Original Research

Effects of Cd²⁺ and Pb²⁺ on Growth and Photosynthesis of Two Freshwater Algae Species

Li-Li Dong^{1,2}, Heng-Xing Wang², Yue Wang², Xiao-Qian Hu², Xin-Li Wen^{1*}

¹Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, P. R. China

²College of Life and Environment Sciences, Huangshan University, Huangshan 245041, P. R. China

Received: 6 August 2021 Accepted: 21 October 2021

Abstract

Microalgae are biological indicators of heavy metal pollution. Cadmium (Cd) and lead (Pb) are extremely toxic metals to aquatic organisms. In the present study, single and combined toxicity of Cd²⁺ and Pb²⁺ to *Scenedesmus acutus* and *Schroederia* sp. collected from the famous Xin'an River (Huangshan City) were evaluated. Treatments with 0.5-2.0 mg/L Cd²⁺ significantly reduced *S. acutus* population growth, and treatment with 2.0 mg/L Cd²⁺ significantly decreased *Schroederia* sp. population growth rate, suggesting a higher tolerance of *Schroederia* sp. than *S. acutus* to Cd²⁺ pollution. In addition, Cd²⁺ treatments significantly decreased chlorophyll *a*, carotene contents, and photosynthetic fluorescent parameters rETR_{max} and I_k, demonstrating that the harms on photosynthesis might be the underlying mechanism of Cd²⁺ toxicity to algae. Treatments with 5.0-15.0 mg/L Pb²⁺ did not significantly affected population growth and photosynthetic pigment content. However, combined exposure to Cd²⁺ and Pb²⁺ revealed antagonistic effects on both species. Overall, these results provide basic information to the ecological risk assessments of heavy metal pollution in the Xin'an River Basin.

Keywords: heavy metal toxicity, microalgae, growth, chlorophyll, photosynthesis

Introduction

Heavy metals are typical pollutants and their concentrations are aquatic and soil environments are increasing over the past decades, which are mainly released by human activities such as domestic waste-water, urban and agricultural run-off, and industrial sewage [1]. Due to their persistent, toxic and bioaccumulation characteristics, heavy metals seriously threat human health and environments [2]. Cadmium (Cd) and lead (Pb) are toxic metals and are considered non-essential for most living organisms [3, 4]. Cd²⁺ is a carcinogenic, mutagenic and endocrine disrupting factor [5]. It is a risk factor of lung damages and bone weakness, as well as affects the metabolism and regulation of calcium in organisms [6]. Pb²⁺ is very dangerous to living things and harms the human body system [7]. Although individual heavy metal pollution

^{*}e-mail: weninli1977@126.com

has been investigated, most of heavy metal pollutions are concomitant or joint in the aquatic environments under natural conditions [8]. The free ions of Cd^{2+} and Pb^{2+} often present in freshwater ecosystems simultaneously. Thus, it is necessary to investigate their combined effects to organisms.

Microalgae are not only the most important primary producers, but also the basis of the food webs in most aquatic ecosystems [9]. Due to their high population growth rate, short life cycle and strong heavy metal absorption capacity, microalgae are considered as a promising tool for heavy metal detection and bioremediation [10, 11]. Photosynthesis is the process that light energy is absorbed by light-harvesting complexes and transferred as excitation energy from water to nicotinamide adenine dinucleotide phosphate (NADPH) [12]. Chlorophyll fluorescent parameters are sensitive to changes of environmental factors and provide valuable information about the disruptive mechanisms of pollutions underlying alteration of photosynthesis process [13]. Therefore, in addition to population growth rate, chlorophyll fluorescent parameters can be used as bioindicators to monitor the effects of metal pollution on microalgae.

Huangshan city in China is a famous scenery (the Yellow Mountain) throughout the world. Guan et al. [14] reported that the urban and suburb areas of Huangshan City suffered high risks of Cd and Pb pollutions. Since different alga strains of the same species may vary in sensitivity to heavy metal pollution, it is also essential to evaluate the toxicity of pollutants using the local alga strains. Previously, our group has explored the effects of Cu2+ and Hg2+ on growth and photosynthesis of eight freshwater algae species collected from the Xin'an River, Huangshan city [15]. However, combined toxicity of Cd²⁺ and Pb²⁺ to the local alga strains have not been reported yet, which are important to evaluate the environmental risks of heavy metal pollutions to the Huangshan scenery. In the present study, we isolated two algae species Scenedesmus acutus and Schroederia sp. from the Xin'an River, Huangshan City. Next, we investigated the effects of Cd²⁺, Pb²⁺ and their combined exposure on the growth the photosynthesis parameters of these two algae species. These results aimed to understand the combined toxicity of Cd^{2+} and Pb^{2+} to the local green algae in the Huangshan area, which are important for the ecological risk of assessment of heavy metal pollution in Xin'an River Basin.

