
Introduction

Climate change, population growth, industrialization, 
and environmental impacts cause spatiotemporal 
changes in the availability of regional water resources 
[1, 2]. In particular, climate change will affect the 
streamflow, temperature, amount of precipitation, and 
variability, which are the main components of the 
hydrological cycle [3-5]. For example, Jiao and Wang 
[6] state in their study that the streamflow and rainfall 

are in a decreasing trend while the temperature is 
in an increasing trend in the last decades. Modeling 
and outlining streamflow is a crucial process in water 
management and planning, and accurate streamflow 
prediction is a vital tool for optimal water quantity 
and quality management [7]. Studies on accurate 
projections of temporal streamflow patterns can aid in 
understanding the properties of hydrological processes 
in basins and improving basin modeling [8].

Many studies have been conducted that examined 
the relationship of streamflow with precipitation and 
temperature, and evaluated its changes and forecasts 
[9, 10]. Xu et al. [11] found that periodic changes in 
streamflow were closely correlated with temperature 
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and precipitation, and they observed a significant, 
positive correlation between these variables at different 
time scales. Furthermore, Duan et al. [12] recently 
demonstrated that temperature has a greater influence 
on streamflow than precipitation. Various studies and 
projections indicate that temperature and precipitation 
will continue to significantly affect the streamflow 
throughout the 21st century [13, 14]. Traditional studies 
related to streamflow used conventional methods, such 
as trend analysis, regression modeling, and classical time 
series (such as ARMA) worldwide and in Turkey [15-18]. 

Recently, artificial neural networks (ANNs) have 
been widely used in flow predictions. ANNs and 
discrete wavelet transform (WT), which are artificial 
intelligence methods, are frequently used in hydrological 
studies and are an important tool for model development  
[19-21]. ANN has been used for prediction in various 
fields of hydrology and can achieve successful outcomes 
in streamflow projections [20, 22-25]. The feed-forward 
neural network (FFNN) method is the most widely 
used ANN technique, and its popularity and utility in 
flow prediction are increasing [26]. Kişi and Yaseen et 
al. [27, 28] used the FFNN method in estimating the 
monthly flow at different river stations to compare the 
performance of ANN models. However, Zealand et al. 
[29] used the ANN method to predict the flow after 
one to four weeks. Furthermore, Kişi [27] used ANN 
models to estimate the monthly flow in Turkey.

Linear and nonlinear methods, such as ANN, have 
several limitations when using non-stationary data. If 
the data processing phase is not sufficiently accurate 
for input data, various problems can be caused such as 
redundant, incomplete, or incorrect data with suitable 
method [30, 31]. Recently, wavelet analysis has been 
found to provide very efficient and practical results 
when using non-stationary data along with ANN in 
hydrological and water-related fields [19]. Chang et 
al. [32] use the wavelet transform to understand the 
periodicity of the streamflow. This is because WTs 
(continuous and discrete) conveniently parses the time 
series and reveals information to be used in varying 
levels of predictions. WT is very useful in hydrological 
time series as it provides information regarding the 
temporal frequency.

Santos et al. and Santos et al. [33, 34] utilized 
continuous wavelet transformation (CWT) to predict 
precipitation and the current time series. Nalley et al. 
and Seo et al. [35-37] demonstrated that structuring the 
monthly flows of the world’s largest river basins and 
estimates provides better results when coupling DWT 
with ANN. Various hybrid models have been added to 
time series estimates using the WT method [38, 39]. 

Recently, many studies have combined WT and 
ANN (WT-ANN) methods for streamflow predictions. 
Anctil and Tape [40] developed a WT-ANN model 
that predicts the next-day flow for the US and France. 
Partal [41] presented a hybrid monthly flow forecasting 
model for Turkey, and Kişi [42] used the WT-ANN 
model for daily flow estimation. However, Wu et al. [43] 

established a model that could forecast flow one to three 
days in advance. In these flow prediction applications, 
the hybrid WT-ANN model performed better than 
conventional ANN methods.

