<.0001	1 : J	Var	163	0.023568	2.53	<.0001						
	Rep	2	775.9912	92.88	<.0001	1102	Rep	2	0.300432	32.25	<.0001						

Var: variety, Rep: replication

waterlogging treatment.	
iys after	
da	
21	
All data were collected	
l soybean accessions.	
lices of the 164 wild	
esults of vegetation inc	
(ANOVA) r	
ysis of variance	
e 3. Analy	
Ľ	

able 3. Analys	is of varianc	se (AN	OVA) results	of vegeta	tion indice	s of the 164	wild soybean	acces	sions. All data w	vere colle	cted 21 da	tys after wate	erlogging tre	atment.			
Vegetative index	Source of variation	df	Mean Square	F- Value	<i>P</i> -value	Vegetative index	Source of variation	df	Mean Square	<i>F</i> - Value	<i>P</i> -value	Vegetative index	Source of variation	df	Mean Square	<i>F</i> - Value	<i>P</i> -value
Chloushull	Var ¹	163	5388.391	3.23	<.0001		Var	163	0.03737317	2.6	<.0001	CIDI	Var	163	0.002652	2.14	<.0001
спюгорпуп	Rep ²	7	112969.1	67.69	<.0001	TMIZ	Rep	2	0.41875887	29.19	<.0001		Rep	2	0.290153	233.73	<.0001
	Var	163	0.007959	2.32	<.0001	CDDI	Var	163	0.01636572	2.42	<.0001	ENC.	Var	163	0.211143	2.64	<.0001
IAGN	Rep	2	0.335475	97.94	<.0001	INTO	Rep	2	0.40064847	59.33	<.0001	CMI	Rep	2	4.238823	52.93	<.0001
G	Var	163	1.421391	2.42	<.0001	ICON	Var	163	0.0010079	2.87	<.0001		Var	163	0.213828	2.58	<.0001
YC	Rep	12	87.57154	149.07	<.0001	IDAN	Rep	2	0.00280985	8.01	<.0001	GMZ	Rep	2	5.896187	71.22	<.0001
	Var	163	0.006543	2.16	<.0001	100	Var	163	0.00078857	2.49	<.0001	10.4	Var	163	0.181404	2.57	<.0001
MUAKII	Rep	7	0.847959	279.8	<.0001	L KI	Rep	5	0.00009309	0.29	0.8294	AKII	Rep	2	0.715275	10.15	<.0001
	Var	163	0.002315	2.06	<.0001	Dav	Var	163	0.00523848	2.41	<.0001		Var	163	0.037201	2.6	<.0001
IVECO	Rep	2	0.337327	299.77	<.0001		Rep	2	0.10284388	47.36	<.0001	AMA	Rep	2	0.130367	9.1	<.0001
ζ	Var	163	0.303484	2.41	<.0001	544	Var	163	0.26783727	2.78	<.0001	11d2	Var	163	1.255471	2.15	<.0001
5	Rep	2	36.31539	287.96	<.0001		Rep	2	3.0518425	31.73	<.0001		Rep	2	167.7606	287.85	<.0001
	Var	163	0.026468	2.87	<.0001	545	Var	163	0.00833364	2.42	<.0001	Sido	Var	163	1.240795	2.11	<.0001
MCAN	Rep	2	1.179712	127.85	<.0001	CUZ	Rep	5	0.27977524	81.36	<.0001		Rep	2	146.9214	250.36	<.0001
	Var	163	0.020522	2.77	<.0001	11	Var	163	0.00289057	2.06	<.0001		Var	163	0.001759	2.07	<.0001
ICAM	Rep	2	1.0988	148.15	<.0001	THE	Rep	2	0.44281075	314.96	<.0001		Rep	2	0.309015	363.49	<.0001
IAT	Var	163	8.56143	2.13	<.0001	Co: 1	Var	163	0.01444206	2.78	<.0001						
1 1 1	Rep	2	1097.567	273.05	<.0001	TIC5	Rep	2	0.02265641	4.36	0.0048						

Var: variety, Rep: replication

Fig. 3. Distribution of the visual scores of the 164 wild soybean accessions at 14 and 21 days after waterlogging.

P < 0.0001) at 21 DAW but decreased when compared with that at 14 DAW (Table 4).