Materials and Methods

Sample Collection

S. acutus and Schroederia sp. were isolated from Xin'an River, Huangshan City, P. R. China and then cultured in 500 mL glass flasks containing 300 mL of BG-11 medium [16] at $25\pm1^{\circ}$ C. The composition

of BG-11 medium consists of: (g/L) NaNO₃ (1.5), K_2HPO_4 (0.04), $MgSO_47H_2O$ (0.075), $CaCl_2H_2O$ (0.036), Na_2CO_3 (0.02), Citric acid (0.006), EDTA (0.001), and 1 mL of trace elements solution having the following composition (g/L): H_3BO_3 (2.86), $MnCl_24H_2O$ (1.81), $ZnSO_47H_2O$ (0.222), $NaMoO_42H_2O$ (0.39), $CuSO_45H_2O$ (0.079), $Co(NO_3)_26H_2O$ (0.0494). The photoperiod was 12 h: 12 h (light: dark) with light intensity of approximately 120 µmol photons m⁻²s⁻¹. During the culture period, algae solutions were manually shaken for three times per day.

Exposure to Heavy Metals

CdCl, and PbCl, (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) were used for heavy metal exposure and the stock solutions were 1 g/L in distilled water. Single exposure to Cd^{2+} (0.50, 1.00 and 2.00 mg/L), Pb2+ (5.00, 10.00 and 15.00 mg/L) and combined exposure to $Cd^{2+} + Pb^{2+}$ (0.25 mg/L $Cd^{2+} + 2.50$ mg/L Pb²⁺, 0.50 mg/L Cd²⁺ + 5.00 mg/L Pb²⁺ and 1.00 mg/L Cd²⁺ + 7.50 mg/L Pb²⁺) were conducted. Meanwhile, the control experiment was included, in which no Pb^{2+} and Cd^{2+} were added. Algae at the exponential growth phase were used for heavy metal exposure. Cell density was determined using a hemocytometer and then the initial alga density was adjusted to 1×10⁵ cells/mL. The culture system was 500 mL glass flasks containing 300 mL of media. Each assay was repeated three times independently. Cell density was monitored every 24 hours for 4 days and population growth rate was calculated using the equation described by Patiño et al. [17].

Measurements of Chlorophyll Contents and Photosynthesis Fluorescence Parameters

For culture for four days, 150 mL of alga solution was filtered onto Whatman GF/F 0.22 μ m poresized membranes using a vacuum filtration system. The harvested algae were homogenized in 5 mL of 95% methanol solution and then placed in dark at 4°C for 12 hours to extract chlorophylls. After centrifugation at 3,000 rpm for 10 min, absorbance of supernatants at 480 nm, 510 nm, 635 nm, 652 nm, 665 nm, 668 nm and 750 nm was determined using a spectrophotometer (TU-1901, Beijing, China). Contents of chlorophyll *a* (chl-*a*), chlorophyll *c* (chl-*c*) and carotenoids(car) were calculated according to Parsons and Strickland [18].

After exposure for four days, 15 mL of alga solution was collected for measurements of photosynthesis fluorescence parameters. Before each measurement, the alga cells were adapted to darkness for 10 min to complete re-oxidize PSII electron acceptor molecules. Afterwards, Chl-*a* fluorescence was measured using a Phyto-PAM pulse amplitude modulated fluorometer (Walz, Germany). Maximal photochemical efficiency of PSII (F_v/F_m), actual photochemical efficiency of PSII (Yield), maximal relative electron transport rate (rETR_{max}), electron transport efficiency (α) and halfsaturation light intensity (I_k) were calculated according to Dao and Beardall [19].

