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Abstract

The invasive species Spartina alterniflora show a significant coexistence zonation pattern 
with local Phragmites australis in different mixture ratio, increasing the difficulty to monitor 
their distribution directly by remote sensing. Canopy chlorophyll content (CCC) is an important 
indicator to monitor the growth and physiological status. The objective of this study was to estimate  
CCC under different mixture ratio. Five spectral indices were selected and combined via back 
propagation (BP) neural network model for estimating CCC. Combining multi-indices yielded better 
results (R2 = 0.7729, RMSE = 53.01 ug.cm-2) on average than the best single spectral index (R2 = 0.7190, 
RMSE = 63.53 ug.cm-2) without distinguishing interspecies competition, with a total increase of 7.5% in 
the R2 and a decrease of 16.56% in the RMSE. Meanwhile, when considering interspecies competition, 
the estimating results obtained by the BP neural network model achieved a further improvement of the  
R2 value, ranging from 3.57% to 20.37%, while the prediction error reduced at varying degrees 
(maximum reduction of 23.78%). The results indicate that combining multi-indices by BP neural 
network model can alleviate the influence of interspecies competition and achieve higher estimating 
accuracy.
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Introduction

As one of the three major ecosystems on earth, 
coastal wetlands are vital and provide many direct 
or indirect ecosystem service functions, such as 
the circulation of carbon and nitrogen, and energy 
transmission, as well as tourism and recreation, 
which are the cornerstones of regional development  
[1-3]. However, while coastal wetlands provide various 
services and products, their continued survival has been 
threatened in recent decades [4-6]. Invasive species 
have been increasing in aggravation annually in both 
scope and spreading speed, thereby contributing to 
increased pollution and nutrient levels. Invasive plants 
are one of the most serious threats to ecological global 
security [7, 8], and plant invasion is an emerging driver 
of change worldwide. In China, especially in the coastal 
regions, wetlands are threatened by exotic species that 
have the ability to alter the native ecosystems, ranging 
in degree from genetic to ecosystem level [7, 9, 10]. 

Spartina alterniflora (S. alterniflora), one of the 
most widespread invasive species in China, is native to 
the North American Atlantic coast and was introduced 
to Yangtze Estuary in the 1990s [11] little is known 
regarding the response of functional bacteria involved in 
the sulfur redox cycling to invasive Spartina alterniflora. 
We compared community abundance and composition 
of sulfate reducing bacteria (SRB. S. alterniflora 
has spread rapidly along China’s coast for the past  
30 years owing to its strong roots and higher tolerance 
to varying soil conditions than other native salt marsh 
vegetation [4, 12, 13]. This spread has caused serious 
ecological consequences to the local ecosystems [9, 14-
16]. Furthermore, the invasive species S. alterniflora 
even caused changes in species at the genetic scale, 
causing serious jeopardize to biodiversity [17]. With 
the rapid spreading in the Yangtze River Estuary,  
a large coexistence with the native species, Phragmites 
australis (P. australis), has been observed. More 
importantly, this mixed growing causes competitive 
interactions along the estuary, causing an unstable 
distribution as S. alterniflora and P. australis compete 
for the limited growing space and nutrient, which we 
called it interspecies competition in our study. As  
a region with the most interspecies competition among 
species, this specific mixed area is important for wetland 
ecology research. Furthermore, this co-exist region 
exhibits a sharp changing by mixture ratio, increasing 
the difficulty to focus on the quantitative estimating for 
the species using satellite imagery directly. Monitoring 
this specific mixed growing region are necessary to 
estuary ecosystem security.

Chlorophyll is an essential biochemical component 
for plant photosynthesis and the engine of plant growth 
[18, 19]. Focusing on the photosynthetic characteristics 
of wetland vegetation is of great significance as it 
determines the ecological purification effect of the 
wetland. Canopy chlorophyll content (CCC) is of 
considerable importance because it can indicate the 

condition for plant growth and physiological status at 
the canopy level directly [20, 21]. Further, the research 
on for the estimating of CCC is the basis for quantitative 
inversion domain by remote sensing image. Therefore, 
information on CCC is critical for monitoring the 
growth situation of S. alterniflora and P. australis, 
especially for this specific mixed region. As of late, 
studies have been focused on vegetation observation 
and monitoring, and the retrieval of chlorophyll content 
via non-destructive remote sensing methods, achieving 
many scientific results [22-27]. Due to the complexity 
of the radiative transfer model and growth conditions at 
the canopy level, the estimation of CCC has typically 
been carried out by combing multi-indices that can 
be found in many cases [28-33]. However, basing on 
the goal of our research, it is urgent and necessary by 
focusing on this specific region with the coexistence 
of these two species for the quantitative estimating of 
CCC. 