Correlation Test between the Visual Scores and Vegetation Indices Among Eight Selected Wild Soybean Accessions

Significant correlation was observed for the comparison of vegetation indices and visual score ratings in 164 wild soybean accessions, but the value was low due to moderate visual ratings. The vegetation indices of the eight selected wild soybeans were used for correlation testing. Interestingly, only four vegetation indices, namely simple ratio pigment index (SPRI), anthocyanin reflectance index 1 (ARI1), anthocyanin reflectance index 2 (ARI2), and PRI showed significant correlations with visual scores. At 14 DAW, SPRI (r = -0.8841, P < 0.0082), ARI1 (r = 0.98069,P < 0.0001), ARI2 (r = 0.98069, P < 0.0001), and PRI (r = -0.9801, P < 0.0001) showed significant correlations with visual scores (Table 5). At 21 DAW, similar results were observed; therefore, these four vegetation indices can better reflect stress injury than others.

Changes in Vegetation Indices during Waterlogging Stress in Selected Wild Soybean Accessions

The influence of various vegetation indices for waterlogging is presented in Fig. 4. For SPRI1, most of the waterlogging-tolerant accessions did not show significant difference between BW and after waterlogging. Moreover, compared with BW, the SPRI value significantly decreased in all of the waterloggingsusceptible accessions at 14 and 21 DAW (Fig. 4). On the other hand, the ARI1 and ARI2 values showed an opposite trend to SPRI1 in waterlogging-susceptible accessions. Similar to SPRI1, most of the tolerant accessions did not show any significant difference between BW and after waterlogging (Fig. 4). However, the values of ARI1 and ARI2 increased 2.0-8.0 fold when accessions were exposed to waterlogging (14 DAW) or were past the waterlogging stress threshold (21 DAW) (Fig. 4). PRI revealed distinguishing

differences between waterlogging-tolerant and waterlogging-susceptible accessions. Overall, increased or similar PRI values were found in waterloggingtolerant accessions when comparing before and after waterlogging (Fig. 4). However, in the waterloggingsusceptible accessions, all PRI values were positive BW but negative after waterlogging (Fig. 4). Finally, most of the waterlogging-tolerant accessions showed similar values when exposed to waterlogging stress; however, the values of susceptible accessions fluctuated. PRI showed a negative value in the waterlogging-susceptible accessions upon waterlogging.

Root Characteristics of Selected Wild Soybean Accessions

Waterlogging-tolerant and waterlogging-susceptible accessions showed different root morphological traits, as shown in (Fig. 5). Comparison between tolerant and susceptible accessions revealed that root length significantly increased in waterlogging-tolerant accessions, specifically in accession 884, which showed the highest root length (Fig. 5). Root length was not statistically different in susceptible accessions. In the case of the projected area, most of the tolerant accessions, except accession 659, showed higher projected area than susceptible accessions. Likewise, accession 884 and 1022 showed the maximum values in the tolerant accessions Fig. 5. Overall, the projected area was ranged from 7.7 to 15.1 cm² in waterloggingtolerant accessions, whereas susceptible accessions ranged from 5.1 to 6.6 cm². Therefore, the projected area was increased by 14.3%-56.3% in waterloggingtolerant accessions compared with in susceptible accessions, particularly accession 888 (Fig. 5). The link average length ranged from 0.23 to 0.261 cm, and accessions 659 and 1116 showed the maximum values, whereas others were not clearly distinguished (Fig. 5). In susceptible accessions, the link average length ranged from 0.185 to 0.247 cm, and accession 504 showed the lowest value compared with other susceptible accessions (Fig. 5). Compared between accessions 651 and 504, the link average length was increased by 29.1%.

	Pearson correlation	coefficient P-value
Vegetative index	14 days after waterlogging treatment	21 days after waterlogging treatment
Chlorophyll content	-0.06056	-0.0509
Cmoropnyn content	0.4411	0.5175
SIPI	-0.4103	-0.31213
Structure Insensitive Pigment Index	<.0001	<.0001
NDVI	-0.42502	-0.30161
Normalized Difference Vegetation Index	<.0001	<.0001
SPRI	-0.53908	-0.26154
Simple Ratio Pigment Index	<.0001	0.0007
SR	-0.41052	-0.29212
Simple Ratio Index	<.0001	0.0001
ARI1	0.55379	0.31649
Anthocyanin Reflectance Index	<.0001	<.0001
ARI2	0.55609	0.32397
Anthocyanin Reflectance Index	<.0001	<.0001
GM2	-0.41348	-0.24526
Gitelson & Merzlyak Index	<.0001	0.0015
MCARI1	-0.47011	-0.19991
Modified Chlorophyll Absorption in Reflectance Index	<.0001	0.0103
PRI	-0.57181	-0.37995
Photochemical Reflectance Index	<.0001	<.0001
OSAVI	-0.48381	-0.3362
Optimized Soil-Adjusted in Reflectance Index	<.0001	<.0001
NPCI	0.52924	0.27952
Normalized Phaeophytinization Index	<.0001	0.0003
Ctr1	0.41741	0.17459
Carter Stress Index	<.0001	0.0254
Ctr2	0.45582	0.30313
Carter Stress Index	<.0001	<.0001
G	-0.48957	-0.24321
Greenness Index	<.0001	0.0017
Lic1	-0.47228	-0.33052
Lichtenthaler Index	<.0001	<.0001
Lic2	-0.44309	-0.25319
Lichtenthaler Index	<.0001	0.0011
RDVI	-0.49601	-0.31272
Renormalized Difference Vegetation Index	<.0001	<.0001

Table 4. Correlation between the vegetation indices and visual scores of the 164 wild soybeans accessions after waterlogging.