Streamflow prediction studies conducted in the 
Çoruh river basin used ANN with other techniques to 
achieve better results. Mehr et al. [7] combined linear 
genetic programming with the neuro-wavelet method 
to predict monthly flow in the Çoruh basin. Similarly, 
Mehr et al. [44] used WT for estimating the monthly 
current at two different stations in the Çoruh basin. 
They analyzed models that used the different effects 
of the lagged values of the flow as input variables. 
Our study provides a distinctive viewpoint, as it 
incorporates flow into the analysis, along with the air 
temperature and precipitation as input variables. Mehr 
et al. [45] developed a monthly prediction model for 
successive current stations using the ANN method, 
while Yucel et al. [46] developed prediction models 
regarding the effect of snowmelt run-off on the Çoruh 
basin and its neighbors. Can et al. [24] estimated the 
daily flow using an ANN and autoregressive moving 
averages. Buyukyildiz [47] used the ANN, support 
vector machine (SVM), and adaptive fuzzy inference 
systems (ANFIS) methods to examine the monthly flow 
of the Çoruh basin.

In this study, a hybrid model consisting of DWT and 
ANN was proposed for predicting the monthly flow in 
the Çoruh basin based on temperature and precipitation. 
The FFNN method is the most widely used technique 
among classical ANN methods and was selected for 
this study. Three main streamflow gauging stations 
(observations ranging between 41 and 49 years) were 
selected that represented the Çoruh basin with the best 
data quality. The performances of the WT-ANN hybrid 
models were compared with those of classical ANN 
models.

Study Area and Data

Study Area  

Çoruh river basin, which is located in northeastern 
Turkey, surfaces from the Mescit Mountains in the 
north of Erzurum Plateau at 3000 m above sea level and 
arrives at the Black Sea through Batumi in Georgia (see 
Fig. 1), covering approximately 20 km of the Georgian 
border (431 km).

The total drainage area of the basin is 21 000 km2; 
91% of which is located along the border with Turkey, 
while 9% lies within Georgia [48]. The Çoruh basin is 
the most erosion-affected basin in Turkey; its annual 
streamflow is 6.3 billion km3 [49]. High humidity and 
temperatures are predominant in the northern part of 
the basin, which is close to the Black Sea, along with 
frequent precipitation. However, the southern area of 
the region experiences various weather conditions (hot 
summer, cold winter, snow).
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Mountains and hills in the plateau region block 
moist clouds from the Black Sea, causing significant 
differences in the annual precipitation and temperatures 
of the northern and southern regions of the basin [50]. 
Fig. 1 illustrates a general overview of the Çoruh river 
basin.

Data

In this study, data from three main streamflow 
gauging stations (İspir, Mescitli, and Laleli) on the 
Çoruh river were obtained from General Directorate 
of State Hydraulic Works (DSI) [51]. Temperature 
data were obtained from the Royal Netherlands 
Meteorological Institute (KNMI) [52] and precipitation 
data were obtained from the World Bank [53] for 
provinces representing the basin. The precipitation and 
temperature data used in the flow forecast cover an 
average of 46 years (Table 1). For each station, datasets 
were chronologically divided into training (0.70), 
validation (0.15), and test (0.15) data.  

Table 1 shows the training, validation, and testing 
times of the hydrology and meteorology stations. In 
hydrology, the hydrological year is considered from 
November to October.

Table 2 represents the average and standard deviation 
values of the variables for the training, validation, and 
testing periods for all three stations. Normalization was 
conducted as the measurement units differ for each 
variable. All variables were normalized to have zero 
mean and unit variance following the Z-score method. 
Similarly, many previously published studies used data 
normalization [54-56].

Definition of Models for Input Combinations

In our study, we used eight different models to 
predict the flow for the next month at the three stations. 
Of these models, 1-4 are based on ANN, and 5-8 are 
based on WT-ANN. The variables for each model are 
explained in detail in Table 3, where  indicates that 
the variable is used in the model, and - indicates that 
the variable is not.

The input vector of Model 1 contains the current 
monthly flow data used in the flow forecast for the next 
month. Models 2 and 3 were created by adding the 
monthly air temperature and precipitation to the current 
monthly flow values, respectively. Finally, Model 4 
combines these three variables (flow, air temperature, 
and precipitation).

Fig. 1. Çoruh river basin.

