
Introduction

Water and land are the two natural resources 
which are highly stressed in most of the developing 
countries like India, South Africa etc [1-6]. Land 
Use and Land Cover (LULC) changes have a direct 
and significant impact on the two natural resources. 
The LULC changes are triggered by the manmade, 
climate and environmental factors [7]. The LULC 

changes are essential to fulfil the demand of food, 
water and sheltering needs of growing population. 
In addition, LULC changes have also been linked to 
social-economic development of a region. Water and 
land are hydrologically connected in a natural system 
called catchment. Catchment scale time series of LULC 
mapping and changing detection analyses helps to detect 
the extent of natural and human influence on the two 
natural resources [2, 3, 6, 7]. Unplanned LULC changes 
increase the recurrence of disaster such as flood, 
drought, landslides, land subsidence, soil erosion etc 
[1, 3, 6]. It is also altering the hydrological process over  
a catchment which in term to play an important role 
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in developing catchment scale hydrological model [6]. 
Further LULC changes are significantly controlling the 
spatiotemporal water quantity and quality at catchment 
scale. The spatiotemporal changes of LULC is impotent 
for variety of purposes such as developing hydrological 
model, disaster management, urban planning, irrigation 
management, environmental impact assessment, 
damage  assessment etc [6-8]. The change detection 
analysis is one of way to quantify the spatiotemporal 
LULC changes systematically. Lu et al. [9] discussed 
the various frameworks for change detection analysis. 
Supervised classification, principal component analysis, 
fuzzy classification and post classification methods 
are the most frequently used change detection analysis 
algorithms [10]. Among the modern technologies 
available for change detection analysis, the combined 
use of remote sensing satellite data and geospatial 
technology has been proven to be robust, economical 
and least time consuming process [1-5]. Nowadays 
high resolution remote sensing satellites data such as 
Resourcesat, Landsat and Sentinel 2 are available freely. 
The Landsat is launched with 30 m spatial resolution 
with Visible to Near Infra-Red (VNIR) sensors by 
the Earth Resources Observation and Science Centre, 
NASA; it’s accessible globally and has its best service 
on the land and water resources management [2, 5, 10, 
11]. The Sentinel 2 has its services in monitoring the 
morphology of land and it has a succession of 10 m 
spatial resolution VNIR by the European Space Agency. 
An enormous amount of information is delivered by 
the Landsat (Earth observation satellite) data providing 
the information in an exceptional amount regarding the 
biosphere and the earth surface. The Landsat imagery 
available from the early 1970s and provides a repeated 
cycle of 8 days [10-12]. Landsat imagery has the data 
series of Multi-Spectral Scanner (MSS), Landsat 
Thematic Mapper (TM), Landsat Enhanced thematic 
mapper (ETM) Landsat Enhanced thematic mapper plus 
(ETM+) and Landsat Operational land imager (OLI). 
They have the 30m of spatial resolution and VNIR 
regions covers blue (0.45-0.52 micrometer), green  
(0.52-0.60 micrometer) and red (0.63-0.69 micrometer). 
The VNIR regions were generally used to classify the 
land use pattern [13]. Mohajane et al. [14] used Landsat 
TM, ETM, ETM+ and OLI by applying Normalized 
Difference Vegetation Index (NDVI) map and using 
maximum-likelihood supervised classification to 
estimate the vegetation change over Azrou forest in the 
Middle Atlas, Morocco. Lone and Mayer [15] used the 
Indian Remote Sensing Linear Imaging Self-Scanning 
System III and Resourcesat-1 imagery to classified the 
LULC by applying supervised classification techniques. 
Timm Hoffman et al. [6] performed the long-term 
LULC change detection using Landsat imagery. They 
found a decrease in forest and agricultural areas over 
Karoo drylands of South Africa because of intensified 
urbanization and industrial development. Eludoyin 
and Iyanda [16] studied the land cover changes using 
Landsat imageries over Ife forest reserves in Nigeria. 

The outputs of the study provide strategies guideline 
for forest management in this area. Jayakumar and 
Arockiasamy [17] conducted remote sensing and GIS 
based LULC and change detection analyses over 
Kolli hill, part of Eastern Ghats, India. Through this 
study they suggested future plan for sustainable land 
resources management and development.