CCC estimated from remote sensing tends to use 
empirical statistical [18, 34-36] and physical model 
inversion [37-41]. Researches have been devoted to 
excavate sensitive regions that relating to biochemicals 
by using different combinations of wavelengths 
measured by different platforms [10, 42-44]. Although 
various indices for chlorophyll estimation have been 
established, there is no universal index that is suitable 
for different species, especially for marsh areas. A 
single index may be inadequate for estimating the CCC 
in different mixture ratio as it can be easily influenced 
by the ratio. The growth morphology and vegetation leaf 
cover can change obviously compared with single pure 
species, leading the difficulty in quantitative estimating 
of S. alterniflora and P. australis at canopy level.

In this research, 46 spectral indices in our database 
were evaluated for the potentiality of estimating CCC 
under different interspecies mixture ratio between 
S. alterniflora and P. australis. Herein, the key study 
objectives are as follows: (1) determine whether 
the canopy spectral reflectance are influenced by 
interspecies competition and (2) determine whether 
considering interspecies competition can be beneficial 
for estimating CCC and (3) determine if combining 
multi-indices to estimate the mixed CCC alleviates 
the effect of interspecies competition and improves 
accuracy. In our research, a control experiment between 
S. alterniflora and P. australis is conducted in the field 
to estimate the CCC in the mixed condition, and model 
simulated data by PROSAIL is used to establish an 
inversion model under the basis of measured canopy 
parameters.

Materials and methods

In our study, we designed a novel experiment and 
collected samples for the estimating of CCC. The 
experiment details and sampling strategy are shown in 
the following sections.
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Study Sites 

Chongming Island, a typical salt marsh wetland 
located in the Yangtze River Estuary, was selected to 
conduct our field control experiment owing to the good 
guarantee conditions of National Bird Nature Reserve. 
The experiment site was conducted in Dongtan  
wetland reserve, locating at point A, Shanghai, China 
(31°38′N, 121°58′E) (Fig. 1). In addition, we also 
selected field site at the point B (Fig. 1) as the basis 
for the experimental design. The typical salt marsh 
wetland of site B is located between North Liuyao 
and North Bayao of the Yangtze River Estuary with 
a convenient transportation, which is not affected by 
artificial embankment. The salt marsh plant in this 
region was in good growth condition. Herein, the 
invasive S. alterniflora and the native P. australis have 
both large pure species growth zones and large-scale 
mixed growth areas, which is almost no interference 
from other species. 

Experimental Data Measurements

The control experiment was conducted from early 
April 2016. The experiment control boxes were stuffed 
with pure sand, adding with seawater and additional 
necessary nutrients (Fig. 1A). And the salinity of soil 
was controlled at 8±1ppt approximately in order to 
ensure a balanced competitive environment [45, 46]. 
Then, the S. alterniflora and P. australis seedlings were 
collected from the natural field of Chongming Island 
(Fig. 1B) and transported to the experimental control 
boxes. In this study, we set the interspecies mixture 
ratio between S. alterniflora and P. australis as 3:1, 
1:1, 1:3 separately, and two pure species were also 

conducted as reference controls, and the density 
of each container was 100 shoots·m-2, which was 
approximately the same density as the initial wild 
growth. The experiment was set in five containers per 
group, repeating three times. We adjusted the salinity 
once a week and the water levels every 3 d (2 d in the 
summer) by adding water or salt to maintain salinity 
concentration to ensure that the initial experimental 
conditions were maintained throughout the experiment. 
Note that we mainly focused on the invasive species  
S. alterniflora, four different ratios were selected 
except pure P. australis for the estimation of CCC 
under different mixture ratio in the following  
research.

Chlorophyll Content Measurements

The sample leaves of S. alterniflora and P. australis 
were collected at the experiment site A (Fig. 1A). 
Sampling leaves were first taken on April 27. For 
sample selection, a strict accordance with the ecological 
sample selection rules was conducted. We divided 
the growing containers into upper and lower leaves, 
of which ten of each were collected for the different 
mixture ratio in each container. Then the leaves were 
immediately sealed into plastic bags and transported 
to the nearby laboratory, with the temperature keeping 
at 0ºC. Meanwhile, we used a wet chemical method 
to extract chlorophyll content. Each sample was put 
into 95% alcohol for chlorophyll extraction. Next, the 
samples were macerated in the alcohol labeled in each 
volumetric flask and maintained in dark conditions for 
24 h. Then, the chlorophyll content were calculated 
using three equations referenced from former published 
research (see [10] for reference).

