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Abstract

Quantitatively exploring a relationship between coastal wetland landscape pattern and water quality 
(WQ) is conducive to providing scientific guidance for the improvement of regional WQ, the prevention 
of water pollution, and the formulation of regional landscape protection and planning. With the 2019 
landscape data and WQ sampling data from the Yancheng Coastal Wetland, five-level WQ sampling 
points at different scales were established. By applying ecological and statistical analysis methods, 
correlations between the landscape patterns and WQ indicators in different buffer zones were analyzed. 
Analysis results showed that: (1) The area of aquafarm, farmland and dry ponds were widely distributed 
at different scales, and the landscape level index and type level index in different buffer zones were 
significantly different. (2) There were significant correlations between coastal wetland landscape types 
and WQ indicators. Total nitrogen, total phosphorus, ammonia nitrogen (NH4

+-N), WQ indicators 
showed significant positive correlations with farmland landscapes in 0.5 km, 1 km, 2 km, and 2.5 km 
buffer zones, and significant negative correlations with tidal flats in 0.5 km-2.5 km buffer zones.  
The Chemical Oxygen Demand index was significantly correlated with various landscapes in the area. 
(3) At the landscape level, the landscape level index, which represents the fragmentation and complexity 
of coastal wetland landscapes, had a significant correlation with water pollution indicators, such as 
mean patch areas, fractal dimension, landscape shape index, plaque cohesion, contagion index and other 
indexes. At the level of landscape class, farmland, aquafarm, dry ponds, construction land in artificial 
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WQ of the basin [19]. many studies indicate that a 
regional WQ is a comprehensive reflection of multi-
scale environmental factors, but changes in regional 
land use/cover-landscape patterns are considered to be 
a main reason affecting regional water environmental 
quality [20,21]. Because WQ is affected by a variety of 
natural and human factors, including rainfall, soil types, 
geology, topography, urbanization, and industrial and 
agricultural activities, these factors can be considered 
as larger-scale land use/cover-landscapes patterns of the 
pattern process [22]. Therefore, the landscape patterns 
in a region can affect the ecological function of the 
region, the discharge of pollutants into the river, and the 
regional WQ security.

An investigation on a relationship between landscape 
pattern and WQ at different scales has focused on the 
relationship between landscape and ecological process 
[22-24]. Well-established buffer zones at different 
scales with WQ sampling points as a center is the 
main research method of the relationship between 
landscape pattern and WQ at present, and the impact 
of landscape pattern on WQ in different scale buffer 
zones is explored [25]. For example, Liberoff et al. 
found that different landscapes have different influence 
radius on WQ content. The landscape influence radius 
of Soluble Reactive Phosphorous (SRP) (100-180 km) 
is larger than that of Total Phosphorous (TP) (10-25 km) 
[26]. Zhou established 200, 600 and 1000 m buffer 
areas to analyze the relationship between landscape 
pattern and WQ characteristics [27]. Generally, some 
common physical and chemical indexes of WQ include 
potential of hydrogen (pH), suspended solids (SS), 
chemical oxygen demand (COD), biochemical oxygen 
demand (BOD), total nitrogen (TN), total phosphorus 
(TP), total dissloved solids (TDS) etc. [26, 27]. most 
of studies take rivers, reservoirs, lakes, and cities as 
their research areas, and, currently, a research interest 
on WQ of an ecological protection area is increasing 
[7, 27-29]. However, the research on WQ and landscape 
pattern of coastal wetlands is relatively blank. It is also 
a new attempt and innovation to compare a correlation 
analysis between landscape pattern and river WQ 
to that between a landscape pattern and the WQ of 
coastal wetlands. In this study, we also focused on an 
analysis of the relationship between landscape pattern 
and WQ from a perspective of landscape level, while 
studies coupled with regional landscape type, landscape 
level and landscape type level are relatively rare [30, 
31]. In order to improve the level of regional water 
resource management and to promote the sustainable 
development of regional ecological environment, multi-
directional and multi angle practical research is needed 
to enrich the quantitative analysis of the relationship 

Introduction

Water resources are a basis of human survival 
and social development. Water quality (WQ) plays a 
key role in public health, environmental protection, 
and agricultural development, and water chemistry 
characteristics reflect a WQ situation to a certain 
extent [1]. A landscape pattern is comprehensively 
formed under natural conditions of regional topography, 
climate, soil, WQ and human activities [2, 3]. Changes 
in the landscape pattern will affect a series of 
ecological factors, such as regional surface runoff, soil 
conditions, various biogeochemical and physical cycles 
[4]. Hydrological processes change the concentration 
of pollutants entering rivers and lakes, and profoundly 
affect regional hydrochemical characteristics [5, 6]. 
Therefore, in order to strengthen the rational use and 
effective protection of regional water resources, it is 
necessary to quantify and analyze relationships between 
landscape patterns and regional WQ and to better 
understand regional ecological processes.