Table 5. Correlation between the vegetation indices and visual scores of the eight selected waterlogging-tolerant and waterlogging-susceptible wild soybean accessions.

	Pearson correlation	coefficient P-value
Vegetative index	14 days after waterlogging treatment	21 days after waterlogging treatment
Chlorophyll content	-0.68343	0.21608
Chlorophyli content	0.0905	0.6417
SIPI	-0.23709	-0.65002
Structure Insensitive Pigment Index	0.6087	0.114
NDVI	-0.5546	-0.76404
Normalized Difference Vegetation Index	0.1963	0.0455
SPRI	-0.8841	-0.81292
Simple Ratio Pigment Index	0.0082	0.0262
SR	-0.6716	-0.76532
Simple Ratio Index	0.0985	0.0449
ARI1	0.98069	0.86734
Anthocyanin Reflectance Index	<.0001	0.0047
ARI2	0.98434	0.87934
Anthocyanin Reflectance Index	<.0001	0.0032
GM2	-0.8254	-0.642
Gitelson & Merzlyak Index	0.0222	0.12
MCARI1	0.66774	-0.07336
Modified Chlorophyll Absorption in Reflectance Index	0.1012	0.8758
PRI	-0.9801	-0.9268
Photochemical Reflectance Index	<.0001	0.0027
OSAVI	-0.2792	-0.40402
Optimized Soil-Adjusted in Reflectance Index	0.5443	0.3687
NPCI	0.88266	0.80303
Normalized Phaeophytinization Index	0.0085	0.0296
Ctr1	0.12392	-0.7142
Carter Stress Index	0.7912	0.0714
Ctr2	0.51651	-0.3717
Carter Stress Index	0.2353	0.4117
G	-0.3645	-0.07522
Greenness Index	0.4215	0.8727
Lic1	-0.3097	-0.46056
Lichtenthaler Index	0.499	0.2983
Lic2	-0.94	-0.82187
Lichtenthaler Index	0.0016	0.0233
RDVI	-0.2474	-0.32749
Renormalized Difference Vegetation Index	0.5928	0.4734

Fig. 4. Changed in the vegetation indices of the selected contrasting wild soybean accessions under waterlogging conditions. In the figure, different letters in error bars indicate significant different by Duncan's multiple range test (P < 0.05).

Fig. 5. Influence of root morphological traits in the selection of contrasting wild soybean accessions under waterlogging conditions. In the figure, different letters in the error bars indicate significant differences by the Duncan's multiple range test (P < 0.05).

The link projected area was the highest in accession 1,022 and lowest in accession 504 (Fig. 5). Other accessions did not show a statistical difference for this trait (Fig. 5). The link projected area of accession 1,022 was 0.017 cm^2 and that of accession 504 was 0.007 cm^2 ; therefore, tolerant accession 1,022 was 58.8% higher than susceptible accession 504 (Fig. 5).

Discussion

Soybean is an economically important crop as it is a source of food, feed, and biofuel [19]. However, unexpected weather events, such as excess water levels in the field, negatively affect the soybean yield [4]. Therefore, the development of new soybean accessions is required for enhancing the productivity of soybean in various field conditions. To develop new varieties, finding variations in accessions is very important. Glycine max showed narrower genetic variations than Glvcine soja due to genetic bottlenecks and manual selection [19, 20]. Therefore, it is essential to find out the novel variations found in wild soybean accessions [20, 21]. Both cultivated and wild soybeans belong to the genus Glycine, and wild soybeans are considered the ancestors of cultivated soybean; therefore, wild soybeans can be used for their genetic materials to improve various characteristics in cultivated soybean [19, 21, 22]. Despite of the importance of wild soybean for its genetic resources, the morphological traits of the shoot and root under waterlogging stress has not been characterized to date. Therefore, we used 164 wild soybean accessions and tested them to evaluate their stress responses for selecting contrasting wild soybean accessions. All potted plants were transferred to a pool of water to ensure a stress condition when overall wild soybean plants reached the V1 growth stage. For 2 weeks, a water level of 4-6 cm from the surface was maintained and then visual rating was performed on a 1-5 visual scoring scale at 14 and 21 DAW because visual rating is the most important method for selecting or evaluating stress resistance in certain conditions, such as drought stress [23], flooding stress [24], cyst nematode infestation [25] and two-spotted spider mite invasion [26].

