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Abstract

This study was carried out to apply principal component analysis (PCA) as a tool to identify  
the major sources responsible stand behind air pollution variation in a sector of Mosul city for the first 
time. In addition, Besides, PCA was used to construct a temporal overall air quality assessment index 
to find the period of best air quality along the year. The data was collected through a monitoring station 
located in the public library on a side of a very crowded highway and near a traffic light intersection 
in Mosul city. It The data involves the measurements of O3, NO, NO2, NOx, SO2, CO, CO2, CH4, TH, 
NMHC and PM10 for a year. Air quality parameters were analyzed using PCA seasonally and yearly. 
The study found that the pollutants produced by vehicular traffic exhibited more variation with  
a percentage of 56.91 to 73.75%. The results showed that traffic pollution is the main contributor  
to air quality variation with 56.91 to 73.75%. It is verified by the gases CO, NO, NOx, O3, THC and CO2. 
The temporal assessment of monthly air quality showed that the Best air quality was recorded in March 
followed by April. Whereas, the worst air quality was observed in January. The study concluded that 
the application of PCA to air quality data had drawn the parameters responsible for air quality variation 
and detect the sources of air pollution efficiently. In addition, The results of PCA can be helpful in the 
design of the program of measurements in the monitoring station. 
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Introduction

Clean air became an essential requirement for 
perfect human life. One of the major threats facing large 
cities is air pollution. Urbanization and industrialization 
with the increase in population and fossil fuels using 
use have had made the atmosphere more polluted. In 
other words, the amounts of air pollutants released in 
air became not compatible with normal mechanism. 

Air pollutants consist of primary gases and 
particles emitted from stationary and mobile 
sources. In addition to secondary pollutants are 
formed from aerosols by chemical reactions. Air is 
considered polluted when pollutants accumulate to  
a level that causes a harmful effect to humans, animals 
and plants or exceed the standards. Other gases may 
contribute to global warming or climate change like 
greenhouse gases. Air pollution can cause harm or 
discomfort to humans. It is associated with respiratory 
and cardiovascular diseases [1-2]. Thus, air pollution 
control is necessary to avoid the harmful situation 
of air pollution in the future. Air quality monitoring 
is the first step in air pollution control. Additionally,  
the interpretation of the variability of air quality 
parameters requires the monitoring of their 
concentration and statistical analysis. The availability of 
air quality data and the results of the analysis can be 
very helpful in air quality management [3]. 

Multivariate techniques is verified as one of  
the efficient tools used to analyze air quality data as 
it can identify the sources of pollution [4]. Of these 
multivariate techniques, principal component analysis 
(PCA) has been widely applied to model the dynamic 
characteristics of air pollution [5-10]. Also, it can 
identify the pattern of air quality data, revealing  
the redundant measurements, reduce the dimensionality 
of the data and demonstrate the contribution percentage 
of pollutants in air quality variation [5]. 

Air pollution has had been studied in Mosul 
city. The earlier studies focused on dustfall and 
suspended particulate distribution [11, 12]. After that,  
Al-Jarrah [13] conducted a study to identify the levels 
of pollutants solely within the largest population 
community in Northern Iraq, Mosul city. Furthermore, 
Shihab and Al-Jarrah [14] investigated the levels  
of ozone and nitrogen oxides including their 
relationships with metrological factors, moreover, 
Shihab [15] use air quality index to assess air quality 
in Mosul city. This research tries to use multivariate 
techniques (also known as chemometric techniques) in 
analyzing air quality parameters in Mosul city for the 
first time.

Hence, no study has been conducted to identify  
the sources of air pollution in Mosul city, the current 
study aims to apply principal component analysis 
to recognize the possible sources of air pollution.  
In addition, to determine the contribution of air 
pollutants in air quality variation in Mosul city. 
Furthermore, the study intends to identify the weekly 

and seasonally temporal variation in the pattern of air 
quality within a selected sector in Mosul city, Iraq.

The objectives of this study are to recognize  
the possible sources of air pollution and to determine  
the contribution of each pollutant in air quality variation. 
In addition to identify the weekly and seasonally 
temporal variation in the pattern of air quality within  
a selected sector in Mosul city, Iraq. 