Many researchers reported that LULC and climate 
changes are the two important factor that  alter 
hydrological system changes through their impact on 
water balance components viz. runoff, infiltration, 
evapotranspiration, soil moisture etc. [2, 3, 18]. Popular 
modelling packages for LULC forecasting are IDRISI’s 
CA-MARKOV, Dyna-CLUE, Celluar Automata  
(CA)-ANN etc. CA-Markov model is mostly applied 
for land use change detection analyses [4, 18-20].  
The CA-ANN model is mostly used to access the spatial 
changes over time with the help of neighbourhood 
pixels and a transition map of the LULC [5, 8]. Yirsaw 
et al. [21] studied the impacts of LULC changes over 
Su-Xi-Chang region, China and the subsequently 
analysed the spatial changes in ecosystem service value. 
Aarthi and Gnanappazham [22] have taken a case 
study using CA-ANN to study the urban growth over 
upper catchment of Thamirabarani lies at the Western 
Ghats India. They used LULC data for the period  
1996-2016 to forecast the LULC for the years 2025  
and 2030. The objective of the present research is to 
perform quantitative analysis of past and future LULC 
at catchment scale. To meet the objective the future 
LULC data is derived from historical remote sensing 
satellite data using CA-ANN algorithm. The kappa 
statistics is to measure performance of the LULC model. 
Further to demonstrate the capability of the model  
a case study is taken over Chittar catchment a tributary 
of Tharamirabarani river basin, India. The model output 
is most useful for developing hydrological models, 
water and land resource management and development. 

Materials and Methodology

Study Area

Chittar catchment lies in the global coordinates 
of 77º9’E and 9º12’N to 77º48’E to 8º48’N. It is part 
of Tharamirabarani river basin, southern Tamilnadu 
state, India (Fig. 1). This catchment comprises of about 
78% agricultural land. Chittar catchment covers the 
few towns such as Sengottai, Tenkasi, Kadayanallur, 
Alankulam etc. The study area boundary delineates 
form the A P Puram gauge river discharge station using 
geographical information system (GIS). The study 
area is divided into five sub classes such as built up 
land, agricultural land, waste land, water bodies and 
forest land. The total area is covers about 1291 sq.km. 
Thereby, catchment is fed by the northeast monsoonal 
rain, as it carries rain water only during September and 
December [23].
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LULC Preparation

The time series of Landsat imagery such as TM 
(image dates: 14, December 2000 & 18, May 2005), 
ETM (image date: 2, October 2010) and OLI (image 
dates: 7, October 2015 & 9, April 2020) are used in 
this study. The Landsat imagers used in this study are 
30 m resolution and downloaded from U.S. Geological 
Survey Earth explorer. All imageries are projected by 
Universal Transverse Mercator (UTM) zone 44 N in 
World Geodetic System (WGS) datum (WGS_1984_
UTM_Zone_44N) to ensure consistency between 
datasets. In this study, LULC is classified as per  
Level 1 National Remote Sensing Centre (NRSC) 
guidelines. The Level 1 classification scheme consists 
of five sub classes [24]; they are built up land and 
agricultural land consider as land use, waste land, 
water bodies and forest consider as land cover. These 
sub classes prepared with the supervised classification 
method [14]. Supervised classification is usually applied 
with the trained algorithm; maximum-likelihood 
classifier is gathering each trained pixels of Landsat 
imagery [10, 15]. Maximum-likelihood classifier is on 
the most popular criteria in supervised classification 
method. It is a statistical based learning algorithm to 
assist the classification overlapping signature pixels 
to the feature based on maximum-likelihood [6, 
25]. In this study, maximum-likelihood classifier of 
supervised classification is applied those trained pixels 
and delineated the LULC maps for the years 2000, 
2005, 2010, 2015 and 2020 over the Chittar catchment.  
The LULC classification performed in QGIS software 
using Semi-automatic Classification Plugin (SCP).  
The SCP is one of the popular QGIS open source plugin 
to perform supervised classification.  