Fig. 1. Location of the study area.
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Then, the CCC was calculated by the following:

Cabcanopy = Cableaf × LAI                 (1)

The Cabcanopy represents the CCC, and Cableaf  
represents the leaf chlorophyll content, and the LAI 
represents the leaf area index. Basing on the calculation, 
the CCC can vary by different interspecies competition. 

LAI Measurements

The LAI was measured using the widely used 
Plant Canopy Analyzer (LAI-2200, LI-COR, Inc., 
Lincoln, NE, USA) instrument in the early dawn or 
nightfall around the time of leaf sample collection. 
The measurements of LAI and chlorophyll content 
were synchronized in time. This process was strictly 
conducted and the effect of direct sunlight on the 
observation results was avoided as much as possible.

Canopy Spectral Reflectance Measurements

The canopy spectral reflectance of each competition 
ratio container was measured using the ASD FieldSpec 
HandHeld Portable Spectroradiometer (Analytical 
Spectral Devices, Boulder, CO, USA) with the 
assistance of a canopy measurement bracket designed 
by our group (Fig. 1a) according to the actual field 
survey and growth containers, we found the average 
canopy reflectance by taking 10 measurements for each 
container in order to ensure the accuracy of our results. 
Meanwhile, the “ASD field spectroradiometer” was 
warmed up for more than half an hour before measuring 
the canopy spectral reflectance. The instrument was 
recalibrated by “whiteboard” for each measurement of 
one group.

Due to the influence of the instrument itself, the 
measured canopy spectral reflectance data are relatively 
noisy in the ranges of 325-400 nm and 1000-1075 nm. 
In this study, we used RS3 spectrum analysis software 
equipped for ASD to perform low-pass filtering on 
the canopy measurement spectral curve. To preserve 
the original spectral characteristics of the features, the 
spectral curve burrs caused by instrument noise were 
removed, and the range of 400-900 nm was selected for 
canopy spectral analysis.
a) Model simulated data

The PROSAIL model, combining the PROSPECT 
leaf optical properties model and the SAIL canopy 
bidirectional reflectance model, has been widely used to 
study plant canopy spectral and directional reflectance 
in the solar domain [47-49]. The PROSAIL model 
simulates the reflectance and transmittance spectra of 
broad vegetation canopy level from 400 nm to 2500 nm 
at a 1 nm interval. 

In our study, the PROSAIL model was used for 
simulating canopy reflectance by different defined ratios. 
The input variables of PROSAIL were set according 
to the measured biochemical contents and auxiliary 

parameters in the field. Focusing on the fresh leaves, 
the brown pigment content (Cbrown) was neglected with 
0.0 ug.cm-2 [50]. The leaf mesophyll structure (N) was 
not measurable, therefore we used an artificial setting 
from 1.0 to 4.0, which was consistent with previous 
research [51]. The value range of each input parameter 
was listed in Table 1. We used uniform distribution 
as the probability density function and generated 500 
input parameter sets using Monte Carlo method. Among 
them, 100 groups were generated without considering 
interspecies competition, and 100 groups were set for 
different mixture ratio.

Before simulating the data with the PROSAIL 
model, the simulated canopy spectrum and the 
measured canopy spectrum were compared. The results 
showed that when the mesophyll structural parameter 
was adjusted appropriately, the difference between  
the measured canopy spectrum and the PROSAIL 
simulated spectrum did not exceed 3% in the visible 
band of 400-700 nm. In the near-infrared band, 
compared with visible light, a large error (with a 
maximum of approximately 10%) was noted. However, 
this model was still selected for our research mainly 
because it can simulate canopy reflectance in various 
gradient contents and the simulated spectrum is 
consistent with the measured spectrum in the change 
trend, which guarantees we can focus on the spectrum 
differences caused by the interspecies mixture ratio.  
In addition, the error between the simulated and 
measured spectrums was the smallest at the red edge. 
This corresponds to the selection of the sensitive 
spectral index as most of sensitive bands are selected 
according to their position at the red edge, which 
consequently reduces the influence of the systematic 
error.

In general, we used the PROSAIL model to simulate 
the canopy spectral reflectance in different mixture 
ratio based on the measured biochemical composition 
data and auxiliary data. An error analysis showed that 
the simulated dataset can be used as supplementary data 
for estimating the CCC as there exists great consistency 
between these two data resources. 
b) Canopy spectral analysis of S. alterniflora and P. 
australis

Based on the measured data at different phases 
in the field, the changes in canopy spectra of pure S. 
alterniflora and pure P. australis for different months 
were compared and analyzed.