Materials and Methods

Study Site

The present study was conducted in Mosul city, 
northern Iraq. The monitoring station was named  
the public library as it was placed in the public library 
of the city. It lies near a traffic light intersection on  
the side of a very crowded two-way highway in the left 
bank of the city as shown in Fig. 1. Also it is surrounded 
by the buildings of Iraqi Engineers Union and  
the courthouse of the city in addition to a residential 
area from the North.  

Air Quality Monitoring Station 

The monitoring site includes a stationary monitoring 
station type Horiba (German made). It can measure 
the air quality parameters: O3, NO, NO2, NOx, SO2, 
CO, CO2, CH4, total hydrocarbons (TH), non-methane 
hydrocarbon (NMHC) and PM10. The devices in 
the station are calibrated automatically using span 
gases and zero gas. The measurements were conducted 
every three minutes and then the average of 30 minutes 
was calculated. This station belongs to the Ninevah 
Environment Directorate. The surveillance operation 
was continued from Feb 2013 till Jan 2014.  

Mosul city has a semi-arid climate with extremely 
hot, prolonged, dry summer, mild autumn and spring 
and moderately wet cool winter. The dominant wind 
direction in the study area is NW with 17.2% calm 
conditions (Fig. 1). Dominant wind speed ranged 
between more than 0 to 2 km/hr. 

Statistical Analysis 

Descriptive Statistics

Mean, median, standard deviation, minimum and 
maximum were calculated to describe air quality 
parameters for the study area using IBM SPSS statistics 
26 software. 

Principal Component Analysis

Principal component analysis is a multivariate 
technique used to treat a set of variables together.  
This type of analysis has the ability to convert the actual 
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correlated air quality parameters into a new set of 
orthogonal and uncorrelated composite components 
[16-18]. These components are linear combinations of  
the original data. It can be expressed as in Equation (1): 

Zij = ai1x1j + ai2x2j+ ai3x3j +...+ aimxmj        (1) 

where Z is the component score, a is the component 
loading, x is the measured value of the variable, i 
is the component number, j is the sample number, and m 
is the total number of variables [3]. 

The raw data need to be standardized as air quality 
parameters have different magnitudes and scales of 
measurements according to Z-scale to a mean of 0.0 
and variance of 1.0 by using equation (2), [19, 20]:

Zij = (Xij – μ)/ σ                    (2)

Where Zij is the standard score of jth value of the 
measured variable i; µ is the variable mean value and σ 
is the standard deviation. This standardization will give 
equal weights to air quality variables in the statistical 
analysis process. Besides, this process will homogenize 
the variance of the distribution [21]. 

Principal component analysis used the correlation 
matrix of observations (X) to estimate a sorted matrix 
of eigenvalues (λ) and corresponding eigenvectors 
(component loading V). The characteristic equation is 
[X-λI] V = 0, where each eigenvalue λ is associated with 
an eigenvector V. The components with eigenvalues 
equal to or greater than one are retained using Kaiser 
criterion [22]. 

The amount of variance extracted in each variable 
is named as communality. It represents the sum of 
squared loadings (V) for the extracted components  
of a specified air quality parameter. The high 
communalities indicate that the extracted components 
represent the variables well. To exclude measures that 
are not useful in the interpretation, a value of 0.5 was 
selected as a cut-off communality. 

The sampling adequacy of the data for analysis was 
tested using Kaiser-Meyer-Olkin (KMO) and Bartlett’s 
test for sphericity. KMO values of 0.5 and more with 
significant Bartlett’s test (p<0.05) indicate that sampling 
is adequate for analysis [23, 24]. 

To facilitate the interpretation of air quality data, 
rotation may be applied to the components axis to 
provide a simple structure. The components loadings 

Fig. 1. Location of the study site with monitoring station and wind rose diagram.
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will be rescaled back to the proper size after rotation. 
The total variance outlined by all components 
remains the same, while the total variance defined 
by each component will be different. The most common 
orthogonal rotation is Varimax. It minimizes the number 
of variables that have high loadings on each component 
and simplifies the interpretation of the components. 
Varimax rotation confirms that each variable is 
maximally correlated with only one component and  
a near zero association with the other components [25]. 