Table 1. Meteorological stations with training, validation, and testing periods in Çoruh basin.

Station Training
period (0.7)

Validation
period (0.15)

Testing
period (0.15)

Hydrological 
months Hydrological years

Ispir Oct/1965-Jan/1999 Feb/1999-May/2006 Jun/2006-Sep/2013 588 49 (1965-2013)

Mescitli Oct/1966-Sep/1998 Oct/1998-Sep/2005 Oct/2005-Sep/2012 564 47 (1966-2012)

Laleli Oct/1971-May/1999 Jun/1999-Jul/2005 Aug/2005-Sep/2011 492 41 (1971-2011)
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The input vectors for Models 5-8 are the discrete 
wavelet-transformed subseries of the variables used in 
Models 1-4, respectively. WT was conducted for flow, 
air temperature, and precipitation by using Db10 (3) and 
three details, and a single approximation was created 
for each station. The details of the WTs created for the 
three stations are indicated by d1, d2, and d3 in Fig. 3. 
The approximation depicts as a3 and S indicates the 
normalized original series.

Methodology

Feed-Forward Neural Network (FFNN)

FFNN is one of the most widely used types of 
ANN, and consists of input, hidden, and output layers. 
Neurons in different layers are connected with adjusted 
weight values. Each neuron in the layer is only linked 
to neurons in the next layers. Each neuron in a layer 
adds an input and produces an output using a nonlinear 

activation function [57]. The purpose of FFNN is to 
improve the relationship between the input and output 
layers, and ANNs are an efficient alternative for 
modeling nonlinear time series [57].

The Levenberg-Marquardt algorithm is used to train 
the FFNN model. The dataset is divided into three 
subsets for training, validation, and testing. For each 
FFNN model, each calibration is repeated 20 times, 
and the root mean square error (RMSE) and the mean 
absolute error are is used as the performance index. 
Furthermore, during the training process, the early 
stopping approach is applied to control over-fitting, 
which has been used in many studies [13, 16, 58, 59]. 
In this study, the neurons in the input layer consist 
of different combinations of x1 (streamflow), x2 (air 
temperature), and x3 (precipitation). There is a single 
neuron in the output layer, i.e., y1 (streamflow one 
month ahead). Throughout this paper, the FFNN model 
is referred to as ANN.

Table 3. Input combinations of the models.

Models Inputs Output

St At Pt DWT–St DWT–At DWT–Pt  

Model 1  — — — — —

St+1

Model 2   — — — —

Model 3  —  — — —

Model 4    — — —

Model 5 — — —  — —

Model 6 — — —   —

Model 7 — — —  — 

Model 8 — — —   

St, At & Pt: Streamflow, Air Temperature, and Precipitation in month t, respectively. DWT: Db10 (3): A3, D1, D2, D3 

Table 2. Comparison of the means using partition ratios.

Station Variable Training Validation Testing

Ispir

Streamflow (m3) 102.81, 115.49 105.32, 129.59 108.55, 126.44

Air temperature (ºC) 7.24, 8.04 7.62, 8.17 8.44, 8.37

Precipitation (mm) 64.68, 27.36 71.05, 27.44 66.42, 26.68

Laleli

Streamflow (m3) 77.5, 87.81 70.92, 84.47 85.01, 96.77

Air temperature (ºC) 7.16, 8.08 7.99, 8.27 8.23, 8.37

Precipitation (mm) 64.52, 26.93 70.96, 28.17 68.67, 28.96

Mescitli

Streamflow (m3) 15.63, 14.91 13.83, 12.76 16.82, 16.77

Air temperature (ºC) 7.29, 8.05 7.84, 8.12 8.01, 8.41

Precipitation (mm) 64.76, 27.18 70.11, 27.88 67.79, 27.82

*(mean, standard deviation)
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Coupled Wavelet Transform and Artificial 
Neural Network (WT–ANN) Model

WT is applied to remove noise, compress and 
decompose data. It is also widely used for analyzing 
signals and images. Wavelet is a time-dependent 
spectral analysis approach that resolves time series 
in the time-frequency space to provide a temporal 
definition of processes and their relationships [60].