In an experiment that was previously conducted, the waterlogging condition was for cultivated soybeans was maintained for 14 days and visual rating was performed on a 1-5 scale throughout the period [20]. In a similar experiment, waterlogging condition was maintained for 8-11 days and foliar damage or senescence was measured on a 1-9 visual scoring scale [27]. For waterlogging, the stress exposure period is an important factor because some genotypes may show similar responses when they are exposed to such stresses for too long or too short a period. In this experiment, the waterlogging condition was maintained for 14 days because the duration was relevant to the purpose of this experiment.

Various research groups have attempted to evaluate waterlogging tolerance and susceptibility in cultivated soybean since then; however, similar researches in wild soybeans are lacking [20, 27]. In another experiment, waterlogging tolerance and susceptibility was evaluated using 722 cultivated soybeans (maturity groups 4 and 5) for 5 years and reported that 52 soybeans showed tolerance and 57 soybeans demonstrated high sensitivity to waterlogging [27]. This shows that almost an equal number of cultivars were tolerant and sensitive to waterlogging. However, in this experiment, a greater number of wild soybean cultivars were waterloggingtolerant (Fig. 3). Perhaps, these results are induced by the genetic diversity of wild soybean accessions. Studies have reported that wild soybeans have high adaptation to unfavorable environmental conditions [28, 29]. Therefore, only a small number of wild soybean accessions have been identified as waterloggingsusceptible.

The wilting status of plants was used for standard stress tolerance and susceptibility evaluation. Therefore, the wilting score has been used for selecting resistant genotypes in soybean [7, 20]. For this evaluation, breeders' experience is of utmost importance for accurate evaluation because plants can wilt even when exposed to various stress conditions. Furthermore, the range of the wilting score is not highly varying; therefore, breeders face this difficulty when the plants show moderate resistance. Subsequently, changes in leaf color, such as chlorophyll content and SPAD measurement, provide an alternative index for evaluating stress resistance [30, 31]. Recently, vegetation indices have been broadly used for predicting plant growth conditions [32]. The measurement of vegetation indices is highly preferred for high-throughput phenotyping due to its ease in obtaining data using a spectral camera and its large-scale coverage in the field [32]. In this experiment, chlorophyll content did not show any correlation with visual rating; however, several other vegetation indices showed high correlation with visual score (Table 4). Although there was a statistical correlation between visual scores and vegetation indices, the range of correlation value was low. The reason for this could be the similarity in visual scores for roughly 90% of the wild soybean accessions. Another reason could be the difference in the values of the visual scores and vegetation indices. As a result, correlation analysis was re-performed by selecting contrasting accessions. Therefore, only four vegetation indices with high correlation were confirmed, namely SPRI, ARI1, ARI2, and PRI. In particular, ARI1, ARI2, and PRI showed high correlational values for both measurements. ARI1 and ARI2 predict anthocyanin content via a nondestructive method and have been developed by the Gitelson [33]. Anthocyanins are known as water-soluble pigments derived from the flavonoids of higher plants and are responsible for the red coloration in plants [33]. Anthocyanins are accumulated in stress conditions, such as strong light, drought, fungal infection, nitrogen deficiency, and waterlogging [33-35]. In the present experiment, susceptible wild soybeans rapidly increased the development of red coloration in their leaves (Fig. 2). This led to a high correlation between visual scores and ARI1 and ARI2. PRI is based on the xanthophyll cycle pigment. Therefore, it reflects leaf fluorescence and photosynthesis [34]. For this reason, PRI has been used to detect water stress in crops [36, 37].

Root morphological traits are very important for water and nutrient uptake in plants and are widely studied for enhancing crop productivity [38]. Furthermore, various root morphological traits respond to osmotic stress conditions, such as drought and waterlogging [4, 38, 39]. Therefore, the root morphological traits between waterlogging-tolerant and waterlogging-susceptible accessions were analyzed and compared. The results indicated that waterloggingtolerant accessions commonly show higher root length and root projected area than susceptible accessions. It has been reported that exogenously applied ethylene improves waterlogging resistance in *Glycine max* due to increased root surface area [4].