Data Analysis

All data were analyzed using SPSS 23.0. Effects of Cd^{2+} and Pb^{2+} on the tested parameters were evaluated using the one-way analysis of variance (ANOVA), followed by LSD multiple comparison. Two-way ANOVA was conducted in order to detect the interactive effects of Cd^{2+} and Pb^{2+} on the parameters. For all statistical tests, significant threshold of P values was 0.05.

Results

Effects of Cd²⁺ and Pb²⁺ on Algae Growth

Apart from treatments with 1.00 and 2.00 mg/L Cd²⁺, alga densities in other treatments increased during the four days (Fig. S1). In single exposure to Cd^{2+} , population growth rates of S. acutus significantly decreased in all treatments (0.50-2.00 mg/L) compared to control (Fig. 1). Population growth rate of Schroederia sp. significantly increased at 0.5 mg/L Cd²⁺ and then decreased significantly at 2.00 mg/L Cd²⁺. In single exposure to Pb²⁺, all treatments (5.0-15.0 mg/L) did not significantly impact population growth rate in both two microalgae species. Combined Cd²⁺ and Pb²⁺ exposure (from 0.25 mg/L Cd²⁺ + 2.5 mg/L Pb²⁺ to 1.0 mg/L Cd²⁺ + 7.5 mg/L Pb²⁺) showed no significant effects on population growth rate of S. acutus. However, treatments with 0.25 mg/L Cd^{2+} +2.5 mg/L Pb²⁺ and 1.0 mg/L Cd^{2+} + 7.5 mg/L Pb²⁺ significantly decreased population growth rate of Schroederia sp.

Effects of Cd²⁺ and Pb²⁺ on Chlorophyll Contents

Compared with the control, Chl-*a* and Chl-*c* contents of *S. acutus* significantly decreased in treatments with 1.0 and 2.0 mg/L Cd²⁺. For *Schroederia* sp., Cd²⁺ showed negative effects on Chl-*a* and Chl-*c* contents at all tested concentrations. Car contents significantly declined in treatment with 2.0 mg/L Cd²⁺ for *S. acutus*, but in treatments with 0.50 and 1.00 mg/L Cd²⁺ for *Schroederia* sp. In single Pb²⁺ experiment, there were no significant effect on Chl-*a*, Chl-*c* and Car contents at concentrations from 5.0 to 15.0 mg/L (Fig. 2).

Joint exposure to $Cd^{2+} + Pb^{2+}$ significantly reduced Chl-*a*, Chl-*c*, and Car contents in *S. acutus* at all tested concentrations. For *Schroederia* sp., significant increases of Chl-*a* and Chl-*c* contents were observed in treatment with 0.25 mg/L Cd²⁺ + 2.50 mg/L, but no significant differences were detected in other concentrations.

Effects of Cd²⁺ and Pb²⁺ on Photosynthesis Fluorescence Parameters

In Cd²⁺ treatments, for *S. acutus*, rETR_{max} and I_k significantly decreased at all Cd²⁺ concentrations, both F_{v}/F_{m} and Yield decreased significantly at 0.50 and 2.00 mg/L Cd²⁺, and α level only significantly reduced at 0.50 mg/L Cd²⁺ (Fig. 3). For *Schroederia* sp., rETR_{max}, F_{v}/F_{m} and I_k were significantly lower at all test concentrations than in the control. However, Cd²⁺ at all the tested concentrations did not significantly affect α . Yield significantly decreased only at 1.00 mg/L Cd²⁺.

In Pb²⁺ treatments, for *S. acutus*, Pb²⁺ did not significantly affect rETR_{max}, α , I_k and Yield in all treatment, but all F $\sqrt{F_m}$ significantly decreased compared

Fig. 1. Effects of Cd^{2+} (mg/L) and Pb^{2+} (mg/L) on population growth rate of *Scenedesmus acutus* and *Schroederia* sp. (mean±SD). Different letters above bars represent significantly different.

Fig. 2. Effects of Cd^{2+} (mg/L) and Pb²⁺ (mg/L) on chlorophyll contents of *Scenedesmus acutus* and *Schroederia* sp. (mean±SD). Different letters above bars represent significantly different.

with the control. For *Schroederia* sp., there were also no significant changes in rETR_{max}, α , I_k and yield values at all tested concentration. However, significant increases of F_V/F_m levels occurred in 10.00 and 15.00 mg/L Pb²⁺ exposure.