Since the 1970s, research on the impact of landscape 
patterns on surface WQ has been widely carried out 
and has received continuous attention from experts 
and scholars at home and abroad [7, 8]. A relatively 
complete theoretical method system has been formed by 
many relationship studies between landscape patterns 
and surface WQ [9, 10]. Early research focused on 
analyzing the impact of different land cover types on 
WQ conditions in a river basin [11, 12]. Irrational land 
use exacerbated a transfer of nutrients to water bodies 
[13]. Intense agricultural activity and rapid urbanization 
have severely accelerated the deterioration of WQ [14]. 
Intensive and extensive farming, especially the use of 
fertilizers, has a greater impact on WQ [15]. Chemical 
fertilizers enter surface water through runoff, which 
lead to a significant positive correlation between 
agricultural land coverage and water pollution. Due to 
urbalization, an increase in roads, houses, and parking 
lots leads to an increase in runoff, which in turn 
provides a new way for the transport of pollutants to 
rivers [16]. Based on geographic information system 
(GIS) technology and landscape ecology, landscape 
indicators have become an effective means to quantify 
land use/cover allocation [17]. A landscape index reflects 
a number, distribution, structure, and function of types 
of land cover in a region. The index is more sensitive to 
changes in natural and human activities in the region, 
and it is more direct to analyze a degree of water 
pollution in the region [18]. Wang and Zhang research 
found that there is a significant relationship between 
WQ index and landscape pattern index [18]. Wijesiri 
et al. believe that land use changes directly affect the 

wetlands, and various types of level indexes of Suaeda salsa, Phragmites communis, and Spartina 
alterniflora in natural wetlands were highly correlated with WQ indicators.

    
Keywords: landscape pattern, water quality, redundancy analysis, coastal wetland, Yancheng



Correlation Analysis of Landscape Patterns... 4733

between landscape pattern and regional WQ and 
environmental conditions at different scales.

In 2019, the Yancheng coastal wetland was listed 
as a World Natural Heritage. The Yancheng coastal 
wetland is extremely rich in biodiversity. It is a typical 
and representative internationally important coastal 
wetland ecosystem, and it is also an important resting 
place and wintering place for migratory waterfowl 
in the world. The change of a certain element of the 
Yancheng coastal wetland ecosystem has an important 
impact on the regional and even global ecosystems. 
Water resources are an important part of the coastal 
wetland ecological environment. The health of WQ is 
of vital importance to the Yancheng coastal wetland 
with rich biodiversity. At present, given the various 
pressures from reclamation of tidal flats, construction 
of road traffic infrastructure, and continuous expansion 
of aquafarms and dry ponds in the wetland, regional 
WQ conditions are gradually deteriorating [32, 33]. 
This study chooses the Yancheng coastal wetland as 
a research area, used multi-season WQ sampling data 
and 2019 landscape type data as basic information 
sources, and applied spatial analysis and statistical 
analysis methods to establish five levels of buffer zones 
at different scales, from landscape types, landscape 
levels and types level. The horizontal analysis of 
correlation characteristics between landscape patterns 
and WQ indicators at different scales in the wetland. 
In this study, we mainly explored the following issues:  
1) the influence of different land use types-landscape 
on river WQ was assessed; 2) under different scales, the 
influence degree and difference of landscape indexes on 
WQ were analyzed from landscape levels and class level 
indexes; 3) the main landscape indexes affecting the 

WQ of the wetland were explored and corresponding 
solutions were proposed. Given a view of accumulating 
data and experience on the analysis of the relationship 
between coastal wetland landscape pattern and WQ in a 
coastal zone, the analysis results and extracted findings 
will provide a planning basis for the optimization of 
the coastal wetland landscape pattern and the rational 
layout of land use based on requirements of water 
environmental protection. 

Materials and Methods

Study Area

The Yancheng coastal wetland lies in the middle 
coastal region of Jiangsu Province (32°34′-34°28′N, 
119°48′-120°56′E) (Fig. 1). It is mainly formed by 
collaborative effects of waves and tides in the Yellow 
Sea and the East China Sea as well as deposition of 
sediments in the Yellow river Delta and Yangtze river 
Delta. It belongs to a silt coast. The study area is located 
in the transition zone from the northern subtropical zone 
to the warm temperate zone of China. It has obvious 
monsoon characteristics and is greatly affected by the 
ocean. The annual precipitation and annual average 
temperature are about 1030 mm and 15.5ºC, respectively. 
The four seasons are distinct, the rainfall is abundant, 
and the precipitation is mainly concentrated from 
June to September. This study selected the Yancheng 
coastal wetland according to following principles: 
main roads and rivers in Yancheng were chosen as the 
land boundary of the study area, while the maximum 
landscape coverage which is extended slightly toward 

Fig. 1. Geographic location of the study area.
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the sea area on images of coastal wetland was used as 
the sea boundary. The study area is bordered with Guan 
river that is next to the administrative boundary in the 
south region of Yancheng [34]. 

Data Sources and Pre-Processing

Landscape data

Landsat Tm/OLI image data used in this study 
were downloaded from the website of United States 
Geological Survey (USGS) (http://glovis.usgs.gov/). 
Spatial resolution of Landsat Tm/OLI image data was 
30 m. Images in 2019 were collected and the satellite 
orbit number was path 119/row 37 and 120/36. Through 
interpretation remote sensing data and field survey, 
the landscape type distribution patterns in the study 
area were mapped. Accuracy of all landscape types 
was verified and reached >85%. Considering practical 
situation of landscape distribution in Yancheng City 
and research demands, landscape types in the study 
area were divided into natural wetland and artificial 
wetland. The natural wetland covers seawater, tidal 
flat, Phragmites australis, Suaeda salsa and Spartina 
alterniflora. The artificial wetland includes salt pan, 
farmland, aquafarm, dry pond and construction land 
[34].

Water quality Sample data

In the middle of November 2018, late February 2019, 
mid-May, and early August, a one-week field sampling 

survey was conducted on the Yancheng coastal 
wetland. The first sampling determined the geographic 
coordinates of the sampling location, and then repeated 
the sampling three times. In view of the short sampling 
time span and avoiding the seasonal influence of 
sampling water quality, the average value of four 
samplings is used for analysis. A total of 64 samples of 
Yancheng coastal wetland water quality were collected 
in each phase (Fig. 2).