Conclusions

The waterlogging tolerance and susceptibility of 164 wild soybean genotypes were tested in three replicates. Our experiments confirmed that several wild soybean accessions are waterlogging-resistant. Furthermore, vegetation indices were observed to show a high correlation with visual score; therefore, they could be used as predictors of waterlogging resistance and susceptibility. In particular, ARI and PRI could be appropriate for precise accession screening. Therefore, those selected wild soybean accessions can be used for relevant researches.

Acknowledgements

This work was conducted with the support of the "Cooperative ResearchProgram for Agriculture Science & Technology Development (Project No. PJ01416803)" Rural Development Administration, Republic of Korea.

Conflict of Interest

The authors declare no conflict of interest.

References

 ZHANG Y., KONG X., DAI J., LUO Z., LI Z., LU H., XU S., TANG W., ZHANG D., LI W., XIN C., DONG H. Global gene expression in cotton (*Gossypium hirsutum* L.) leaves to waterlogging stress. PLoS One, **12** (9), e0185075, **2017**.

- REHMAN A., JINGDONG L., DU Y., KHATOON R., WAGAN S.A., NISAR S.K. Flood disaster in Pakistan and its impact on agriculture growth (a review). Environ. Dev. Econ. 6 (23), 39, 2015.
- ARDUINI I., BALDANZI M., PAMPANA S. Reduced growth and nitrogen uptake during waterlogging at tillering permanently affect yield components in late sown oats Front. Plant Sci. 10, 1087, doi: 10.3389/fpls.2019.01087, 2019.
- KIM Y., SEO C.W., KHAN A.L., MUN B.G., SHAHZAD R., KO J.W., YUN B.W., PARK S.K., LEE I.J. Exoethylene application mitigates waterlogging stress in soybean (*Glycine max* L.). BMC Plant Biol. 18, 254, 2018.
- FUKAO T., BARRERA-FIGUEROA B.E., JUNTAWONG P., PEÑA-CASTRO J.M. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. Front. Plant Sci. 10, 340, 2019.
- VALLIYODAN B., YE H., SONG L., MURPHY M., SHANNON J.G., NGUYEN H.T. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J .Exp. Bot. 68 (8), 1835., 2017.
- NGUYEN V., VUONG T., VANTOAI T., LEE J., WU X., MIAN M., DORRANCE A., SHANNON J., NGUYEN H. Mapping of quantitative trait loci associated with resistance to *Phytophthora sojae* and flooding tolerance in soybean. Crop Sci. 52, 2481, 2012.
- WANG X., HUANG M., ZHOU Q., CAI J., DAI T., CAO W., JIANG D. Physiological and proteomic mechanisms of waterlogging priming improves tolerance to waterlogging stress in wheat (*Triticum aestivum* L.). Environ. Exp. Bot. 132, 175, 2016.
- REN C., KONG C., YAN K. ZHANG H., LUO YM., XIE Z.H. Elucidation of the molecular responses to waterlogging in *Sesbania cannabina* roots by transcriptome profiling. Sci. Rep. 7, 9256 2017.
- MILLAR A.H., WHELAN J., SOOLE K.L., DAY D.A. Organization and regulation of mitochondrial respiration in plants. Annu. Rev. Plant Biol. 62, 79, 2011.
- KIM Y.H., HWANG S.J., WAQAS M., KHAN A.L., LEE J.H., LEE J.D., NGUYEN H.T., LEE I.J. Comparative analysis of endogenous hormones level in two soybean (*Glycine max* L.) lines differing in waterlogging tolerance. Front. Plant Sci. 6, 714, 2015.
- MOHAMMED U., CAINE R.S., ATKINSON J.A. HARRISON E.L., WELLS D., CHATER C.C., GRAY J.E., SWARUP R., MURCHIE E.H., Rice plants overexpressing *OsEPF1* show reduced stomatal density and increased root cortical aerenchyma formation. Sci. Rep. 9, 5584, 2019.
- VANTOAI T.T., ST MARTIN S.K., CHASE K., BORU G., SCHNIPKE V., SCHMITTHENNER A.F., LARK K.G. Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci. 41, 1247, 2001.
- CORNELIOUS B., CHEN P., HOU A., SHI A., SHANNON J. Yield potential and waterlogging tolerance of selected near-isogenic lines and recombinant inbred lines from two southern soybean populations. J. Crop Improv. 16, 97, 2006.
- 15. YE H., SONG L., CHEN H., VALLIYODAN B., CHENG P., ALI L., VUONG T., WU C., ORLOWSKI J., BUCKLEY B. A major natural genetic variation associated with root system architecture and plasticity improves waterlogging tolerance and yield in soybean. Plant Cell Environ. 41, 2169, 2018.
- MICKELBART M.V., HASEGAWA P.M., BAILEY-SERRES J. Genetic mechanisms of abiotic stress tolerance

that translate to crop yield stability. Nat. Rev. Genet. 16, 237, 2015.