In combined exposure, for *S. acutus*, significant decreases of α , F_v/F_m and Yield parameters of were found in treatment with 0.25 mg/L Cd²⁺ + 2.50 mg/L Pb²⁺ and 0.50 mg/L Cd²⁺ + 5.00 mg/L Pb²⁺. No significant difference in I_k was observed between all treatments and the control. For *Schroederia* sp., α values increased in all combined treatments. Treatments with 0.50 mg/L Cd²⁺ + 5.00 mg/L Pb²⁺ and 1.00 mg/L Cd²⁺ + 7.50 mg/L Pb²⁺ significantly increased Yield. However, there was no difference between all joint exposure and the control in rETR_{max}, F_v/F_m and I_k .

Interactive Effects of Cd²⁺ and Pb²⁺

Two-way ANOVA was performed to test the interactive effects of Cd^{2+} and Pb^{2+} on all tested parameters (Tables 1 and 2). For *S. acutus*, Cd^{2+} and Pb^{2+} showed significant interactive effects on Chl-a, Car contents and all photosynthetic fluorescence parameters, but not on population growth rate and Chl-b content (Table 1). For *Schroederia* sp., interaction between Cd^{2+} and Pb^{2+} significantly affected population growth rate, rETR_{max}, $F_{\sqrt{F_m}}$ and I_k , but not influence Chl-a, Chl-c, Car contents, α and Yield (Table 2).

Discussion

Single exposure to 5.0-15.0 mg/L Pb²⁺ did not significantly stimulate the growth of *S. acutus* and *Schroederia* sp. in this study, consistent with Stewart [20], in which no visual effects of up to 10 mg/L Pb²⁺ on vegetative morphology or development of reproductive structures in *Platythamnion peetinatum*, *Platysiphonia*

decumbens, and Pleonosporium squarrulosum. However, treatments with 0.5-2.0 mg/L Cd^{2+} significantly depressed S. acutus growth and treatment with 2.0 mg/L Cd²⁺ significantly reduced Schroederia sp. growth in the present study. These results indicated that Cd²⁺ is much toxic than Pb²⁺ to green algae. Similarly, Alho et al. [21] revealed that Cd²⁺ is greatly more toxic to the alga Raphidocelis subcapitata than Pb²⁺. Li et al.

Fig. 3. Effects of Cd^{2+} (mg/L) and Pb²⁺ (mg/L) on photosynthetic fluorescent parameters of *Scenedesmus acutus* and *Schroederia* sp. (mean±SD). Different letters above bars represent significantly different.

Table 1. Two-way ANOVA analysis of Cd ²⁺ and Pb ²⁺	effects on population growth,	chlorophyll contents	and photosynthetic fluorescent
parameters in Scenedesmus acutus.			

Parameters	Type III SS	d.f.	MS	F value	P value			
Population growth rate								
Cd ²⁺	0.34	3	0.113	20.39	< 0.001			
Pb ²⁺	0.107	4	0.027	4.831	0.007			
Cd ²⁺ ×Pb ²⁺	0.002	1	0.002	0.337	0.568			
		Chlorophy	ell a					
Cd ²⁺	0.447	3	0.149	6.208	0.004			
Pb ²⁺	0.071	4	0.018	0.74	0.576			
$Cd^{2+} \times Pb^{2+}$	0.13	1	0.13	5.428	0.03			
		Chlorophy	ell c					
Cd^{2+}	0.006	3	0.002	6.535	0.003			
Pb ²⁺	0.002	4	0.000	1.165	0.356			
Cd ²⁺ ×Pb ²⁺	0.001	1	0.001	3.623	0.071			
		Caroteno	ids					
Cd^{2+}	0.108	3	0.036	5.255	0.008			
Pb ²⁺	0.042	4	0.01	1.528	0.232			
$Cd^{2+} \times Pb^{2+}$	0.04	1	0.04	5.876	0.025			
Maximal relative electron transport rate (rETR _{max})								
Cd^{2+}	14181.167	3	4727.056	114.834	< 0.001			
Pb ²⁺	1330.408	4	332.602	8.080	< 0.001			
Cd ²⁺ ×Pb ²⁺	1794.141	1	1794.141	43.585	< 0.001			
		Initial slope r	tate (α)					
Cd^{2+}	0.031	3	0.01	38.411	< 0.001			
Pb ²⁺	0.001	4	0	1.330	0.293			
$Cd^{2+} \times Pb^{2+}$	0.003	1	0.003	11.726	0.003			
	Maximal photochemical efficiency (F_{v}/F_{m})							
Cd^{2+}	0.121	3	0.04	161.556	< 0.001			
Pb ²⁺	0.011	4	0.003	11.271	< 0.001			
$Cd^{2+} \times Pb^{2+}$	0.025	1	0.025	98.612	< 0.001			
Half-saturation light intensity (I_k)								
Cd^{2+}	178492.570	3	59497.523	58.091	< 0.001			
Pb ²⁺	17762.461	4	4440.615	4.336	0.011			
$Cd^{2+} \times Pb^{2+}$	11076.998	1	11076.998	10.815	0.004			
Actual photochemical efficiency (Yield)								
Cd ²⁺	0.153	3	0.051	129.726	< 0.001			
Pb ²⁺	0.008	4	0.002	5.185	0.005			
Cd ²⁺ ×Pb ²⁺	0.008	1	0.008	20.937	< 0.001			