Based on the interpretation of the land use types 
interpreted by the remote sensing image and the on-site 
survey, the adoption zone and the sampling point are 
determined, and 11 sample zones are set perpendicularly 
to the coastal zone from north to south. According 
to the different types of land on each sample zone, 
different points are set for sampling. In the process 
of setting sample points, try to ensure that the sample 
points are evenly distributed in each buffer zone. The 
number of sampling points in each buffer zone is equal 
to or greater than 1, and the distance of sampling points 
in different buffer zones is greater than 0.5 km. The 
determination of sampling points is determined by the 
diversity of land use types in the buffer zone. 

The determination of sampling points was based on 
the principle of "consistency of the underlying surface 
and representativeness of the sampling points" [35]. At 
each sampling point, a surface (0.5 m) water sample was 
collected separately in a pre-treated white polyethylene 
plastic bottle, and the sampling point environment was 
recorded at the same time. With reference to surface 
water environmental quality standards (GB3838-2002), 
the WQ measurement indicators of the sample mainly 

Fig. 2. Landscape types and distribution of sampling points in the study area.
Note: From the south to north, sampling lines were Xinchuang Port Line (L1), Liangduo river Line (L2), Chuandong Port Line (L3), 
Wang Port Line (L4), Wanzhuang Port Line (L5), Doulong Port Line (L6), Xinyang Port Line (L7), Sheyang river Line (L8), Shuangyang 
Port Line (L9), Biandan Port Line (L10) and Xinhuan river Line (L11).
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include total phosphorus (TP), total nitrogen (TN), 
ammonia nitrogen (NH4

+-N), and chemical oxygen 
demand (COD). Per the method of index measurement, 
the national standard water quality monitoring and 
analysis method was adopted [36]. The collected water 
samples were boxed and stored in a refrigerated method 
to slow down the speed of physical and chemical effects. 
The samples were transported back to a laboratory 
for processing and analysis as soon as possible. The 
experiment approach used 1 control, 3 parallel, and 
measured values of each indicator [36, 37]. 

research methods

Extraction of Buffer Zones and Selection 
of Landscape Indexes 

Correlation characteristics between landscape  
types and water quality (WQ) at different sampling 
points in the study area at different scales were 
quantified and analyzed by using buffer zones.  
Five-level buffer zones centered at sampling points  
were constructed with references to previous studies 
and practical situations of Yancheng coastal wetland 
[38]. Sizes of these buffer zones were 0.5 km, 1 km, 
1.5 km, 2 km and 2.5 km, respectively. Since landscape 
types in the Yancheng coastal wetland change slightly 
at a small scale, the buffer zone was divided at the scale 
of 500 m.

As a quantitative research method which is 
commonly used in landscape ecology, the landscape 
pattern index can condense basic information of 
landscape pattern in a region, and it has been widely 
used in studies of landscape pattern in the region 
[39]. Hence, in this study, four class-level indexes 
were chosen, which were percentage of landscape 
type (Pland), plaque density (PD), largest patch index 
(LPI), edge density (ED) and aggregation index (AI). 
Pland reflects landscape components and it calculates 
the relative proportion of a plaque type in the whole 
landscape area. It is one of references to determine the 
dominant landscape elements in a landscape. PD and 
ED represent fragmentation of landscape pattern in a 
region. The higher fragmentation brings the stronger 
landscape heterogeneity and the higher risk of water 
pollution in the region. AI reflects plaque aggregation 
in landscapes. Another 12 landscape-level indexes were 
chosen, to distinguish the two indexes, “c” is added in 
front of the landscape class level index, mainly including  
coverage area (cCA), largest plaque index (cLPI), 
edge density (cED), mean patch areas (cmPS), fractal 
dimension (cFrAC), number of plaques (cNP), plaque 
density (cPD), aggregation index (cAI), contagion index 
(cCONTAG), landscape shape index (cLSI), plaque 
cohesion (COHESION), intersperse juxtaposition index 
(cIJI), and Shannon diversity index (cSHDI). Landscape 
indexes were calculated from the software Fragstats 
4.2. Relevant definitions and meanings of the landscape 
indexes are introduced in [34].

data Statistics and Basic Processing

The landscape index data in different buffers 
obtained by statistics were plotted using Origin 2017 
software. As a direct gradient sequencing analysis 
method, redundancy analysis can disclose a relationship 
between species factors and multi-group variables of 
environmental factors in a region through statistical 
analysis [40]. Existing studies mainly implemented 
redundancy analysis based on CANOCO for Windows 
to interpret the relationship between landscape pattern 
and multi-variable characteristics of WQ in a wetland 
environment [27, 41]. Firstly, Detrended Correspondence 
Analysis (DCA) of sampling indexes was performed 
with CANOCO 4.5 software [27]. If the numerical value 
of the first axis of the lengths of gradient is higher than 
4.0, Canonical Correspondence Analysis (CCA) shall be 
chosen. If the numerical value ranges within 3.0~4.0, 
either rDA or CCA can be chosen. If the numerical 
value is smaller than 3.0, redundancy Analysis (rDA) 
is better than CCA. According to DCA results of WQ 
indexes at different sampling points, the numerical 
values of the first axis were 0.089 and 0.002 (<3.0). 
Therefore, rDA method was applied in the present 
study.

Results and Discussion

Landscape Pattern Analysis in Different 
Buffer Zones

Land Use/Land Cover description Analysis 
in different Buffer Zones

The WQ sampling points are often used as research 
objects to analyze the landscape pattern in buffer  
zones at different scales. A five-level buffer was 
generated with centered at sampling points of the 
WQ in the study, and the land use/land cover (LULC) 
conditions (Fig. 3) in the buffer zones at various  
levels were obtained by superimposing the wetland 
landscape map over the buffer zones. Given the large 
number of samples, the analysis was based on 11 
sampling lines.