As shown in the Fig. 2a), the canopy spectral 
characteristics of S. alterniflora change significantly 
over time. The plants entered the germination period 
in April and then entered the growth phase, which 
caused the near-infrared reflectance of the canopy 
spectrum to increase significantly. Then, by July, the 
near-infrared reflectance reached the highest value, 
and after, the spectral reflectance gradually decreased, 
reaching the lowest value in November, indicating that 
the canopy spectrum is significantly affected by the soil 
background during this period. 
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Table 1. Setting model parameters for PROSAIL.

a) Without distinguishing interspecies competition (100 simulated datasets)

Model parameters Unit Range Mean

Leaf mesophyll structure (N) -- 1.0–4.0 2.58

chlorophyll (Cab) ug·cm-2 10.0–80.0 47.13

carotenoid (Car) ug·cm-2 1.0–15.0 7.61

Leaf water content (Cw) g·cm-2 0.007–0.060 0.034

Dry matters (Cm) g·cm-2 0.002–0.020 0.011

Leaf area index (LAI) -- 2.0–5.5 3.73

Average leaf angle (ALA) ° 40.0–65.0 53.64

b) Considering interspecies competition (100 sets for each competition ratio)

Model parameters Unit Ratios Range Mean 

Leaf mesophyll structure (N) --

Pure S. 1.0–4.0 2.55

S:P = 3:1 1.0–4.0 2.58

S:P = 1:1 1.0–4.0 2.36

S:P = 1:3 1.0–4.0 2.52

chlorophyll (Cab) ug·cm-2

Pure S. 10.0–60.0 33.37

S:P = 3:1 25.0–80.0 50.71

S:P = 1:1 20.0–80.0 45.86

S:P = 1:3 15.0–75.0 41.06

carotenoid (Car) ug·cm-2

Pure S. 1.0–10.0 5.67

S:P = 3:1 2.0–10.0 6.04

S:P = 1:1 2.5–15.0 8.90

S:P = 1:3 2.5–15.0 8.77

Leaf water content (Cw) g·cm-2

Pure S. 0.010–0.060 0.035

S:P = 3:1 0.010–0.050 0.029

S:P = 1:1 0.008–0.060 0.035

S:P = 1:3 0.007–0.060 0.035

Dry matter (Cm) g·cm-2

Pure S. 0.003–0.020 0.011

S:P = 3:1 0.004–0.020 0.012

S:P = 1:1 0.003–0.020 0.012

S:P = 1:3 0.002–0.020 0.011

Leaf area index (LAI) 

Pure S. 3.0–5.0 3.97

S:P = 3:1 3.4–5.5 4.49

S:P = 1:1 2.0–4.8 3.51

S:P = 1:3 2.4–4.4 3.49

Average leaf angle (ALA) °

Pure S. 50–65 54.56

S:P = 3:1 40–60 50.02

S:P = 1:1 45–65 55.58

S:P = 1:3 40–65 53.21
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Similarly, the canopy spectral reflectance of P. 
australis also varied significantly (Fig. 2b). Note 
that the canopy spectrum reflectance difference 
between S. alterniflora and P. australis was the most 
significant, including that in the visible band and the 
near-infrared band in April, corresponding to the 
different phenological periods of these two species. As 
the growth period progresses, until July, the spectral 
difference between S. alterniflora and P. australis in 
the visible band is very small and the reflectance of 
S. alterniflora exceeds that of P. australis in the near-
infrared band (Fig. 3b). Similarly, P. australis entered 
a withering period in November and the difference in 
reflectance between the two species in the near-infrared 
band increased again, showing that both species were 
clearly affected by the underlying surface (Fig. 3c). 

The canopy spectrum analysis over different months 
shows that it is necessary to select a suitable period to 
properly estimate the CCC. We conducted research on 
the changes of canopy spectra at different time-phase 
typical bands in different interspecies competitions. 
As shown in Fig. 4, interspecies competition plays a 
significant role on the canopy spectral reflectance, with 
different growth periods showing different degrees of 
changes.

In April, the canopy spectrum is quite different 
under the different mixture ratio at the blue and 
green bands (Figs 4a,b), mainly owing to the different 
phenological periods of S. alterniflora and P. australis. 
For May and June, both S. alterniflora and P. australis 
entered the rapid growth period, and the spectrum 
difference was weakened in the red band and increased 
in the infrared band (Figs 4c,d). Also, note that the 
bands were affected to different degrees based on 
species competition. In July, the overall trend of the 
canopy spectrum in the typical bands was similar to 
that of pure S. alterniflora, while the extent caused 
by competition was different (Figs. 4a,d). We can 
see that the phenological period of the species was 

affected due to the interspecies competition, which 
was seen in the rebound of reflectance of the canopy 
spectrum. Furthermore, interspecies competition played 
a dominant role in the spectrum of the mixed canopy 
when S. alterniflora was dominant, resulting in a very 
small difference with canopy spectrum of pure S. 
alterniflora.