d.f.: degrees of freedom; SS: sum of square; MS: mean square.

Table 2. Two-way ANOVA analysis of Cd^{2+} and Pb^{2+} effects on growth, chlorophyll contents and photosynthetic fluorescent parameters in *Schroederia* sp.

Parameters	SS	d.f.	MS	F value	P value			
Population growth rate								
Cd ²⁺	0.24	3	0.08	30.85	< 0.001			
Pb ²⁺	0.035	4	0.009	3.368	0.029			
$Cd^{2+} \times Pb^{2+}$	0.018	1	0.018	7.098	0.015			
	·	Chloroph	yll a					
Cd ²⁺	0.239	3	0.08	4.488	0.015			
Pb ²⁺	0.147	4	0.037	2.069	0.123			
Cd ²⁺ ×Pb ²⁺	0.003	1	0.003	0.158	0.695			
	·	Chloroph	yll c					
Cd ²⁺	0.005	3	0.002	6.516	0.003			
Pb ²⁺	0.003	4	0.001	2.788	0.054			
$Cd^{2+} \times Pb^{2+}$	5.370E-6	1	5.370E-6	0.02	0.888			
Carotenoids								
Cd ²⁺	0.041	3	0.014	4.831	0.011			
Pb ²⁺	0.024	4	0.006	2.158	0.111			
Cd ²⁺ ×Pb ²⁺	0.000	1	0	0.09	0.768			
	Maximal re	elative electron tr	ransport rate (rETR _{max})					
Cd ²⁺	2418.812	3	806.271	2.048	0.139			
Pb ²⁺	9850.299	4	2462.575	6.255	0.002			
$Cd^{2+} \times Pb^{2+}$	5004.125	1	5004.125	12.712	0.002			
	Initial slope rate (α)							
Cd ²⁺	0.012	3	0.004	2.308	0.107			
Pb ²⁺	0.009	4	0.002	1.370	0.28			
Cd ²⁺ ×Pb ²⁺	0.001	1	0.001	0.445	0.512			
Maximal photochemical efficiency (F_{γ}/F_{m})								
Cd ²⁺	0.017	3	0.006	88.488	< 0.001			
Pb ²⁺	0.004	4	0.001	16.615	< 0.001			
$Cd^{2+} \times Pb^{2+}$	0.002	1	0.002	34.767	< 0.001			
Half-saturation light intensity (I_k)								
Cd ²⁺	87048.937	3	29016.312	3.190	0.046			
Pb ²⁺	178192.759	4	44548.190	4.898	0.006			
Cd ²⁺ ×Pb ²⁺	79648.679	1	79648.679	8.757	0.008			
Actual photochemical efficiency (Yield)								
Cd ²⁺	0.018	3	0.006	.817	0.5			
Pb ²⁺	0.089	4	0.022	2.993	0.044			
$Cd^{2+} \times Pb^{2+}$	0.012	1	0.012	1.563	0.226			

d.f.: degrees of freedom; SS: sum of square; MS: mean square.