In the buffer zones of 0.5 km-2.5 km, except 
for Shuangyang port and Biandan port, which were 
dominated by tidal flat and aquafarm, the LULC 
types were dominated by farmland, aquafarm and dry  
pond. When the buffer zone width increased from  
0.5 km to 2.5 km, the area of constructed wetland 
tended to increase, while the area of Phragmites 
australis and Suaeda salsa in natural wetland tended  
to decrease. By comparing distributions of LULC types 
in the buffer zones, the farmland and fishpond were  
the main LULC types in the coastal wetlands, and 
human activities had a strong impact on the coastal 
wetlands.
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Landscape Level Indexes in different 
Buffer Zones

Landscape level indexes in different buffer zones  
are denoted by box plots (Fig. 4). NP, PD and mPS 
all can reflect a degree of landscape fragmentation 
in a region. The maximum NP lied in the 1 km and  
1.5 km buffer zones, while the minimum NP was in  
the 0.5 km buffer zone. Median, upper quartile and 
lower quartile had an equilibrium distribution in  
1 km-2.5 km buffer zones, but there’s an abnormal 
distribution in the 0.5 km buffer zone. NP has more 
outliers in the 0.5 km-2 km buffer. Maximum, 
minimum, median, the upper quartile and lower 
quartile of PD declined with widening buffer zones, 
but mPS showed the opposite, indicating that landscape 
fragmentation close to sampling points decreased from 

the center to their peripheral regions. As a boundary 
density of different plaques, the maximum and 
median of ED were in the 0.5 km buffer zone, and the 
maximum of ED was negatively correlated with width 
of the buffer zone. It is indicated that there’s obvious 
material energy exchange in the 0.5 km buffer zone, 
and landscape in the region tended to be fragmented. 
Value of LPI can reflect intensity of human activities 
in a region. The maximum of LPI was in the 0.5 km 
buffer zone, while the maximum median was in the 
1.5 km buffer zone. Boxes of upper quartile and lower 
quartile were relatively long in the 1.5 km buffer zone, 
indicating the frequent human activities in the 1.5 km 
buffer zone. LSI reflects morphological complexity of 
landscape plaque. The more fragmented the landscape, 
the more complicated morphology will be. LSI in the 
0.5km buffer zone changed slightly, but it changed 

Fig. 3. Percentages of LULC types in buffer zones at all levels.
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greatly in the 1 km-2 km buffer zones and it was very 
sensitive to external interferences. 

For landscapes with great external interfaces, FrAC 
is close to 1. The maximum and minimum of FrAC 
were in the 0.5 km buffer zone. FRAC value in the  
1 km-1.5 km buffer zones was relatively small. The third 
fractal dimension in the 0.5 km-1.5 km buffer zones 
had a small gap and it was close to 1, indicating that 
the human activities in the 1.5 km buffer zone had great 
impacts. Both CONTAG and AI reflect an aggregation 
degree of landscape in a region. With increasing width 
of a buffer zone, the aggregation degree of landscape 

increases. The plaque aggregation degree in landscapes 
in the 0.5 km-2 km buffer zones was increased 
accordingly, which also reflected the poor landscape 
aggregation in the buffer zones close to sampling points 
and the increasing trend of landscape fragmentation. IJI 
reflects separation degree of landscape by comparing 
numbers of adjacent landscape types. The maximum 
of IJI showed a small gap in five-level buffer zones 
and there’s a relatively uniform separation degree. 
However, there’s a large median of IJI in the 1 km-2 km 
buffer zones, which reflected the relatively outstanding 
landscape separation in these buffer zones. COHESION 

Fig. 4. Landscape level indices in different buffer zones.
Note: IQr is Inter-Quartile range
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can measure landscape connectivity in a region 
effectively. The maximum of COHESION was in the 
1.5 km buffer zone, and the median of COHESION 
in 2 km-2.5 km buffer zones was relatively high. On 
contrary, the landscape connectivity in the 0.5 km 
buffer zone was the poorest, manifested by the lowest 
minimum and median of COHESION. SHDI reflects 
landscape heterogeneity and it is extremely sensitive 
to the non-equilibrium distribution layout of plaques.  
The maximum of SHDI was relatively equilibrium in 
the 0.5 km-2.5 km buffer zones. The maximum median 
was in the 2 km buffer zone and the upper quartile was 
in the 1 km buffer zone, which proved the relatively 
outstanding landscape heterogeneity in the 1 km-2 km 
buffer zones.

Landscape Class Level Indexes 
in different Buffer Zones

Statistics of landscape class-level indexes in 
different buffer zones were shown in Fig. 5. There 
were relatively few salt pans, construction lands and 
Spartina alterniflora in buffer zones, which were 
not listed here. With respect to cPland, there were 
extensive distributions of seawater and farmland in 
the 0.5 km-1 km buffer zones. There’s an extensive 
area of tidal flat in the 1 km-2.5 km buffer zone. There 
were relatively uniform distributions of aquafarm in 
the five-level buffer zones, which also reflected strong 
disturbances by human activities. There were few and 
uneven distributions of dry ponds in the buffer zones at 
different levels. Phragmites australis landscape had an 
extensive distribution in the 0.5 km buffer zone. Suaeda 
salsa landscape concentrated in the 1.5 km buffer zone 
and there’s few distribution in the 2.5 km buffer zone. 
maximum, minimum, median, upper quartile and lower 
quartile of cPD and cED showed consistent trends in 
distribution and variation. The maximums of cPD and 
cED of seawater, tidal flat, farmland, aquafarm, dry 
pond and Phragmites australis concentrated within the 
0.5 km-1 km buffer zones. In particular, cPD and cED 
of farmland and aquafarm were far higher than those 
in other buffer zones. The maximums of cPD and cED 
of Suaeda salsa concentrate in the 0.5 km-2 km buffer 
zones, which also indicated the serious landscape 
fragmentation in this width range of buffer zones. 
Seawater concentrated in the 1.5 km-2.5 km buffer 
zones. Tidal flat concentrated in the 0.5 km buffer zone, 
and it was more scattered in the 2 km-2.5 km buffer 
zones. cAI values of farmland and aquafarm showed 
consistent variation trends. Farmland and aquafarm had 
a concentrated distribution in the 0.5 km-1 km buffer 
zones. However, landscape structure in other buffer 
zones tended to be unstable. Dry pond concentrates in 
the 0.5 km buffer zone, but it was relatively scattered 
in the 1 km-2 km buffer zones. Plaques in the 2.5 km 
buffer zone scatter around. Concentration characteristics 
of Phragmites australis in the 0.5 km-2 km buffer zones 
are similar. Phragmites australis showed moderate 