LULC Forecast

Present study, CA-ANN [5, 8, 26] is used to 
forecast the LULC over the Chittar catchment. The 
recently developed MOLUSCE (Modules for Land 
Use Change Simulations) an open source plugin of 
QGIS is used to process the CA-ANN model [5]. 
This plugin supports four popular algorithms such as 
ANN, weights of evidence, multi-criteria evaluation 
and logistic regression. The multi-layer ANN model 
performance generally relies on the parameters such as 
neighbourhood, learning rate, momentum, maximum 
iterations number and hidden layers. An ANN training 
datasets can set arbitrary number of hidden layers (one 
or more) and arbitrary number (one or more) of neurons 
in the layers. The guideline for assigning number of 
input neuron is as follows:

 (Cf − 1)(2Nb + 1)2 + Rf (2Nb + 1)2             (1)

where Cf = number of LULC sub classes, Nb = assigned 
neighbourhood pixels size,  Rf  = summary band count 
of factor raster’s.  Output neurons  usually are a count 
of unique sub classes in the LULC map. The training 
datasets uses the classic back propagation algorithm 
with momentum for the learning procedure. Trained 
data rectification is performed as follows

X(n + 1) = Lr * Dx (n) + m * Dx (n − 1)   (2) 

where X = vector of neuron weight in trained data, Dx = 
vector of neuron weight changes,  n  = iteration 
number, Lr = learning rate, m = momentum. 

The initial and target LULC data is used to find 
the transition potential. Analysis of transition potential 

Fig. 1. Location map of the study area.
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is determined from the areal changes between the 
LULC sub classes. ANN model is used to determine 
the transition potential of LULC sub classes [27]. Then, 
Cellular Automata (CA) is one of the techniques used 
for forecast the data by adopting the arrived transition 
potential. Kappa statistics is used to validate the model 
output through multi-resolution budget [8]. Kappa 
statistics is one of the popular methods to check the 
accuracy level of two spatial raster data [10, 23].  

Change Detection

Change detection is the comparison of two raster 
that can be matching with multi-temporal resolution. 
GIS platform helps to overlay the two datasets and 
find out the LULC sub classes changes over the study 
area. Generally, image differencing, comparison, 
kappa statistics and principal component techniques 
are quantifying the LULC changes between two multi-
temporal LULC maps [25]. In this study, kappa statistics 
is used to quantify the LULC changes between multi-
temporal LULC maps by measuring the spatial matching 
accuracy assessment. Accuracy assessment deals to 
analyse with the Overall Accuracy (OA), Producer’s 
Accuracy (PA), User’s Accuracy (UA) and overall spatial 
mismatching. Finally, the kappa coefficient can be 
analyzed between the two datasets [10, 23].

Results and Discussion

To demonstrate the application of the proposed 
methodology a case study is taken over the Chittar 
catchment. Chittar river originating on the Courtallam 
hills of Eastern Ghats in the Tamilnadu state of India. 

Upper catchment has the steeper slope [28], so the 
rain drains towards the plain area.  The LULC maps 
for the years 2000 and 2005 are used as initial and 
target maps to determine the transition potential. Then,  
CA-ANN is espoused to forecast the LULC for the year 
2010. To validate this method kappa statistics are used 
to quantifying spatial matching between historic and 
forecasted 2010 LULC sub classes. The UA provides 
spatial matching of forecasted 2010 LULC with 
historical 2010 LULC and PA provides the matching 
vice versa.  In this study, it is found that both UA and 
PA for all five LULC sub classes are more than 70%.  
The overall average spatial matching between the 
two LULC is 91% and the kappa coefficient is 86%.  
The kappa coefficient more than 50% can be considered 
as satisfactory [10, 23]. 

Historical LULC

The dynamic of area contribution in percentage of 
each sub class is shown in Fig. 2 for the years 2000, 
2005, 2010, 2015, 2020, 2025 and 2030. To make it 
better, year- wise area contributing in sq.km for each 
sub class is also provided in Fig 2. The agricultural  
and forest land jointly covers about 77 % of the 
catchment area. The remaining 23 % is covered by 
waste land (18 %), water bodies (3%) and built up 
land (2%) as shown in the Fig. 2. Agricultural land 
and forest are more prominent for producing the 
evapotranspiration [4, 29]. Mishra et al. [25] explained 
that the agricultural and forest land are predominant 
change users by the manmade as well as natural 
landforms. The agricultural and forest land changes 
lead to cause the critical environmental issues, likely 
as soil water scarcity over the catchment. Historical 

Fig. 2. Five year LULC dynamic from 2000 to 2030.
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LULC of 2000 and 2005 shows the agricultural land 
increases. During this period, irrigation management 
was active in the region as there were several dams and 
irrigation canal systems were constructed. As result 
of this irrigated area is expanded during this period. 
Later, agricultural land slowly decreases may be due to 
scanty rainfall caused by the monsoon failure. It led to 
low agricultural productivity. Here, agricultural land of 
2015 is gradually increasing with 2.5% from 2000 and 
simultaneously waste land is decreased by 10 % for the 
same period. The conversion of waste to agricultural 
land is more dominant for an increase in farming 
activities [30].  From 2000 to 2015, 0.1% of the forest 
is converted to waste land; thus, it leads to more runoff 
due to deforestation in the foot hills [25]. The 90% area 
(about 20 sq.km) of built up land over Chittar catchment 
increases from 2000 to 2020 due to population growth. 
Built up land is converted from the agricultural and 
waste land. 