[22] also revealed that Chlamydomonas reinhardtii was more tolerant to Pb^{2+} (EC₅₀: 29.48±8.83 mg/L) than to Cd²⁺ (EC₅₀: 12.48±1.30 mg/L) after 96 h of exposure. S. acutus and Schroederia sp. used in our experiment belong to the Chlorophyceae which has been considered tolerant to metals generally [23]. In particular, S. acutus has an higher ability to withstand metal concentrations than other algae species (Stokes et al. 1973) and phycoremediation potential of Pb^{2+} pollution [24]. To the best of our knowledge, there is no report investigating the toxicity of heavy metals to Schroederia. The present results indicated that Schroederia sp. is more tolerant to Cd²⁺ pollution than S. acutus, displaying a possibility to remediate Cd^{2+} pollution. However, more investigations are required to test its capacity of Cd²⁺ accumulation.

The changes of the photosynthetic pigments and biochemical contents can be used to monitor toxicity of heavy metals [25]. Both Cd2+ and Pb2+ caused the decrease of chlorophyll contents in marine algae [26]. Ismaiel and Said [27] observed that Chl-a, Chl-b and Car contents of Pseudochlorella pringsheimii were highly repressed in response to Cd2+ exposure (12-300 μ M), whereas Pb²⁺ highly stimulated their contents at low concentrations (5-100 µM), but inhibited their contents at high concentrations (300-500 μ M). Partially similarly, in the present study, Cd²⁺ also revealed inhibitory effects on Chl-a, Chl-c and Car contents in both algae species, demonstrating the high toxic of Pb²⁺ to the synthesis of photosynthetic pigments. Differently, Pb²⁺ treatments did not significantly influence contents of photosynthetic pigments in the present study, suggesting different mechanisms in Pb²⁺ metabolism between the two algae species used in this study and *P. pringsheimii*.

The photosynthetic fluorescence parameters are most useful indices to assess the photosynthetic status of algae under stress conditions [28]. The inhibition of chlorophyll synthesis may alter the light harvesting complexes responsible for light energy transfer to PSII reaction center [29], which could be reflected determining the photosynthetic fluorescence bv parameters. In general, F_v/F_m and Yield values represent the fluorescent yield and the rETR_{max} value indicates the photosynthetic electron transport. In the present study, treatment with 1.00 mg/L Cd2+ did not change F_{v}/F_{m} and Yield in S. acutus, but significantly decreased $rETR_{max}$ and I_k , suggesting an impairment of PSII system. In Schroederia sp., a value was not affected but rETR_{max}, F_{v}/F_{m} and I_{k} decreased significantly in all Cd²⁺ treatments, suggesting that Cd²⁺ damaged both PSII reaction center and the electron transport chain in Schroederia sp. However, in Pb2+ treatments, rETR_{max}, α , I_k and Yield values did not alter significantly in both two algae species, further indicating that Pb²⁺ did not harm the photosynthesis system in freshwater green algae. Differently, 10 mg/L Pb²⁺ completely suppressed the photosynthesis in the marine diatom Phaeodactylum tricornutum [30].

There are roughly four types of interactions between heavy metals: antagonism, synergy, addition and sensitization [31]. Devi Prasad and Devi Prasa [32] reported that combination of Cd2+ and Pb2+ revealed antagonism on the growth of Ankistrodesmus falcatus when compared to single exposure. In the present study, single exposure to 1.00 mg/L Cd2+ significantly decreased, but combined exposure to 1.00 mg/L Cd²⁺ + 7.50 mg/L Pb²⁺ did not affect S. acutus growth rate, suggesting that Pb²⁺ alleviated the toxicity of Cd²⁺ to S. acutus. Similar antagonism was also observed on $rETR_{max}$, Yield and I_k in combined exposure to S. acutus and Schroederia sp. Broadly reported, Cd²⁺ and Pb²⁺ showed antagonistic effects on Chinese watermelon [33], soybean [34] and Microcystis aeruginosa [35]. The underlying mechanism might be associated with the competition between Cd²⁺ and Pb2+. Kola and Wikinson [36] demonstrated that Pb2+ inhibited partially Cd2+ uptake by Chlamydomonas reinhardtii.

Conclusions

Treatments with 0.5-2.0 mg/L Cd²⁺ significantly inhibited pollution growth of *S. acutus*, but only treatment with 2.0 mg/L Cd²⁺ significantly suppressed *Schroederia* sp. growth due to influences on photosynthetic process. Treatments with 5.0-15.0 mg/L Pb²⁺ did not significantly affect both species. Combined exposure revealed that Pb²⁺ alleviate the toxicity of Cd²⁺ to green algae.