Overall, interspecies competition caused a serious 
impact on the canopy spectral reflectance, lasting from 
germination to the period of decline. We also found that 
competition performed an obvious impact of species 
original growth cycle, which is reflected in the canopy 
spectrum. These results provide a basis for follow-
up research regarding CCC estimation. The canopy 
spectral reflectance of the two species in different 
months at different competition levels were measured in 
order to determine a suitable period for CCC estimation 
(Fig. 5).

From Fig. 5, we can determine that the canopy 
spectrums of S. alterniflora and P. australis have 
excellent discrimination in April and November due to 
the difference in phenological period. It should be noted 
that this is not as defined in other months. However, 
the vegetation reduced substantially in November 
and the canopy spectrum was greatly affected by soil 
background, which was not suitable for inversion of 
CCC.
c) Single index selection of CCC without considering 
competition.

Thus far, our research showed that it is beneficial 
to estimate CCC under the conditions of interspecies 
competition in April. Therefore, we combined the 
measured data and the PROSAIL model simulated 
data for the inversion of CCC at different levels of 
interspecies competition for April. 

Herein, 46 different spectral indices were evaluated 
to estimate CCC (Appendix, 46 indices are represented 
by ordinal serial numbers). The canopy sensitive 
spectral index was screened based on the spectral index 

Fig. 2 Average canopy reflectance of S. alterniflora a) and P. australis b) by different months

a)                                                                             b)
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library constructed using the 46 spectral indices without 
distinguishing the interspecies competition based on 
the PROSAIL model simulated dataset. We simulated 
100 sets of biochemical composition data and spectral 
reflectance data to create basic datasets. Then, the 
correlation between different spectral indices (of the 46) 
and the simulated CCC were analyzed. Finally, without 
considering interspecies competition, we obtained V19 
and V39 as the maximum positive correlation and 
minimum negative correlation indices, respectively.  
Fig. 6 shows the fitting line between the sensitive 
spectral index and CCC. It can clearly be seen that V19 
and V39 are significantly correlated with CCC. 

d) Single index selection of CCC considering 
competition. 

The PROSAIL model was used to simulate canopy 
reflectance with specific model input parameters 
according to field measured data ranges of different 
mixture ratio. Then, the sensitive spectral index 
was screened from the 46 indices by determining 
interspecies competition. This screening method was 
similar to the maximum (or minimum) correlation 
analysis calculated previously. The statistical results 
of the sensitive spectral index at different ratios are 
summarized in Table 2. 

Fig. 3. Canopy reflectance of S. alterniflora and P. australis in a) April, b) July, and c) November.

a)                                                  b)                                                 c)

Fig. 4. Canopy reflectance changes in typical bands by months under different levels of interspecies competition.

a)                                                                            b)       

c)                                                                            d)       
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According to the statistical results listed in Table 2, 
the sensitive indices are different when considering 
interspecies competitions, indicating that the single 
sensitive index is unstable.
e) CCC estimation by multi-indices.

Based on the inversion of the CCC by single 
sensitive index, we focused on how to take advantage 
of the multi-sensitive indices when estimating of CCC. 
Therefore, we chose to integrate multiple spectral 
indices to build a multi-index collaborative model via a 
back propagation (BP) neural network for the inversion 
of CCC. Further, the differences between multi-indices 
and single index models were compared. Moreover, 

we evaluated whether to consider the interspecies 
competition also using multi-indices. 

Neural networks are widely used in various fields 
because of their strong nonlinear mapping and self-
learning capability [37, 42, 52-56]. As an artificial 
intelligence method, a neural network model can identify 
the complicated linear and nonlinear relationships that 
exist between chlorophyll content and sensitive indices 
[10, 37, 57]. Note that neural network model structures 
are much more complicated than single index regression 
models. In our study, a typical scaled conjugate gradient 
BP algorithm used in learning algorithms was selected. 
During the BP training process, one hidden layer and 

Fig. 5. Canopy spectrum changes at different interspecies competitions separated by months.

Fig. 6. Relationship between the sensitive spectral index and CCC without distinguishing interspecies competition.
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two hidden layers were both applied to estimate CCC. 
Therefore, the topological structure of the BP neural 
network contained five selected sensitive indices as 
factors in the input layer, one or two hidden layers 
and one output neuron for CCC. Herein, the input 
variables for this model were the V22, V19, V39, V46, 
and V27 indices chosen for their different mixture ratio  
(Table 2). The number of neurons were setting according 
to the former research.