concentration, but the concentration degree in the 
2.5 km buffer zone increased. Suaeda salsa showed 
relatively low cCOHESION, but high cCOHESION in 
the 0.5 km and 1.5 km-2.5 km buffer zones.

Correlation Analysis between Spatial Landscape 
Pattern and Surface Water Quality

Analyzing rDA may deepen the understanding 
correlation and interpretation capacity of regional 
landscape indexes to environmental chemical indexes 
[44]. According to the rDA sequence diagram of 
different buffer zones (Fig. 6), the spatial landscape 
patterns were expressed by red arrows, while WQ 
indexes are expressed in black arrows. The Angle 
between the arrows indicates the size of the correlation. 
The smaller the Angle, the greater the correlation. 
When the included Angle is less than 90 degrees, the 
relationship between the two is positive correlation; 
greater than 90 degrees is negative correlation, and 
equal to 90 degrees, there is no correlation. The length 
of the arrow indicates the size of the relationship 
between the landscape index and the regional WQ 
index. The longer the arrow line is, the greater the 
correlation is; otherwise, the smaller it is.

Correlation between Landscape Type 
and Surface Wq Indexes

According to sequence diagrams of landscape type 
and surface WQ, there were strong correlations among 
TN, TP and NH4

+-N in different buffer zones. COD was 
less correlated with WQ indexes and had independent 
distributions. In the buffer zone of 0.5 km-2.5 km, the 
total correlation between landscape type and WQ is 
0.85, 0.718, 0.901, 0.855, and 0.849, respectively.

TN, TP and NH4
+-N had significantly positively 

correlations with farmland in the 0.5 km, 1 km, 2 km 
and 2.5 km buffer zones, but they were significantly 
negatively correlated with Phragmites australis 
landscape in the 1.5 km and 2 km buffer zones. TN, 
TP and NH4

+-N had significantly negative correlations 
with the area of tidal flat in all 0.5 km-2.5 km 
buffer zones. COD was significantly correlated with 
multiple landscapes in the region. In particular, it 
was significantly positively correlated with Spartina 
alterniflora, dry pond and tidal flat, but it had a 
significantly negative correlation with Phragmites 
australis.

Correlation between Landscape Level Indexes 
and Surface Wq Indexes

Correlation analysis results between landscape level 
indexes and WQ indexes are shown in Fig. 7. In this 
study, 11 landscape level indexes and 4 WQ indexes 
were chosen. The total correlation between landscape 
level index and water quality from 0.5 km to 2.5 km 
is 0.898, 0.701, 0.891, 0.817, and 0.858, respectively. 
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Fig. 5. Statistics of landscape type levels in different buffer zones.
Note: Sea-cPland, Sea-cPD, Sea-cED, and Sea-cAI are the landscape type percentage, patch density, patch edge density, and aggregation 
index of seawater. Tidal flat-cPland, Tidal flat-cPD, Tidal flat-cED, and Tidal flat-cAI are the landscape type percentage, patch density, 
patch edge density, and aggregation index of tidal flat. Farmland-cPland, Farmland-cPD, Farmland-cED, and Farmland-cAI are the 
landscape type percentage, patch density, patch edge density, and aggregation index of farmland. Aquafarm-cPland, Aquafarm-cPD, 
Aquafarm-cED, and Aquafarm-cAI are the landscape type percentage, patch density, patch edge density, and aggregation index of 
aquafarm. Dry pool-cPland, Dry pool-cPD, Dry pool-cED, and Dry pool-cAI are the landscape type percentage, patch density, patch 
edge density, and aggregation index of dry pool. Phragmites australis-cPland, Phragmites australis-cPD, Phragmites australis-cED, 
and Phragmites australis-cAI are the landscape type percentage, patch density, patch edge density, and aggregation index of Phragmites 
australis. Suaeda salsa-cPland, Suaeda salsa-cPD, Suaeda salsa-cED, and Suaeda salsa-cAI are the landscape type percentage, patch 
density, patch edge density, and aggregation index of Suaeda salsa.
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Fig. 6. RDA ranking of landscape types and WQ indicators in different buffer zones.

Fig.7. Ranking of landscape level index and WQ index RDA in different buffer zones.



Correlation Analysis of Landscape Patterns... 4741

In the 0.5 km buffer zone, TN, TP and NH4
+-N were 

positively correlated with FrAC, ED and mPS, but they 
were negatively correlated with AI, PD, CONTAG and 
SHDI. COD was significantly positively correlated with 
SHDI, IJI and LSI, but it showed significantly negative 
correlations with LPI, FrAC and mPS. LSI had 
significantly positive correlations with TN, TP,  NH4

+-N 
and COD, but CONTAG and LPI were significantly 
negatively correlated with TN, TP, NH4

+-N and COD. In 
the 1 km buffer zone, LPI could interpret TN, TP and 
NH4

+-N the best, manifested by the longest arrow and 
relatively small included angle. Secondly, LPI showed 
the second strongest correlations with COHESION, 
ED, AI, CONTAG, FrAC and mPS. COD had strong 
positive correlations with LSI and SHDI.