WT can be divided into two categories: continuous 
WT (CWT) and discrete WT (DWT). DWT is more 
suitable for time series analysis as it only uses a subset 
of scales and positions to perform calculations [61, 62]. 
Therefore, we used in this study.

There are several main types of wavelets in WT, 
including Biorthogonal, Coiflets, Daubechies, Haar, 
Meyer, Mexican Hat, Morlet, and Symlets. Level-10 
Daubechies (Db10), one of the major wavelet species, 
has been widely used for analyzing hydrological data 
in previous studies [37, 62, 63], as it can accurately 
analyze dynamic signals with discontinuity and sudden 
changes [64, 65].

Upon the selection of an appropriate major wavelet 
type, it is also important to determine the appropriate 
decomposition level. Filtering techniques are used to 
obtain a time scale signal in DWT. The original time 
series is passed through high and low-pass filters. 
Then, detailed coefficients and approximate series are 
obtained using the WT [66]. Low-pass filters include 
the trend presented in the actual input time-series 
signal, and are referred to as approximate (A). High-
pass filters are also divided into different levels of detail 
(D) depending on the required time scale [67]. Aussem 

et al. [38] presented the formula l = int [log(n)] , where  
l is the decomposition level, n is the number of time-
series data,  is the integer part function, and log denotes 
base-10 logarithms. Many recent studies have calculated 
the decomposition level using this formula [68-70]. 
In our study, the values for Ispir, Mescitli, and Laleli 
stations are 588, 564, and 492, respectively. Therefore, l 
is approximately 3 for each station. Thus, three wavelet 
decomposition levels are selected for all stations and 
used to produce three details (D1, D2, and D3) and an 
approximate (A3) sub time series.

A general diagram of the coupled WT-ANN 
model to facilitate its expression is given in Fig. 2. 
Tα represents the time series in the input layer, and 
is expressed in a general manner as there are eight 
different models in our study. St+1 in the output layer 
refers to the streamflow one month in the future.

Model Comparison Criteria

Many statistical performance criteria are used to 
compare the goodness of models. In previous studies, 
the RMSE, mean absolute error (MAE), and coefficient 
of determination (R2) were used for comparing ANN 
models [42, 71]. Therefore, in our study, the criteria 
given below are used to compare the models.
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Fig. 2. Flow diagram for the hybrid wavelet neural network (WT-ANN).
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 O = observed, M = calculated            (4)
                                      
...where Oi is the observed streamflow at time i, Mi is 
the estimated streamflow at time i, and N indicates the 
number of samples. R2 ranges from 0 to 1, and a value 
of 1 indicates a perfect fit between the observed and 
estimated value. As RMSE and MAE are error terms, 
they are expected to be close to 0. A value of 0 indicates 
a perfect fit.

Results and Discussion

We used Deep Learning ToolboxTM 12.1 and 
Wavelet ToolboxTM 5.2 in MATLAB (R2019a) to 
conduct the analyses. We found that the number of 

neurons in the hidden layer for both the ANN (Models 
from 1 to 4) and WT-ANN (Models from 5 to 8) 
models by trial and error. The number of neurons for 
the three stations ranged from 2 to 10. One of the main 
reasons for this difference is that there are different 
numbers of variables in the input vector from Models 
1 to 8. The input vector for Model 1 is 1×N, while that 
for Model 8 is 12×N. For all models, the Levenberg-
Marquardt algorithm is used in the training process, as 
mentioned in the methods section. Table 4 demonstrated 
the performance values of the Ispir, Mescitli, and 
Laleli stations in the Çoruh basin during the training, 
validation, and test periods. All variables were 
normalized before analysis.