The industrial development and population growth 
steadily increases the built up land over the catchment 
[6]. It is observed that built up area has increases about 
20 sq.km from 2000 to 2020. From 2005 onwards the 
area of water body are steadily decreases. In the Chittar 
catchment, 16 % of water bodies (about 14 sq.km) are 
decreased between the periods of 2000 to 2020 and 
hence declines in the surface water resources. Results 
of this study show that the reduction of water body area 
is about 4 sq.km/year. This reduction may be due to 
the encroachment, pollution and lack of maintenance of 
water bodies.

Forecast LULC 

The CA-ANN model is performed by the neural 
schemes that focus on the gain and loss of areal with 
in LULC sub classes. LULC change analysis is used 
to forecast the 2025 with the data’s of 2015 and 2020, 
similarly 2030 with the data’s of 2020 and 2025. Sample 
historical and forecasted LULC maps are shown in 
Fig. 3. The 6 % of waste land decreases from 2000 to 
2030 and alternately increases in 3 % of agricultural 
land at the same period. For a long term, agricultural 
land is being sustained at their maximum areal 
coverage in the mid-lower portion of Chittar catchment. 
Thus, it defines the probability of low runoff and high 
evapotranspiration in over these areas [29]. From 2000, 
forest has decreased in 4 % area that converted into 
an agricultural land. Thus, forest area is transformed 
into waste land on 2015 and then has changed into 
agricultural land (about 1.5 %) due to farming activities. 
The built up area is gained (about 0.5 %) in 2030 to 
meet the demand of increasing population. However, 
total area of the forest land is almost stable. This result 
supporting those steps jointly taken by Government 
of India and State Government of Tamilnadu greatly 
helps the conservation of forest land.  Finally, in 2030 
area of water bodies in the Chittar catchment has 
decreased by 30% when compared to 2000.  Water 
bodies have changed the built up and agricultural land 
due to encroaching activities of humankind. From the 
Fig. 2, an area of built up land and water body literally 
opposes each other according to their area consumption. 

Fig. 3. LULC status of the catchment.
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Overall results show that LULC changes over period  
2000-2030 are moderate in this study area due to lack of 
development over the catchment. After 2015, the waste 
land is being sustained and it is mostly salt affected 
area and lack of fertility. So this limits the conversion 
waste land to either built up land or agricultural land. 

Agriculture land is one of the important factors 
that influencing the development of a country [18]. The 
agriculture land mostly converted in to build land to 
accommodate the increasing population and industrial 
development. The decline of agricultural land poses food 
security risks along with loss of rural employment [15]. 
So, agriculture area needs to be increased substantially 
to meet the food demand of increasing population. 
However, increase in agricultural area poses addition 
stress to land and water resources. Both scenarios cause 
social upheaval in a traditionally agrarian society and 
leads to unrest. So, LULC change analysis is helps the 
policy makers for sustainable development, including 
sustainable land and water resources management.

Change Detection

Systematic quantification of spatial and temporal 
LULC changes is important for sustainable development. 
Change detection is the process to delineate spatial 
LULC changes between the multi temporal images. 
Here, change detection analysis is carried for the period 
2000 to 2030 over Chittar catchment between NRSC 
level-1 five sub classes. Table 1 summarises the area  
of gain (+) or loss (-) in sq.km and accuracy assessment 
between each sub classes. The trend of LULC changes 
for every 10 years and 30 years periods are reported 
in this study. For the period 2000 to 2010 water body 
experienced the highest changes, about 9 sq.km area 
converted to build-up area. It is observed that during 
this 10 years period built-up area is reclaimed from 
the remaining four sub classes. The change detection 
analysis revealed that the sub classes agricultural and 
waste lands are highly dynamic during the period 
2010 to 2020. Approximately 24 sq.km of waste land 
is reclaimed in to agricultural land between 2010 to 
2020. During this period it is observed that conversion 

of natural areas viz waste land, forest land and water 
bodies in to agricultural land and build up land. This 
conversion is driven by the increasing demand for food 
and sheltering requirements of the growing population.