- ZHANG H., MITTAL N., LEAMY L.J., BARAZANI O., SONG B.H. Back into the wild-apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl. 10, 5, 2017.
- MAMMADOV J., BUYYARAPU R., GUTTIKONDA S.K., PARLIAMENT K., ABDURAKHMONOV I.Y., KUMPATLA S.P. Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front. Plant Sci. 9, 886, 2018.
- NAWAZ M.A., LIN X., CHAN T.F., HAM J., SHIN T.S., ERCISLI S., GOLOKHVAST K.S., LAM H.M., CHUNG G. Korean wild soybeans (*Glycine soja* Sieb & Zucc.): geographic distribution and germplasm conservation. Agronomy. 10, 214, 2020.
- HYTEN D.L., SONG Q., ZHU Y., CHOI I.Y., NELSON R.L., COSTA J.M., SPECHT J.E., SHOEMAKER R.C., CREGAN P.B. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl. Acad. Sci. 103, 16666, 2006.
- COWLING W., LI L., SIDDIQUE K.H., HENRYON M., BERG P., BANKS R., KINGHORN B. Evolving gene banks: improving diverse populations of crop and exotic germplasm with optimal contribution selection. J. Exp. Bot. 68, 1927, 2017.
- MUÑOZ N., LIU A., KAN L., LI M.W., LAM H.M. Potential uses of wild germplasms of grain legumes for crop improvement. Int. J. Mol. 18, 328, 2017.
- NAWAZ MA, GOLOKHVAST KS, REHMAN HM, TSUKAMOTO C, KIM H.S., YANG SH., CHUNG G. Soyisoflavone diversity in wild soybeans (*Glycine soja* Sieb. & Zucc.) from the main centres of diversity. Biochem. Syst. Ecol. 77, 16, 2018.
- RHINE M.D., STEVENS G., SHANNON G., WRATHER A., SLEPER D. Yield and nutritional responses to waterlogging of soybean cultivars. Irrig. Sci. 28, 135, 2010.
- BAJWA S.G., RUPE J.C., MASON, J. Soybean disease monitoring with leaf reflectance. Remote Sens. 9 (2), 127. 2017.
- 26. HUANG H., DENG J., LAN Y., YANG A., DENG X., ZHANG L., WEN S., JIANG Y., SUO G., CHEN P. A two-stage classification approach for the detection of spider mite-infested cotton using UAV multispectral imagery. Remote Sens. Lett. 9 (10), 933, 2018.
- WU C., ZENG A., CHEN P., HUMMER W., MOKUA J., SHANNON J.G., NGUYEN H.T. Evaluation and development of flood-tolerant soybean cultivars. Plant Breed. 136, 913, 2017.

- ANDERSON J.E., KONO T.J., STUPAR R.M., KANTAR M.B., MORRELL P.L. Environmental association analyses identify candidates for abiotic stress tolerance in *Glycine soja*, the wild progenitor of cultivated soybeans. G3: Genes, Genomes, Genetics, 6 (4), 835, 2016.
- 29. SHARMIN R.A., BHUIYAN M.R., LV W., YU Z., CHANG F., KONG J., BHAT J.A., ZHAO T. RNA-Seq based transcriptomic analysis revealed genes associated with seed-flooding tolerance in wild soybean (*Glycine soja* Sieb. & Zucc.). Environ. Exp. Bot. **171**, 103906, **2020**.
- HAMAYUN M., KHAN S.A., IQBAL A., HUSSAIN A., LEE IJ. Cheap and rigorous method of screening soybean cultivars for drought tolerance. Fresenius Environ. Bull. 28, 8568, 2019.
- HAMAYUN M., KHAN S.A., IQBAL A., HUSSAIN A., LEE IJ. Screening of soybean cultivars for salinity tolerance under hydroponics, Fresenius Environ. Bull. 28, 7955, 2019.
- XUE J., SU B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, Article ID 1353691, 2017.
- GITELSON A.A., MERZLYAK M.N., CHIVKUNOVA O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 74, 38, 2001.
- 34. KIM J., LEE W.J., VU T.T., JEONG C.Y., HONG S.W., LEE H. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in *Brassica napus* L. Plant Cell Rep. **36** (8), 1215, **2017**.
- CLOSE D., DAVIDSON N. Long-term waterlogging: nutrient, gas exchange, photochemical and pigment characteristics of Eucalyptus nitens saplings. Russ. J. Plant Physl. 50, 843, 2003.
- 36. LI M., CHU R., YU Q., ISLAM A.R.M., CHOU S., SHEN S. Evaluating structural, chlorophyll-based and photochemical indices to detect summer maize responses to continuous water stress. Water. 10, 500, 2018.
- DOTZLER S., HILL J., BUDDENBAUM H., STOFFELS J. The potential of EnMAP and Sentinel-2 data for detecting drought stress phenomena in deciduous forest communities. Remote Sens. 7, 14227, 2015.
- PAEZ-GARCIA A., MOTES C.M., SCHEIBLE W.R., CHEN R., BLANCAFLOR E.B., MONTEROS M.J. Root traits and phenotyping strategies for plant improvement. Plants. 4, 334, 2015.
- 39. KUNERT K.J., VORSTER B.J., FENTA B.A., KIBIDO T., DIONISIO G., FOYER C.H. Drought stress responses in soybean roots and nodules. Front. Plant Sci. 7, 1, 2016.