In the 1.5 km buffer zone, TN, TP and NH4
+-N were 

significantly positively correlated with FRAC, CONTAG 
and MPS, but they were significantly negatively 
correlated with LPI, IJI, LSI, SHDI and COHESION. 
IJI had a strong interpretation capacity to COD, 
manifested by a significantly positive correlation. COD 
showed the second strongest positive correlations with 
LPI, LSI, SHDI and COHESION. In the 2 km buffer 

zone, TN, TP and NH4
+-N were significantly positively 

correlated with FrAC, CONTAG, mPS and AI. COD 
was positively correlated with LPI, IJI, LSI, SHDI, 
COHESION and AI. All four WQ indexes showed 
significantly positive correlations with COHESION, AI 
and LSI. In the 2.5 km buffer zone, TN, TP and NH4

+-N 
were significantly positively correlated with FRAC, 
CONTAG, mPS, AI and IJI. COD was positively 
correlated with LPI, IJI, LSI, SHDI, COHESION and 
AI. All four WQ indexes showed significantly positive 
correlations with COHESION, AI and IJI. 

Correlation between Landscape Class-Level 
Indexes and Surface Wq Indexes

Correlations between landscape class-level indexes 
and surface WQ indexes were analyzed to disclose the 
interpretation capacity of landscape class-level indexes 
to surface WQ. Although there are many wetland 
classes in the study area, this study mainly focused on 
natural and artificial wetlands.

With respect to artificial wetland (Fig. 8), 
correlations of farmland, aquafarm, dry pond and 

Fig. 8. Ranking of artificial wetland landscape index and WQ index RDA in different buffer zones.
Note: Aqua-cPland, Farm-cPland, Dry-cPland, and Constr-cPland are the landscape type percentage of aquafarm, farmland, dry pond 
and construction land. Aqua-cPD, Farm-cPD, Dry-cPD, and Constr-cPD are the patch density of aquafarm, farmland, dry pond and 
construction land. Aqua-cLPI, Farm-cLPI, Dry-cLPI, and Constr-cLPI are the largest patch index of aquafarm, farmland, dry pond 
and construction land. Aqua-cED, Farm-cED, Dry-cED, and Constr-cED are the patch edge density of aquafarm, farmland, dry pond 
and construction land. Aqua-cAI, Farm-cAI, Dry-cAI, and Constr-cAI are the aggregation index of aquafarm, farmland, dry pond and 
construction land.
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construction lands with surface WQ were analyzed. 
Five indexes were chosen in this study, including 
cPland, cPD, cED, cAI and cLPI. Within the 0.5 km-
2.5 km buffer zone, the total correlation between 
the landscape class index of artificial wetland and 
water quality is 0.665, 0.746, 0.937, 0.802, and 0.859, 
respectively. In the 0.5km and 1km buffer zones, TN, 
TP and NH4

+-N showed strong correlations. In the 1.5 
km, 2 km and 2.5 km buffer zones, TN, TP, NH4

+-N 
and COD presented concentrated distributions and high 
correlations. In the 0.5 km buffer zone, cAI, cED and 
cPland of aquafarm as well as cED, cLPI and cPD of 
farmland had strong interpretation capacities to TN, 
TP, NH4

+-N, accompanied with a significantly positive 
correlation. These demonstrate that fertilizers and baits 
used in farmland and aquafarm could influence WQ 
significantly. COD was strongly correlated with cPland, 
cPD, cED and cAI of construction land, indicating 
that construction land could promote COD in the 
region significantly. In the 1 km buffer zone, TN, TP 
and NH4

+-N were significantly positively correlated 
with cED, cPD and cPland of farmland as well as 

cAI of aquafarm. COD was strongly correlated with 
construction land and dry pond. In the 1.5 km and  
2 km buffer zones, landscape class-level indexes were 
closely related with WQ indexes. TN, TP and NH4

+-N 
were strongly correlated with farmland (e.g., cPland and 
cLPI) and aquafarm (e.g., cPD and cED). COD showed 
significantly positive correlations with indexes of dry 
pond, such as cPland and cLPI. In the 2.5 km buffer 
zone, TN, TP, NH4

+-N and COD had significantly 
positive correlations with cPland and cLPI of farmland 
as well as cAI of aquafarm. All four WQ indexes 
presented concentrated distributions. In a word, cPland, 
cPD, cED and cLPI of farmland and cAI of aquafarm 
had a strong interpretation to TN, TP and NH4

+-N. 
In the 0.5 km-1.5 km buffer zones, all class-level indexes 
of construction land and dry pond could interpret COD 
well. In the 2 km-2.5 km buffer zones, dry pond was 
the best to interpret COD.