In the present decade (i.e. 2020 -2030) about 
6 sq.km of water body is converted in to built up 
land, agricultural land and waste land equally. This 
conversion is may be driven by the frequent failure 
monsoon rainfall in this region, lack of maintenance 
of small water bodies and encroachment. This will 
lead to additional stress to ground water along with 
reduction of natural recharge, flooding and soil erosion. 
The overall change detection analysis (2000 to 2030) 
show that forest land is the only subclass experienced 
the minimal changes. About 25 sq.km of waste land 
is reclaimed during 2000 to 2030.  Further 20 sq.km  
water body is lost in same period. Agricultural land 
and built up land are two sub classes that gaining 
continuously during the three decadal periods. These 
results of three decadal change detection analyses are 
important for catchment scale hydrological model 
development [2].

Kappa statistics is implemented to analyze the 
LULC sub classes from this change detection process. 
In kappa statistics, UA (e.g. spatial matching of a sub 
class in 2000 with 2020) and PA (e.g. spatial matching 
of a sub class in 2020 with 2005) are used to determine 
the level of contribution within the sub classes [23] 
as shown in Table 1. Overall spatial mismatching 
between the multispectral images indirectly quantifies 
LULC changes. In this study, the estimated spatial 
mismatching are 0.24, 0.18, and 0.17 respectively for the 
decades 2000-2010, 2010-2020 and 2020-2030. Overall 
spatial mismatching during the period 2000 to 2030 
is 0.24. The UA of built up land is always 1 and the 
PA varies from 0.31 to 0.78. It indicates a steady rise 
build-up land. The UA and PA of forest land are nearly 
equal and it’s more than 0.9. This confirms that there 
is no gain or loss in forest land. Similarly agricultural 
land also UA and PA are approximately equal which 
confirms the minimum changes. Trigger change is 
occurred in the waste land and water bodies as per this 
UA and PA statistics.

Table 1. LULC Change detection assessment.

LULC 
types

Area of gain (+) or loss (-) in sq.km
Kappa statistics

2000-2010 2010-2020 2020-2030 2000-2030

2000-2010 2010-2020 2010-2020 2000-2030 UA PA UA PA UA PA UA PA

AL -2 29 2 29 0.8 0.8 0.87 0.84 0.86 0.87 0.8 0.78

BL 16 4 2 22 1 0.54 1 0.74 1 0.78 1 0.31

FL -1 -4 0 -5 0.93 0.94 0.92 0.94 0.93 0.96 0.88 0.93

WL -4 -24 2 -25 0.55 0.56 0.61 0.68 0.67 0.65 0.52 0.58

WB -9 -5 -6 -20 0.43 0.04 0.5 0.03 0.47 0.03 0.33 0.04

Abbreviation: AL – Agricultural land; WL – Waste land; FL – Forest; WB – Water bodies; BL – Built up land
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Conclusion 

Systematic quantification of LULC dynamic is 
important for sustainable water and land resources 
management and development. In this study,  
a geospatial technology assisted change detection 
analysis is performed for the past and future LULC 
development at catchment scale. To demonstrate  
the capability, a case study is taken over Chittar 
catchment a tributary of Tharamirabarani river basin, 
India. The LULC is forecasting from past Landsat 
imagery data using CA-ANN algorithm. The LULC 
maps for the years 2000 and 2005 are used as base 
map for forecasting LULC for the year 2010 using  
CA-ANN algorithm. The model performance is 
validated using kappa statistics by comparing historical 
and simulated LULC for the year 2010. The overall 
average spatial matching between the two LULC is 
91% and the kappa coefficient is 86% (>50% model 
performance is satisfactory). The major outcome of case 
study is as follows:  
1.	 The change detection analysis from 2000 to 2030 

show that forest land is the only sub class that 
experienced the minimal changes.  

2.	 The waste land and water bodies are two sub classes 
that experienced maximum changes. About 25 sq.km 
of waste land is reclaimed during 2000 to 2030.  
Nearly 20 sq.km water body is lost in same period. 

3.	 Agricultural land and built up land are two sub 
classes tgaining continuously during the three 
decadal periods. 

4.	 Agricultural land, waste land and water bodies 
are three sub classes that are mutually change 
themselves. This change may driven by the temporal 
and spatial distribution rainfall over this catchment.
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