	IT number			IT 247535				IT 247542						IT 247545			IT 242679		IT 247560				IT 247568	IT 247569			
	Genotype	YWS 509	YWS 513	YWS 548	YWS 571	YWS 579	YWS 585	YWS 587	YWS 589	YWS 597	YWS 602	YWS 605	YWS 608	409 SWY	YWS 639	YWS 642	YWS 678	YWS 688	YWS 692	YWS 715	YWS 716	YWS 717	YWS 722	YWS 726	YWS 767	YWS 777	YWS 860
	Entry number	1062	1066	1082	1097	1101	1105	1106	1108	1113	1116	1119	1122	1123	1138	1139	1153	1157	1160	1172	1173	1174	1178	1182	1198	1200	1209
	IT number								IT 247464		IT 247487	IT 247490				ı			·	IT 247508			IT 247515				IT 247517
	Genotype	YWS 152	YWS 155	YWS 176	YWS 179	YWS 188	YWS 194	YWS 261	YWS 262	YWS 273	YWS 366	YWS 370	YWS 399	YWS 402	YWS 414	YWS 419	YWS 431	YWS 432	YWS 435	YWS 440	YWS 445	YWS 465	YWS 466	YWS 468	YWS 469	YWS 473	YWS 477
	Entry number	911	914	928	931	935	938	943	944	947	958	961	967	968	779	980	066	991	994	866	1002	1019	1020	1021	1022	1026	1030
	IT number	IT 267444	None	IT 267445	ı		IT 267448		IT 267449				ı			ı			ı		ı		IT 250557			IT 242674	
	Genotype	CW 14643	CW 14647	CW 14651	CW 14667	CW 14673	CW 14674	CW 14675	CW 14677	CW 14686	CW 14722	CW 14748	CW 14749	CW15259	CW 14099	CW 14104	CW 15281	CW 15284	CW 15291	CW 15302	CW 15313	YWS 1	YWS 4	YWS 10	YWS 11	YWS 18	YWS 19
	Entry number	666	699	673	687	692	693	694	696	703	734	750	751	764	774	776	783	786	793	801	812	826	827	832	833	836	837
lccessions	IT number	ı	ı	ı	I	ı	ı	ı	ı	ı	ı	ı	ı		ı	-		ı	T		ı		ı	ı	ı	IT 267421	ı
f wild soybean a	Genotype	CW 10050	CW 10212	CW 10245	CW 10262	CW 10461	CW 10475	CW 11260	CW 11550	CW 11598	CW 12420	PI 339731	PI 597462A	CW 11782	CW 13821	CW 14125	CW 14328	PI 407299	PI 424096	PI 522180	PI 464929A	CW 14858	CW 11948	CW 11955	CW 13176	CW 13201	CW 13274
Table S1. List o	Entry number	11	26	30	43	82	85	148	197	199	269	285	334	378	409	421	430	447	450	455	466	489	504	507	551	554	575