The performance of the ANN models differed 
slightly for each station during training, validation, 
and testing. By carefully examining Table 4, one can 
see that Model 4 is more suitable for all three stations, 
as it contains the streamflow, air temperature, and 
precipitation variables. The performance values indicate 
that these three variables are important in predicting 
the streamflow one month in advance. Furthermore, 
the RMSE and MAE values were lowest for Model 
4. Another noteworthy issue is that the first four 
models performed best during the training periods. 
Furthermore, the performance of the models decreased 

Fig. 3. DWTs of the streamflow, air temperature, and precipitation variables for Ispir, Mescitli, and Laleli Station.
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slightly more during the validation periods according 
to training periods, and the model performance was 
lowest during the testing period. For example, the 
training, validation, and testing R2 values for Model 4 at 
Ispir station were 0.878, 0.840, and 0.809, respectively.  
The data were selected chronologically, as mentioned 
in the data section (see Table 1). The time intervals  
for the training, validation, and testing models were 
1965-1999, 1999-2006, and 2006-2013, respectively. 
There is differentiation due to the structural changes 
in the streamflow, air temperature, and precipitation 
variables used for the one-month-ahead streamflow 
estimation between years. Table 2 shows the average 
values of these variables in these periods. For instance, 
while the average amount of monthly precipitation 
during the validation period was higher than that during 
the training period, the amount in the testing period was 

lower than that in the validation period. Meanwhile,  
the air temperature is increasing gradually. Therefore, it 
is possible that the performance of the data trained for 
the one-month-ahead streamflow forecast decreases as 
time progresses due to changes in the structure.

The WT-ANN hybrid models performed better than 
the ANN models at all three stations. The WT versions 
of Model 1 to 4 are labeled as from Model 5 to 8, 
respectively (see Table 3). By comparing these models, 
we found that Model 8, which considers the original 
monthly streamflow, air temperature, and precipitation 
to estimate the streamflow one month in advance, 
performs better for all three stations. Therefore, it 
is possible that the one-month-ahead streamflow is 
currently affected by the air temperature, amount of 
precipitation, and streamflow. Regarding the test period 
performances, the R2 values for the Ispir, Mescitli, and 