The direct relationships between air quality 
parameters were obtained by drawing the loadings for 
PC1 versus PC2 as arrows. Each arrow represents an 
air quality parameter. The angle between the arrows 
denoted the relationship between them. The angle 
closer to zero denoted a strong relationship versus weak 
for an angle closer to 90 degree. On the other hand,  
an angle closer to 180 degree denoted a strong inverse 
relationship. 

For weekly and monthly assessment of air quality, 
PC scores were utilized. According to the component 
score coefficient matrix, the scores of the components 
were calculated for each week and month of the study 
period. From the results of the variance contribution 
rate, the score of the components extracted were 
converted to a score for each week and month.  
The week with lower score represents the period with 
best air quality and the same way for the months [10]. 

Results and Discussion

Principal component analysis was conducted on 
air quality parameters for the monitoring station at  
the public library, Mosul city for each season and for 
the whole year. 

The descriptive statistics for air pollutants 
including mean, median, minimum and maximum  
in the monitoring site are shown in Table 1. 

Kaiser-Meyer-Olkin (KMO) values were more than 
0.5 and ranged between 0.661-0.839 for seasonally and 
yearly analysis. In addition, Bartlett’s test for sphericity 
shows significant results (p<0.001). This indicates that 
sampling adequacy is highly suitable for PCA [24].

For air quality in winter, PCA generated two 
components of eigenvalues greater than one after 
varimax rotation. These components explained 72.88% 
of air quality variation in the study site at Mosul city 
(Table 2). 

PC1 explained 56.99% of the variance in air 
quality versus 15.89% for PC2. NOx has the highest 
loading on this PC with 0.96 followed by NO with 
0.95. NO is produced from the reaction of nitrogen 
with oxygen in the air as they are in touch with  
the very high temperature vehicles engines. 
Consequently, its concentrations will vary with traffic 
volume and the number of vehicles in the traffic light 
intersection, especially traffic congestion during 
rush hours as stated by Lee et al. [26]. Additionally, 
its concentration undergoes more variation as solar 
radiation increases due to its relationship with ozone 
[27, 28]. CO is loaded on this PC with a value of 0.89.  
It is the result of incomplete combustion of fuel in vehicle 
engine due to acceleration, load and poor maintenance. 
Its concentration varied with traffic circulation level 
and air/fuel ratio [29]. Furthermore, the vehicles at the 
nearby traffic light intersection are in inactive position 
with engine exuded more CO compared to free flow 
condition [30]. The removal of CO as it reacts with OH 
radicals produced by the photolysis of O3 contributes in 
the variation of its concentration [28]. Additional gases 
emitted from the vehicles are loaded also on this PC 
like NMHC, THC, SO2 and NO2 with 0.84, 0.83, 0.73 
and 0.68 loadings respectively. NMHC and THC come 
from unburned vehicle fuel especially at their stopping  
in the nearby traffic light intersection as the urban area 
around the monitoring station does not include any 
industrial activities. The variation in these two parameters 

Table 1. Descriptive statistics for air pollutants.

Parameters Mean Median SD Min. Max.

CO (ppm) 1.24 0.99 0.73 0.39 3.56

NO (ppb) 35.88 20.55 35.26 3.55 184.41

NO2 (ppb) 26.20 25.08 8.93 8.93 55.32

NOx (ppb) 62.03 48.04 40.76 14.13 217.11

O3 (ppb) 27.56 28.45 15.72 0.79 69.38

SO2 (ppb) 15.58 13.10 8.33 3.44 41.57

CO2 (ppm) 54.62 52.45 14.85 28.68 104.89

CH4 (ppm) 1.68 1.82 0.53 0.02 2.26

NMHC (ppm) 0.76 0.66 0.45 0.02 2.55

THC (ppm) 2.42 2.48 0.84 0.04 4.04

PM10 (µg/m3) 145.05 143.63 69.25 2.33 348.00
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engines is another source of PM10 [11, 36]. These results 
indicate that this PC represents the traffic pollution. 

PC2 represents global warming gases as CO2 and 
methane were loaded on it with values 0.79 and 0.74 
respectively. It represents about quarter the variance 
in air quality of PC1 with a percentage of 15.89.  
The main source of CO2 is the fuel combustion in 
vehicles and in heating at homes during the cold season 
winter. On the other hand, decaying of organic domestic 
waste in the nearby residential area and wastewater are 
the main sources of methane.   