Results and Discussion

The Single Index Inversion of Chlorophyll Content 
without Considering Competition 

Note that our single index model was verified 
using the field measured data. As shown in Fig. 7, the 
correlation coefficient of R2 reached 0.719 and 0.688 for 
V19 and V39, respectively, which were slightly lower 
than that of the model simulated data. Further, V19 and 
V39 revealed the limitation of the data as the estimated 
results were higher than the actual measured values, 
and the degree of overestimation increased with the 
increasing tendency of CCC.

The Single Index Inversion of Chlorophyll Content 
Considering Competition 

Similarly, the simulated data were used to fit the 
relationship between selected sensitive index in Table 2 
and the CCC, as shown in Fig. 8.

The fitting precision of the sensitive spectral index 
and the CCC was higher than that without distinguishing 
competition, indicating that it is necessary for single 
sensitive index to distinguish interspecies competition 
when estimating CCC. Fig. 9 verifies these results using 
measured data, except in the case of pure S. alterniflora 
(Fig. 7). For the estimation of pure S. alterniflora, the 
accuracy was lower, even lower than the indiscriminate 
competition, compared with the other mixture ratio. We 
concluded that this is a result of the difference in the 
phenological growth periods between the S. alterniflora 
and P. australis in April, where S. alterniflora was in 
the early growth stage prior to P. australis and therefore, 
the measured canopy spectrum of pure S. alterniflora 
was susceptible to the background surface. Conversely, 
for the mixing ratios in the other experimental control 
boxes, well-grown P. australis helps to reduce the 
influence of the underlying surface, shrinking the error 
between the simulated and measured data. 

The coefficient of determination (R2) and the root 
mean square error (RMSE) for the estimating CCC by 
single sensitive spectral index are listed in Table 3. It is 
clear that a higher R2 and a lower RMSE were obtained 
by distinguishing interspecies competition with the 
exception, again, of pure S. alterniflora. Although the 
estimation accuracy of R2 for pure S. alterniflora was 
slightly lower than that of total samples, the RMSE 
obtained 60.21 ug.cm-2, is better than 63.53 ug.cm-2. 
Overall, it is necessary to premeditate the interspecies 
competition to adequately estimate the CCC. 

Table 2 Sensitive spectral indices under different canopy 
interspecies competition.

Ratio Sensitive indices

Pure S V22, V39

S:P = 3:1 V19, V27

S:P = 1:1 V19, V39

S:P = 1:3 V46, V27

Fig. 7. Relationship between the predicted and measured values of the CCC without distinguishing interspecies competition.
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Fig. 8. Fitted relationship between sensitive spectral index and CCC under different interspecies competition based on model simulated 
data.
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The Multi-Indices Inversion of CCC without 
Considering Interspecies Competition

The neural network prediction model was 
established using the different sensitive indices selected 
for different interspecies mixture ratio. Similarly, a 
training model established by the BP neural network 
was used to predict CCC in April without distinguishing 
interspecies competition. The prediction results were 
validated with measured data as shown in Fig. 10.

Basing on the prediction results of the BP neural 
network (Fig. 10), the correlation coefficient R2 obtained 
was 0.7729 with an improved overestimation by single 
index. The R2 and RMSE were compared between the 
single index and BP neural network model under the 
condition of no interspecies competition distinction and 
the results are summarized in Table 4. 

Combining the multi-indices via BP neural network 
obtained a higher R2 at an increase of 7.5%, while the 
RMSE decreased by 16.56% compared with single 
index prediction without distinguishing competition. 

These results indicate that the BP neural network 
model can couple the advantages of different sensitive 
indices to perform a strong anti-competitive strategy 
for estimating the CCC. And the prediction error was 
clearly reduced, indicating that combining multi-indices 
for the inversion has better applicability than using a 
single index. 

The Multi-Indices Inversion of CCC by Considering 
Interspecies Competition 

Similarly, the BP neural network was used to 
predict the CCC considering the levels of interspecies 
competition. The predicted results of R2 and RMSE 
were obtained through the BP neural network after 
50 averaged training processes. To visually compare 
the different estimation results between the BP neural 
network model and the single spectral index, we 
summarized the R2 and RMSE values in Table 5.

It can be found in Table 5 that the accuracy of R2 
was significantly improved by using multi-spectral 
indices integration via the BP neural network model 
when considering interspecies competition. The 
increased range of R2 changed from 3.57% to 20.37% 
and the prediction error RMSE was reduced at varying 
degrees (maximum reduction of 23.78%) under different 
mixture ratio.