Natural wetland types mainly consist of seawater, 
tidal flat, Phragmites australis, Suaeda salsa and 
Spartina alterniflora (Fig. 9). In the buffer zone of 
0.5 km-2.5 km, the total correlation between the natural 

Fig. 9. Ranking of natural wetland landscape index and WQ index RDA in different buffer zones.
Note: Sea-cPland,Tidal-cPland,Phra-cPland,Suae-cPland,and Spar-cPland are the landscape type percentage of seawater, tidal flat, 
Phragmites australis, Suaeda salsa and Spartina alterniflora. Sea-cPD, Tidal-cPD, Phra-cPD, Suae-cPD, and Spar-cPD are the patch 
density of seawater, tidal flat, Phragmites australis, Suaeda salsa and Spartina alterniflora. Sea-cLPI, Tidal-cLPI, Phra-cLPI, Suae-cLPI, 
and Spar-cLPI are the largest patch index of seawater, tidal flat, Phragmites australis, Suaeda salsa and Spartina alterniflora. Sea-cED, 
Tidal-cED, Phra-cED, Suae-cED, and Spar-cED are the patch edge density of seawater, tidal flat, Phragmites australis, Suaeda salsa and 
Spartina alterniflora. Sea-cAI, Tidal-cAI, Phra-cAI, Suae-cAI, and Spar-cAI are the aggregation index of seawater, tidal flat, Phragmites 
australis, Suaeda salsa and Spartina alterniflora.
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wetland landscape class level index and water quality is 
0.665, 0.89, 0.867, 0.81, 0.907, respectively. In the 0.5 km 
buffer zone, TN, TP and NH4

+-N presented significantly 
positive correlations with all five indexes (cPland, 
cPD, cED, cAI and cLPI) of the Suaeda salsa. COD 
was positively correlated with five indexes of Spartina 
alterniflora, cAI, cPD and cED of seawater as well as 
cLPI, cAI and cPD of tidal flat. In the 1 km buffer zone, 
all landscape class-level indexes of Spartina alterniflora 
and tidal flat had strong interpretation capacities to 
COD and they showed significantly positive correlations 
with COD. Three lines of TN, TP and NH4

+-N were 
relatively scattered. In particular, TP was strongly 
correlated with Pland of seawater. TN and NH4

+-N 
were positively correlated with landscape class-level 
indexes of Phragmites australis, especially cAI, cPland, 
cED and cLPI. In the 1.5 km buffer zone, TN, TP and 
NH4

+-N showed significantly positive correlations with 
landscape indexes of Phragmites australis and Suaeda 
salsa. COD was closely correlated with landscape 
indexes of tidal flat and Spartina alterniflora, which was 
proved by the longest arrow and the smallest included 
angle of cAI. In the 2 km buffer zone, landscape 
indexes of Phragmites australis and Suaeda salsa could 
interpret TN, TP and NH4

+-N greatly. cPland, cPD and 
cED of tidal flat as well as cAI of Spartina alterniflora 
showed significantly positive correlations with COD. In 
the 2.5 km buffer zone, landscape class-level indexes 
had different correlations with WQ indexes. TN, TP, 
NH4

+-N and COD had significantly positive correlations 
with cPland and cLPI of Spartina alterniflora. 
Additionally, COD also was closely related with cAI 
and cED of Spartina alterniflora. In short, TN, TP and 
NH4

+-N showed significantly positive correlations with 
landscape class-level indexes of the Suaeda salsa and 
Phragmites australis in the 0.5 km-2 km buffer zones. 
In the 2.5 km buffer zone, Spartina alterniflora had 
a strong interpretation capacity to TN, TP, NH4

+-N and 
COD. Spartina alterniflora could influence COD in 
different buffer zones significantly.

Discussion

Impact of LULC-Landscape Types 
on WQ in Coastal Wetlands

There is a significant correlation between regional 
LULC-landscape patterns and water pollutant 
concentration indicators. In previous studies, urban 
construction land is the main source of regional water 
pollution, and it has the greatest ability to explain water 
pollution [30]. The reason is that urban construction 
land is the most intense regional patch of human 
activity. Road hardening makes cities impervious to 
water. The increase in impervious surface area and 
the high pollution caused by urban industry and living 
have deepened the concentration of WQ pollutants in 
urban areas and become the main source of pollution 

output in the region. The second major pollution source 
is cultivated land [15]. Due to the increased use of 
cultivated land by human activities, a large number 
of pesticides and chemical fertilizers are applied to 
farmland, which increases chemical elements in a 
regional farmland and exacerbates the deposition 
of pollutants. This study used the Yancheng coastal 
wetland as a research area. The construction area of 
coastal wetland was small, while the area of artificial 
wetland was relatively large. The area of farmland, 
aquafarm, and dry pond in the 0.5 km-2.5 km  
buffer zones was larger. Pond farming requires the 
application of a large amount of fertilizer and the 
chemical element deposition intensity and rate in 
this landscape are much greater than other landscape 
types. For example, TN, TP, NH4

+-N WQ indicators 
had significant positive correlations with farmland 
landscapes in the 0.5 km, 1 km, 2 km, and 2.5 km 
buffer zones, and COD indicators had significant 
positive correlations with dry pond landscapes.

In addition, forest and grassland had a better 
purification effect on a regional WQ, showing a 
significant negative correlation. Forest and grassland 
had a good ability to maintain soil, absorb and retain 
water, and digest pollutants. For example, Ewane’s 
research showed that forest landscapes could absorb 
water quality pollutants and improve water quality by 
increasing forest coverage [6]. In this study, the coastal 
wetland, taking the seawater, tidal flat, Phragmites 
australis, Suaeda salsa and Spartina alterniflora as 
the typical natural wetlands  had a significant impact 
on the WQ indicators: (1) TN, TP, NH4

+-N indicators in 
the buffer zones of 0.5 km-2.5 km had a significantly 
negative correlation with tidal flat; (2) COD indicators 
maintained a significant negative correlation with 
Phragmites australis landscape; and (3) surface runoff 
carried surface pollution. The WQ pollution of TN, TP 
and NH4

+-N in tidal flat was relatively small, and the 
large area distribution of Phragmites australis played a 
certain role in purification of WQ pollutants.