Direct relationships among some the variables 
which is denoted by low angle between their vectors 
like NO and NOx, except for ozone (Fig. 2). Ozone has 
an angle near 180 degree with more of the pollutants, 
which indicates a reverse relationship with them, 
which coincided with the results of Lee et al. [26].  
On the other hand, the angle near 90 degree of CO2 
and CH4 with other parameters indicates their weak 
relationship with the parameters loaded on PC1 as 
illustrated in Fig. 2.

For spring season, PCA  extracted two components 
to represent 88.11% of air quality variation in the 
study site (Table 3). Six air pollutants are loaded on 
PC1 versus three on PC2. NOx (0.98), NO (0.98), NO2 
(0.89), CO (0.94), and SO2 (0.94) are loaded on PC1 
positively except ozone which is loaded negatively 
(-0.65). Vehicles are the main source of these pollutants 
as explained in the case of the analysis of winter results. 
Therefore, this PC may be called traffic pollution  
or fossil fuel combustion component. Additionally,  
the slight angles among the arrows of these variables 
in Fig. 2 exhibit the high relationships among them.  
On the other hand, ozone is inversely correlates with 
these variables according to the angles with its arrow  
of about 180 degree. 

may be attributed to the variation in the traffic volume  
and the type of vehicles. The main source of SO2 
is the combustion of fossil fuels containing sulfur 
[28]. SO2 is produced by heavy diesel engines, buses 
and lorries [31]. Also, using kerosene in heating 
contribute in SO2 variation in the nearby residential 
area at winter. Its variation is associated with  
the number of vehicles of diesel engines passing  
the monitoring station road in addition to its reaction 
with OH radicals produced by ozone photolysis. 
For NO2, the emissions from motor vehicles 
represent the main source in high traffic area [32]. 
Its concentration varies with the load and speed 
of the vehicle in addition to traffic volume [33].  
The concentration of NO2 increased in rush hours, 
while its reduction can be explained in terms of traffic 
volume in addition to its relationship with ozone [34]. 
Ozone is loaded negatively on this first component. 
It means that ozone is inversely correlated with other 
pollutants loaded on this component which coincided 
with results of Kovac-Andric et al. [27]. NO2 photolysis 
is stimulated with solar radiation increase to generate 
ozone and decrease NO2 concentration. This trend 
is inversed during the day. Additionally, ozone is 
consumed in the oxidation of traffic originated NO 
[35]. PM10 is also loaded on this PC with a value of 
0.68. Its concentration in this season is related with 
the rain, wind speed and direction and its role in re-
suspension of soil dust with scarcity of green areas in 
the study region. In addition, traffic volume contributes 
to its variation as vehicular smoke emission from diesel 

Table 2. Principal components loadings with communalities, 
eigenvalues and variance after varimax rotation of air quality 
parameters at winter season. 

Parameter PC1 PC2 Communality

NOx 0.96 0.07 0.921

NO 0.95 0.00 0.904

CO 0.89 0.30 0.876

NMHC 0.84 -0.07 0.712

THC 0.83 0.25 0.754

SO2 0.73 0.34 0.647

O3 -0.71 0.53 0.778

NO2 0.68 0.44 0.664

PM10 0.68 0.30 0.549

CO2 0.17 0.79 0.665

CH4 0.09 0.74 0.554

Eigen values 6.27 1.75 -

% Variance 56.99 15.89 -

% Cumulative 56.99 72.88 -

KMO = 0.770, p<0.001

Fig. 2. PC1 loading versus PC2 for winter season.
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The hydrocarbonate gases are loaded positively 
on PC2. It exhibits high loading from THC (0.99), 
CH4 (0.96) and NMHC (0.90). Also, it represents 
more than half (31.20%) of the variation in air quality 
characterized by PC1 (56.91%) as shown in Table 2. 
Vehicle traffic volume contribute to the variation in 
THC and NMHC as vehicle is the main source of 
them. While, the variation in CH4 may be attributed to 
the decomposition of organic materials of solid waste 
placed in open containers in the nearby residential area. 
Carbon dioxide does not contribute in this variation 
since its saturation level or its communality is less 

than 0.50. Furthermore, the variables loaded on this PC 
show weak correlation with those of component 1 as 
their arrows are approximately perpendicular to them 
(Fig. 3). This PC may be called as the global warming 
component as the hydrocarbons loaded on it contribute 
to the global warming. 