Station Model
Training Validation Testing

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Ispir

Model1 -ANN 0.841 0.326 0.351 0.802 0.334 0.326 0.777 0.465 0.396

Model2 -ANN 0.840 0.331 0.365 0.832 0.288 0.313 0.785 0.450 0.399

Model3 -ANN 0.841 0.326 0.344 0.837 0.281 0.294 0.795 0.432 0.370

Model4 -ANN 0.878 0.216 0.270 0.840 0.331 0.340 0.809 0.412 0.373

Model5 -WT-ANN 0.952 0.087 0.185 0.874 0.280 0.323 0.835 0.361 0.352

Model6 -WT-ANN 0.969 0.058 0.160 0.886 0.264 0.299 0.842 0.381 0.343

Model7 -WT-ANN 0.968 0.058 0.158 0.861 0.303 0.330 0.817 0.374 0.357

Model8 -WT-ANN 0.970 0.056 0.162 0.891 0.245 0.338 0.847 0.322 0.352

Mescitli

Model1 -ANN 0.876 0.233 0.293 0.867 0.187 0.293 0.826 0.459 0.367

Model2 -ANN 0.892 0.204 0.267 0.876 0.175 0.28 0.859 0.347 0.338

Model3 -ANN 0.893 0.203 0.263 0.885 0.162 0.274 0.875 0.298 0.318

Model4 -ANN 0.905 0.180 0.244 0.891 0.164 0.291 0.881 0.287 0.302

Model5 -WT-ANN 0.930 0.135 0.225 0.898 0.147 0.253 0.892 0.286 0.341

Model6 -WT-ANN 0.947 0.103 0.212 0.921 0.116 0.236 0.900 0.250 0.28

Model7 -WT-ANN 0.951 0.095 0.215 0.910 0.132 0.297 0.895 0.281 0.355

Model8 -WT-ANN 0.980 0.039 0.150 0.925 0.112 0.231 0.906 0.246 0.278

Laleli

Model1 -ANN 0.838 0.357 0.379 0.778 0.391 0.374 0.767 0.386 0.397

Model2 -ANN 0.842 0.384 0.360 0.796 0.342 0.363 0.784 0.381 0.367

Model3 -ANN 0.862 0.310 0.342 0.816 0.327 0.328 0.762 0.388 0.381

Model4 -ANN 0.849 0.277 0.329 0.846 0.345 0.382 0.769 0.385 0.388

Model5 -WT-ANN 0.934 0.126 0.256 0.863 0.233 0.328 0.783 0.493 0.419

Model6 -WT-ANN 0.947 0.100 0.210 0.876 0.222 0.306 0.808 0.433 0.424

Model7 -WT-ANN 0.945 0.105 0.214 0.859 0.240 0.320 0.811 0.424 0.410

Model8 -WT-ANN 0.950 0.084 0.198 0.873 0.251 0.355 0.860 0.315 0.341

*Best models are in bold

Table 4. Model performances for the training, validation, and testing periods.
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Laleli stations were 0.847, 0.906, and 0.860, respectively 
(Table 4). However, those for the training period were 
0.970, 0.980, and 0.950, respectively. Similar to the 
ANN results, the performance of the trained data was 
worse for all three stations during the text period due 
to the chronological partition rates. The changes in 
streamflow, air temperature, and precipitation during 
these periods may be the reason for such differences in 
performance.

Fig. 4 presents the observed and predicted values 
of all three stations for Model 8 by month, and shows 
the model’s success. Fig. 4 has three parts with vertical 
lines, including training, validation, and testing, to 
allow the model estimations to visualize more clearly.

The WT-ANN models performed better than the 
traditional ANN models for all three stations located 
in Çoruh river basin. This may be because the WT 
adds useful information to the ANN models at the 

Fig. 4. Comparison of Model 8 and the observed data at the Ispir, Mescitli, and Laleli stations for the training, validation, and testing 
periods.
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decomposition levels of the streamflow, air temperature, 
and precipitation time series. This study also reveals 
the importance of WT in streamflow estimation. Many 
previous studies conducted streamflow estimation using 
WT, such as the daily [72], monthly [73], and annual 
streamflow [74]. All of these studies aimed to achieve 
good results with WT.  

Mehr et al. [7] used WT to conduct monthly 
streamflow estimation for two stations in the Çoruh 
river basin, using downstream and upstream variables 
to explain the streamflow. Similarly, Mehr et al. [44] 
used WT for the monthly streamflow estimation for 
Çoruh basin, analyzing models consisting of different 
combinations of lagged values of the current as input 
variables. In our study, the air temperature and 
precipitation, along with streamflow, are included in the 
analysis as input variables. Therefore, this study offers 
a different perspective.

Conclusions

In conclusion, the results of the WT-ANN models 
were better for all three stations. Model 8, which 
includes the WT of streamflow, air temperature, and 
precipitation, performed best. Using the datasets that 
were divided chronologically for all three stations, 
we demonstrated that the performance of the data set 
trained at a particular time may change during another 
time period. Therefore, changes in climate over time 
can also change the structure of variables, such as 
streamflow, air temperature, and rainfall. Changes 
in streamflow are a complicated feedback to climate 
change exists [75].

The results of this study indicate that combining 
wavelets and ANNs makes an essential contribution to 
estimating streamflow. Furthermore, the air temperature 
and amount of precipitation have important effects on 
the streamflow, and this time series performs better 
when WTs are made.

The results of this study will be significant in areas 
where hybrid WT and ANN methods are used as time 
series data in streamflow estimation studies for basin 
regions. While most previous studies using hybrid 
WT-ANN techniques did not consider the streamflow 
variable due to a lack of data, Graf et al. [54] stated 
that the streamflow variable is significantly affected by 
hydroelectric power plants and snow melt, especially 
at high altitudes. While hybrid model studies perform 
much better than traditional methods, examining models 
from more detailed and different perspectives will 
achieve new results. The Çoruh basin is an important 
region for electricity production through hydropower 
plants in Turkey [76, 77], and the authors of this study 
believe that modeling the flow along with temperature 
and precipitation will make an important contribution 
to literature. Additionally, many other factors (such as 
groundwater, shading, water depth, and slope) affect 
the water basin streamflow. Although these effects were 

not included in the system of this study, our models 
achieved good results in all processes for long-term 
data. In our future studies, we will aim to evaluate 
other factors and improve the consistency of the model. 
The different meteorological and hydrological effect 
variables of the streamflow and other coupled wavelet 
time series methods, or using them in different basin 
regions, will further improve the prediction ability of 
the models examined in this study.
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