Impact of Difference Landscape Indices 
on WQ Index

The impact of coastal wetland landscape index on 
wetland WQ environment is not only reflected in the 
regional differences of different landscape types, but 
also affected by the differences of internal structure, 
function and layout of different landscape types. 
Taking the cohesion index of this paper as an example, 
the cohesion index reflects the connection of regional 
landscape. The higher the connectivity of landscape, 
the faster the material exchange and capacity transfer, 
which is more conducive to pollutant treatment and 
digestion. For example, COHESION index had a strong 
correlation with WQ pollutants in 1 km, 2 km and  
2.5 km buffer zones. Therefore, at the landscape level, 
when the regional landscape is connected with a certain 
type of landscape or with an absolutely large and 
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dominant landscape type, the concentration of water 
pollutants is lower and the WQ conditions are better. 
The results of this study were also consistent with 
the results of Wang's [18] study on WQ factors in the 
Ebinur Lake oasis.

In terms of class level, the landscape type percentage 
(Pland) and the largest patch index (LPI) reflect  
the spatial distribution of the dominant landscape types 
and the largest patch types in the region, and have  
a more direct impact on the regional WQ. The 
aggregation of Suaeda salsa, Phragmites australis 
and Spartina alterniflora in the natural wetland, such 
as cAI index, helps intercept pollutants and reduce 
the concentration of pollutants in the whole area, 
but the concentration of pollutants also increases the 
concentration of pollutants in the nearby water. In the 
constructed wetland, farmland, fishpond, construction 
land and dry pond had their own outstanding boundary 
scope, and had a great impact on their own scope.  
If the edge density (ED) is large, it indicates that the 
more complex the patch shape, the more difficult it  
is to flow and digest pollutants, which deepen the 
pollutant concentration in the boundary area. This is 
similar to the research results of Yu [35], indicating that 
patch shape can affect regional hydrological process 
and WQ.

measures to Improve WQ 
in Coastal Wetlands

Based on the influence of the current landscape 
patterns on the WQ in the Yancheng coastal wetland and 
the necessity of controlling coastal wetland pollutants 
and protecting wetland water environment, we should 
properly take measures to alleviate regional water 
pollution, improve wetland soil fertility and maintain 
the stability of coastal wetland ecosystem. The measures 
may include (i) controlling the area of aquafarm and dry 
pond reclamation; (ii) reducing the use of agricultural 
chemicals and fertilizers and developing agricultural 
remote sensing technology. The use of agricultural 
chemical fertilizer in Yancheng was on the whole 
decreasing trend, the application of chemical fertilizer 
decreased by 21.31% from 2010 to 2019, but the total 
amount was still large. With the development of science 
and technology, the combination of agricultural remote 
sensing technology and machinery has become the main 
development direction in the field of agriculture, which 
can save 10% of fertilizer and 23% of pesticide by 
determining the amount of seed, fertilizer and pesticide 
according to the conditions of land and crops [42]. It can 
effectively improve the application efficiency of regional 
pesticide fertilizer, thus reducing the environmental 
pollution caused by pesticide fertilizer; (iii) strictly 
following the regulations of Nature reserve protection,  
(iv) reducing the external interference of human 
activities on the coastal wetland; (v) increasing the 
protection of Phragmites australis, tidal flat and Suaeda 

salsa natural wetland Protect, and (vi) enlarging the 
patch area of Phragmites australis, Suaeda salsa and 
other natural vegetation to prevent regional landscape 
fragmentation.

Conclusions

In this study, five-level buffer zones were constructed 
by centering at 64 water quality sampling points in the 
Yancheng coastal wetland. Using landscape type data 
in 2019 and multi-season water quality sampling and 
measurement data, the correlation between landscape 
pattern and WQ indexes was analyzed through 
landscape pattern indexes and rDA method. Some 
major conclusions could be drawn:

(1) The area of artificial wetlands, such as aquafarm, 
farmland, and dry ponds in the buffer zone was 
relatively large. As the buffer zone grows from 0.5 km  
to 2.5 km, the area of artificial wetlands tended to 
increase and the area of natural wetlands tended 
to decrease. It showed that human activities had a 
significant impact on coastal wetlands. The landscape 
level index and type level index in different buffer 
zones were significantly different.

(2) Coastal wetland landscape types were 
significantly correlated with WQ indicators and the 
correlations were different. TN, TP, NH4

+-N water quality 
indicators showed significant positive correlations 
with farmland landscapes in the 0.5 km, 1 km, 2 km, 
and 2.5 km buffer zones, and significant negative 
correlations with the tidal flats in the 0.5 km-2.5 km 
buffer zones. The COD index had a significant 
correlation with various landscapes in the region, 
especially Spartina alterniflora, dry pond, tidal flat and 
Phragmites australis landscape types.

(3) From the perspective of coastal wetland 
landscape level, the area and shape of the patches and 
the fragmentation of the landscape had a significant 
impact on the regional WQ. At the landscape class level 
of coastal wetland, the cPland, cPD, cED, and cLPI 
indexes of farmland and the cAI index of aquafarm had 
a strong influence on the TN, TP, and NH4

+-N indicators, 
respectively. In the buffer zones of 0.5 km–2 km, TN, 
TP, NH4

+-N showed significant positive correlations 
with the landscape type level indices of Suaeda salsa 
and Phragmites australis, while in the buffer zone of 
2.5 km, Spartina alterniflora had a greater impact on 
TN, TP, NH4

+-N and COD. To improve regional water 
quality conditions, it is necessary to rationally control 
the scale of farmland and aquafarm, increase the area of 
natural wetlands. This study only selected four seasonal 
water quality sampling data in a single year, focusing 
on the unique and typical coastal wetlands in eastern 
China. Future research will strengthen long-time series 
of water quality observation and sampling, so as to 
enrich the content of coastal wetland water quality and 
landscape research.
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