Combining the results of Tables 3 and Table 5, 
the RMSE was significantly higher for pure growth 
condition, regardless of methods. This is mainly due 
to the mutual growth of S. alterniflora at the initial 
growth stage, in which the canopy reflectance is greatly 
affected by the underlying surface background, showing 
the typical mixed spectral characteristics of vegetation 
and soil. 

Generally, combining multi-indices to estimate 
CCC synergistically via a BP neural network model 
can obtain a lower RMSE, by approximately 16.56%, 
than that of single spectral index model under the 
condition of no distinguishing interspecies competition. 
When considering the level of interspecies competition, 
the highest decrease in the RMSE values obtained 
was 23.78%, indicating that combining multi-indices  
for the inversion of CCC cooperatively through BP 
neural network model can achieve much higher 
accuracy. 

Table 3. Inversion of single spectral index for different mixture 
ratio and total samples.

Ratios R2 RMSE (ug.cm-2)

Pure S 0.60 60.21

S:P = 3:1 0.4645 30.69

S:P = 1:1 0.8953 12.47

S:P = 1:3 0.8158 17.23

Total samples 0.7190 63.53

Table 4 Coefficient of determination (R2) and root mean square 
error (RMSE) for predicted and measured values between single 
index and back propagation (BP) neural network model without 
distinguishing interspecies competition.

Method R2 RMSE (ug.cm-2)

Single index (V19) 0.7190 63.53

BP neural network 0.7729 53.01

Table 5 Evaluation results for predicted and measured values obtained by both the single index and BP neural network model under 
interspecies competition.

Competition ratio
R2 RMSE (ug.cm-2)

Single index BP neural network Single index BP neural network

Pure S 0.60 0.7222 60.21 45.89

S:P = 3:1 0.4645 0.8532 30.69 26.62

S:P = 1:1 0.8953 0.9314 12.47 12.33

S:P = 1:3 0.8158 0.8449 17.23 13.58
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Fig. 9. Fitting relationship between the predicted and measured values considering interspecies competition at the canopy scale.
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In this study, we investigated CCC estimation of S. 
alterniflora and P. australis under different interspecies 
mixture ratio. The results indicate that the BP neural 
network model had a reliable ability to accurately 
estimate mixed CCC. 

Owing to the influence of interspecies competition, 
it is insufficient to estimate CCC with a single spectral 
index. Beyond that, previous studies mainly focused on 
the mechanism and propagation between interspecies 
interaction among salt marsh vegetation [23, 58-
62]. As clearly shown in Fig. 7, there exists a clear 
overestimation problem in estimating CCC using a 
single index. Thus, combining multi-indices via a BP 
neural network model was conducted. And the results 
showed that this overestimation could be significantly 
improved regardless of interspecies competition. 

Multiple sensitive indices were integrated to 
alleviate the influence of mixture ratio. Interspecies 
competition, especially for the mixed canopy, 
influenced the BP neural network model, indicating that 
it may be best suited for specific datasets. In addition, 
both canopy chlorophyll content in chlorophyll a and 
b were estimated as they were measured separately. 
Finally, the same results were obtained by BP neural 
network model developed in our study. It is necessary 
to validate the model through checking the training 
degree to which the BP neural network model predicted 
CCC matches the measured data. Still, there remain 
several uncertain factors relating to model setup and 
its application capacity owing to the environmental 
variability and stochasticity in the growing stage of salt 
marsh vegetation [12]. Regardless, the model established 
herein provided a novel method or valuable insights to 
overcome or alleviate the influences of interspecies 
competition for the inversion of mixed CCC.

For the growth of S. alterniflora and P. australis, 
the level of nutrients, growth space, sunlight resource, 
and perhaps other unknown factors may affect the co-
occurrence environment. The sensitive spectral indices 

selected in this study (Appendix) showed that the bands 
were concentrated along the red edge and near-infrared 
regions, indicating that they are much more sensitive 
to CCC and have strong anti-interference abilities. We 
suggest that these sensitive bands have the potential of 
applying to build new vegetation indices for monitoring 
the region levels of invasive S. alterniflora using 
satellite or unmanned aerial vehicle (UAV) imaging for 
larger applications. 

Conclusions

In this study, the canopy spectral reflectance 
was measured by different months at different 
interspecies mixture ratio between S. alterniflora and 
P. australis in a field control experiment. The typical 
canopy reflectance bands were analyzed by different 
ratios in each growing stage to evaluate the effect 
of interspecies competition. Based on the change of 
canopy reflectance, single sensitive index model and 
multi-indices combining via BP neural network model 
were established to estimate CCC. Both field measured 
dataset and model simulations were used. Furthermore, 
two situations were evaluated, one where interspecies 
competition was considered and one where it was not. 
Our results indicated that combining multi-indices 
through a BP neural network model by distinguishing 
mixture ratio can achieve satisfactory estimating 
results, as evaluated by the R2 and RMSE. 