Acknowledgments

This work was supported by the University Synergy Innovation Program of Anhui Province (GXXT-2020-075), the General Program of National Natural Science Foundation of China (41877417), the General Program of Anhui Natural Science Foundation (1808085MC79), the Project of Natural Science Research in Universities of Anhui Province (KJ2021A1046), First-class Specialty in Anhui Province (Biotechnology, 122), the Youth Project of Anhui Natural Science Foundation (1508085QC67), the Project of Anhui Quality Engineering (2019jxtd101).

Conflict of Interest

The authors have no conflict of interest to declare.

References

- 1. YUAN X., XUE N., HAN Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J. Environ. Sci. **101**, 217, **2021**.
- 2. HOU S., ZHENG N., TANG L., JI X., LI Y., HUA X. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb

pollution in urban street dust across China between 2009 and 2018. Environ. Int. **128**, 430, **2019**.

- 3. ZHOU W., JUNEAU P., QIU B. Growth and photosynthetic responses of the bloom-forming cyanobacterium *Microcystis aeruginosa* to elevated levels of cadmium. Chemosphere. **65**, 1738, **2006**.
- PAWLIK-SKOWROŃSKA B. Relationships between acidsoluble thiol peptides and accumulated Pb in the green alga Stichococcus bacillaris. Aquat. Toxicol. 50, 221, 2000.
- TCHOUNWOU P.B., YEDJOU C.G., PATLOLLA A.K., SUTTON D.J. Heavy Metal Toxicity and the Environment. In, Luch A(ed) Molecular, Clinical and Environmental Toxicology: V Environmental Toxicology. Springer, Basel, 3, 133, 2012.
- DIXIT R., WASIULLAH M.D., PANDIYAN K., SINGH U.B., SAHU A., SHUKLA R., SINGH B.P., RAI J.P., SHARMA P.K., LADE H., PAUL D. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability. 7, 2189, 2015.
- BAKULSKI K.M., ROZEK L.S., DOLINOY D.C., PAULSON H.L., HU, H. Alzheimer's disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Curr. Alzheimer Res. 9, 563, 2012.
- ALI H., KHAN E., ILAHI I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 6730305, 2019.
- BORLONGAN I.A., NISHIHARA G.N., SHIMADA S., TERADA R. Photosynthetic performance of the red alga *Solieria pacifica* (Solieriaceae) from two different depths in the sublittoral waters of Kagoshima, Japan. J. Appl. Phycol. 29, 3077, 2017.
- SURESH KUMAR K., DAHMS H.U., WON E.J., LEE J.S., SHIN K.H. Microalgae – A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 113, 329, 2015.
- 11. OMAR W.M. Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to malaysian freshwater ecosystems. Trop. Life Sci. Res. **21**, 51, **2010**.
- GOVINDJE E. Sixty-Three Years Since Kautsky: Chlorophyll a Fluorescence. Funct. Plant Biol. 22, 131, 1995.
- ANTAL T.K., MATORIN D.N., ILYASH L.V., VOLGUSHEVA A.A., OSIPOV V., KONYUHOV I.V., KRENDELEVA T.E., RUBIN A.B. Probing of photosynthetic reactions in four phytoplanktonic algae with a PEA fluorometer. Photosynth. Res. 102, 67, 2009.
- 14. GUAN H.C., YUN-HUAI L.I., PENG M.Z., LIU, D.B. The evaluation of heavy metal pollution and its potential ecological risk of urban topsoil in Huangshan City. Geology in China 40, 1949, 2013.
- DONG L.L., ZHANG G.Q., LI W., DING T., WANG H.X., ZHANG G. Effects of Cu²⁺ and Hg²⁺ on Growth and Photosynthesis of Two *Scenedesmus* Species. Pol. J. Environ. Stud. 29, 1129, 2020.
- CHEN F., LIU Z., LI D., LIU C., ZHENG P., CHEN, S. Using ammonia for algae harvesting and as nutrient in subsequent cultures. Bioresour. Technol. 121, 298, 2012.
- PATIÑO R., RASHEL R.H., RUBIO A., LONGING S. Growth-suppressing and algicidal properties of an extract from *Arundo donax*, an invasive riparian plant, against *Prymnesium parvum*, an invasive harmful alga. Harmful Algae 71, 1, 2018.