Supplementary Material

I	ı	ı	1	ı		1	IT 242875		ı	I		ı	ı	1
YWS 913	YWS 1346	YWS 1353	YWS 1362	YWS 1374	YWS 1379	YWS 1381	YWS 1400	YWS 1405	YWS 1411	YWS 1412	YWS 1434	YWS 1436	YWS 1449	YWS 1477
1219	1242	1247	1253	1261	1265	1267	1274	1279	1282	1283	1299	1300	1307	1330
IT 247518	IT 247519	I	IT 247520							ı			IT 250444	
YWS 479	YWS 481	YWS 482	YWS 486	YWS 487	YWS 488	YWS 489	YWS 490	YWS 495	YWS 499	YWS 502	YWS 504	YWS 505	YWS 506	YWS 508
1032	1034	1035	1039	1040	1041	1042	1043	1048	1052	1055	1057	1058	1059	1061
IT 250514	1	ı				IT 250554	IT 247444			ı			ı	1
YWS 23	YWS 34	YWS 36	YWS 39	YWS 43	YWS 53	YWS 54	YWS 55	4WS 60	YWS 65	4WS 76	YWS 86	YWS 95	YWS 119	YWS 120
840	848	850	853	856	862	863	864	869	874	884	889	894	907	908
	IT 267426	IT 267430			IT 267433	IT 267434	IT 267435	IT 267436	IT 270014	IT 267440	IT 267441		IT 267443	IT 270016
CW 13303	CW 13313	CW 13395	CW 13432	CW 14449	CW 14580	CW 14581	CW 14582	CW 14587	CW 14604	CW 14618	CW 14631	CW 14633	CW 14636	CW 14642
579	581	590	594	609	624	625	626	627	641	649	657	659		665

Table S1. Continued.

1 0	
Index	Formula
Normalized Difference Vegetation Index (NDVI)	$NDVI = \frac{R_{NIR} - R_{RED}}{R_{NIR} + R_{RED}}$
Simple Ratio Index (SR)	$SR = \frac{R_{NIR}}{R_{RED}}$
Modified Chlorophyll Absorption in Reflectance Index (MCARI1)	MCARI1 = $1.2 \ge [2.5 \ge (R_{790} - R_{670}) - 1.3 \ge (R_{790} - R_{550})]$
Optimized Soil-Adjusted in Reflectance Index (OSAVI)	OSAV I= (1 + 0.16) x $\frac{(R_{790} - R_{670})}{(R_{790} + R_{670} + 0.16)}$
Greenness Index (G)	$G = \frac{R_{554}}{R_{667}}$
Modified Chlorophyll Absorption in Reflectance Index (MCARI)	MCARI = $[(R_{700} - R_{670}) - 0.2 \times (R_{700} - R_{550})] \times (\frac{R_{700}}{R_{670}})$
Transformed CAR Index (TCARI)	TCARI = 3 x $[(R_{700} - R_{670}) - 0.2 x (R_{700} - R_{550})] x (\frac{R_{700}}{R_{670}})$
Traiangular Vegetation Index (TVI)	TVI = 0.5 x [120 x $(R_{750} - R_{550}) - 200 x (R_{670} - R_{550})]$
Zarco-Tejada & Miller (ZMI)	$ZMI = \frac{R_{750}}{R_{710}}$
Simple Ratio Pigment Index (SRPI)	$\text{SRPI} = \frac{R_{430}}{R_{680}}$
Normalized Phaeophytinization Index (NPQI)	$NPQI = \frac{R_{415} - R_{435}}{R_{415} + R_{435}}$
Photochemical Reflectance Index (PRI)	$PRI = \frac{R_{531} - R_{570}}{R_{531} + R_{570}}$
Normalized Pigment Chlorophyll Index (NPCI)	NPCI = $\frac{R_{680} - R_{430}}{R_{680} + R_{430}}$
Carter Stress Index (Ctr1)	$Ctr1 = \frac{R_{695}}{R_{420}}$
Carter Stress Index (Ctr2)	$Ctr2 = \frac{R_{695}}{R_{760}}$
Lichtenthaler Index (Lic1)	$\text{Lic1} = \frac{R_{790} - R_{680}}{R_{790} + R_{680}}$
Lichtenthaler Index (Lic2)	$Lic2 = \frac{R_{440}}{R_{690}}$
Structure insensitive pigment index (SIPI)	$\text{SIPI} = \frac{R_{790} - R_{450}}{R_{790} - R_{650}}$
Gitelson & Merzlyak Index (GM1)	$GM1 = \frac{R_{750}}{R_{550}}$
Gitelson & Merzlyak Index (GM2)	$GM2 = \frac{R_{750}}{R_{700}}$
Anthocyanin Reflectance Index (ARI1)	$ARI1 = \frac{1}{R_{550}} - \frac{1}{R_{700}}$
Anthocyanin Reflectance Index (ARI2)	ARI2 = $R_{800} \ge (\frac{1}{R_{550}} - \frac{1}{R_{700}})$
Carotenoid Reflectance Index 1 (CRI1)	$CRI1 = \frac{1}{R_{510}} - \frac{1}{R_{550}}$
Carotenoid Reflectance Index 1 (CRI2)	$CRI2 = \frac{1}{R_{510}} - \frac{1}{R_{700}}$
Renormalized Difference Vegetation Index (RDVI)	$RDVI = \frac{R_{NIR} - R_{RED}}{\sqrt{R_{NIR} + R_{RED}}}$

Table S2. Equations of the vegetation indices.