The measured canopy spectral reflectance results 
indicated the conclusions that: (1) interspecies 
competition had a significant effect on the canopy 
reflectance at different growth periods. It’s ideal to 
estimate CCC in mixed ratio from the end of April 
to the beginning of May owing to the largest canopy 
reflectance difference and (2) regarding the impact 
of estimating CCC by interspecies competition, our 
results show that considering the extent of interspecies 
competition can significantly improve the accuracy of 
the data. It can be inferred that the influence effected 
by interspecies competition will further affect the 
inversion of CCC and (3) the inversion accuracy was 
conspicuously better than the single sensitive spectral 
index compared with the multi-indices integration via 
BP neural network, as determined by the remarkably 
reduced RMSE. Further, it maintained a satisfied linear 
relationship between the predicted and measured values. 

Therefore, it is crucial to consider interspecies 
competition by combining multi-indices to estimate 
chlorophyll content at the regional scale where the 
native and local species coexistence from remote 
sensing imagery. 

Acknowledgements

The authors would like to express their sincere 
thanks to research assistants, who provided assistance 

Fig. 10. Fitting relationship between the BP neural network 
model predicted values and measured values for CCC based on 
model simulated data.



Liu P., et al.212

with the field measurements. And this study was 
partially supported by Shandong Natural Science 
Foundation (ZR2020QD017), the Doctoral Research 
Fund of Shandong Jianzhu University (XNBS19010),  
the Key Project of Philosophy and Social Science 
Research of Ministry of Education (No. 19JZD023), 
Science and Technology Innovation Action Plan 
of Shanghai Science and Technology Commission  

(No. 19DZ1201505), the Introduction and Training 
program of Young Creative Talents of Shandong 
Province.

Conflicts of interest

The authors declare no conflicts of interest.

Num. Index Algorithm Reference

V1 Normalized difference vegetation 
index(NDVI) [63]

V2 Modified chlorophyll absorption ratio 
index(MCARI) [64]

V3 Triangular vegetation index(TVI) [65]

V4 Modified chlorophyll absorption ratio 
index 1 (MCARI1) [66] 

V5 Modified chlorophyll absorption ratio 
index 2 (MCARI2) [66] 

V6 Modified triangular vegetation index 
(MTVI2) [66]

V7 Chlorophyll index [34]

V8 VI—700nm (VI[700]) [67]

V9 Chlorophyll Absorption Ratio Index 
(CARI)

 

[68]

V10 Enhanced Vegetation Index (EVI) [69]

V11 MCARI/OSAVI [64] 

V12 MCARI2-Wu/OSAVI2-Wu

 

[70]

V13 Renormalised Difference Vegetation 
Index (RDVI) [71]

V14 Spectral Polygon Vegetation Index 
(SPVI) [72]

Appendix

The 46 spectral indices used in this study.
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V15 Transformed Chlorophyll Absorption 
Ratio Index (TCARI) [73] 

V16 Transformed Chlorophyll Absorption 
Ratio Index (TCARI2-Wu) [70]

V17 TCARI/OSAVI [73] 

V18 TCARI2-Wu/OSAVI2-Wu [70]

V19 Modified NDVI (MNDVI1) [74]

V20 Double Difference Index (DD) [75]

V21 New Double Difference Index (DDn) [76]

V22 Modified NDVI (MNDVI8) [74]

V23 Derivative reflectance at D690 (D_red) [77]

V24 Double Peak Index (DPI) [78]

V25 Modified NDVI (mNDVI) [79]

V26 Modified NDVI (mND705) [79]

V27 D2--Canopy scale [78]

V28 Improved Soil Adjusted Vegetation Index 
(MSAVI) [80] 

V29 D1--Canopy scale, related to Chlorophyll 
fluorescence [78]

V30 mSR2--Canopy scale, related to Chloro-
phyll and LAI [81]

V31 MERIS Terrestrial chlorophyll index 
(MTCI) [82]

V32 red-edge position linear interpolation 
(REP_Li) [83]

V33 Normalized Pigment chlorophyll index 
(NPCI) [84]

V34 Green NDVI --Canopy scale, related to 
Chlorophyll-a [85]

V35 Structure Insensitive Pigment Index 
(SIPI) [84]

V36 Simple Ratio Pigment Index (SRPI) [84]

V37 Vogelmann ---leaf scale, related to Chlo-
rophyll [86]

V38 Vogelmann3---leaf scale, related to 
Chlorophyll [86]
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