- PARSONS T.T., STRICKLAND J.D.H. Discussion of spectrophotometric determination of marine-plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. J. Mar. Res. 21, 155, 1963.
- DAO L.H., BEARDALL J. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae. Chemosphere. 147, 420, 2016.
- 20. STEWART J.G. Effects of lead on the growth of four species of red algae. Phycologia. 16, 31, 1977.
- ALHO L.O.G., GEBARA R.C., PAINA K.A., SARMENTO H., MELÃO M. Responses of *Raphidocelis* subcapitata exposed to Cd and Pb: Mechanisms of toxicity assessed by multiple endpoints. Ecotoxicol. Environ. Saf. 169, 950, 2019.
- 22. LI C., ZHENG C., FU H., ZHAI S., HU F., NAVEED S., ZHANG C., GE, Y. Contrasting detoxification mechanisms of *Chlamydomonas reinhardtii* under Cd and Pb stress. Chemosphere **274**, 129771, **2021**.
- 23. TAKAMURA N., KASAI F., WATANABE M.M. Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J. Appl. Phycol. **1**, 39, **1989**.
- SHIVAGANGAIAH C., SANYAL D., DASGUPTA S., BANIK A. Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae *Scenedesmus acutus* and *Chlorella pyrenoidosa*. Physiol. Plant. 2021. Available online: https://doi.org/10.1111/ ppl.13368
- PIOTROWSKA-NICZYPORUK A., BAJGUZ A., ZAMBRZYCKA E., GODLEWSKA-ŻYŁKIEWICZ B. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga *Chlorella vulgaris* (Chlorophyceae). Plant Physiol. Biochem. 52, 52, 2012.
- BAUMANN H.A., MORRISON L., STENGEL D.B. Metal accumulation and toxicity measured by PAM— Chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol. Environ. Saf. 72, 1063, 2009.
- ISMAIEL M.M.S., SAID A.A. Tolerance of *Pseudochlorella pringsheimii* to Cd and Pb stress: Role of antioxidants and biochemical contents in metal detoxification. Ecotoxicol. Environ. Saf. 164, 704, 2018.
- SURESH KUMAR K., DAHMS H.U., LEE J.S., KIM H.C., LEE W.C., SHIN K.H. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol. Environ. Saf. 104, 51, 2014.
- RASTOGI A., ZIVCAK M., SYTAR O., KALAJI H.M., HE X., MBARKI S., BRESTIC M. Impact of metal and metal oxide nanoparticles on plant: a critical review. Front. Chem. 5, 78, 2017.
- 30. WOOLERY M.L., LEWIN R.A. The effects of lead on algae. Water, Air Soil Pollut. 6, 25, 1976.
- RODEA-PALOMARES I., GONZÁLEZ-PLEITER M., MARTÍN-BETANCOR K., ROSAL R., FERNÁNDEZ-PIÑAS F. Additivity and interactions in ecotoxicity of pollutant mixtures: some patterns, conclusions, and open questions. Toxics. 3, 342, 2015.
- 32. DEVI PRASAD P.V., DEVI PRASA P.S. Effect of cadmium, lead and nickel on three freshwater green algae. Water Air Soil Pollut. 17, 263, 1982.
- GUO G., ZHOU Q. Advances of research on combined pollution in soil-plant systems. Ying Yong Sheng Tai Xue Bao 14, 823, 2003.
- LUAN Z., CAO H., YAN B. Individual and combined phytotoxic effects of cadmium, lead and arsenic on soybean in Phaeozem. Plant Soil Environ. 54, 403, 2008.

- 35. GAO C., GAO L., DUAN P., WU H., LI M. Evaluating combined toxicity of binary heavy metals to the cyanobacterium *Microcystis*: A theoretical non-linear combined toxicity assessment method. Ecotoxicol. Environ. Saf. 187, 109809, 2020.
- KOLA H., WILKINSON K.J. Cadmium uptake by a green alga can be predicted by equilibrium modelling. Environ. Sci. Technol. 39, 3040, 2005.

Supplementary Material

Fig. S1. Growth curves of *Scenedesmus acutus* and *Schroederia* sp. in treatments with Cd^{2+} (mg/L) and Pb^{2+} (mg/L). Data represent mean±SD.