During summer season, PCA extracted three 
components to represent 83.50% of the cumulative 
variance of air quality (Table 4). PC1 demonstrates 
62.0% of the variance in air quality data. It exhibits high 
loading from NMHC (0.90), THC (0.88) and CO (0.76). 
NO2 (0.72) and CO2 (0.71) are also loaded on this PC. 
Vehicles are the main source of these gases during their 
inactive position at the nearby traffic light intersection 
including the evaporation of fuel with temperature 
increase in this season. Therefore, these gases vary 
with vehicle traffic volume, smooth traffic condition 
and percentage of heavy vehicles and buses. In addition, 
the levels of hydrocarbons elevated at the high traffic 
sits located at intersections [37]. Additionally, high 
solar radiation and temperature during this season 
stimulates the photolysis of NO2 and the generation of 
OH radicals. Furthermore, it can be seen that NMHC 
and THC moved from PC2 to PC1 of more variance in 
this season compared with spring (Table 4). This can be 
attributed to the increase in photochemical removal by 
hydroxyl radical in summer [38].

PC2 represents 11.24% of the variance in air 
quality data. It exhibits high loading from O3 (-0.81), 
NO (0.80), SO2 (0.75), PM10 (0.75) and NOx (0.74). 
Ozone is negatively loaded on this PC as it is inversely 

Table 3. Principal components loadings with communalities, 
eigenvalues and variance after varimax rotation of air quality 
parameters at spring season. 

Table 4. Principal components loadings with communalities, 
eigenvalues and variance after varimax rotation of air quality 
parameters at summer season. 

Parameter PC1 PC2 Communality

NOx 0.98 0.13 0.939

NO 0.98 0.08 0.911

CO 0.94 0.12 0.983

SO2 0.94 -0.01 0.907

NO2 0.89 0.21 0.967

O3 -0.65 0.33 0.834

THC 0.02 0.99 0.979

CH4 -0.10 0.96 0.532

NMHC 0.31 0.90 0.877

Eigen values 5.12 2.81 -

% Variance 56.91 31.20 -

% Cumulative 56.91 88.11 -

KMO = 0.661, p<0.001

Fig. 3. PC1 loadings versus PC2 for spring season.

Parameter PC1 PC2 PC3 Communality

NMHC 0.90 0.27 -0.10 0.938

THC 0.88 0.28 0.22 0.893

CO 0.76 0.54 0.21 0.906

NO2 0.72 0.55 0.35 0.911

CO2 0.72 0.00 -0.02 0.889

O3 -0.200 -0.81 0.25 0.931

NO 0.494 0.80 0.06 0.960

SO2 0.533 0.75 0.25 0.757

PM10 -0.033 0.75 0.17 0.905

NOx 0.611 0.74 0.19 0.509

CH4 0.088 0.07 0.96 0.585

Eigen values 6.82 1.24 1.13 -

% Variance 62.00 11.24 10.25

% Cumulative 62.00 73.24 83.50 -

KMO = 0.715, p<0.001
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correlated with parameters loaded on this PC (Fig. 4). 
Traffic pollution, photochemical oxidation and soil  
re-suspension by wind contribute in the variation of 
these pollutants. PC1 and PC2 combine the effect of 
traffic emissions, traffic light intersection and local 
climate condition.  

PC3 represent 10.25% of the variation in air quality 
data. It exhibits high loading from CH4 (0.96) only. 
It demonstrates the decomposition of organic materials 
in wastewater and domestic waste in the nearby 
residential area [39]. This PC represents the decaying of 
organic materials. 

In autumn, PCA shows different results as 
temperature decreases. The analysis extracted two 
PCs to demonstrate 86.73% of the cumulative variance  
in air quality data, 73.75% for component 1 and 
12.98% for component 2 (Table 5). Seven of air 
quality parameters are loaded on PC1 versus three 
for PC2. PC1 exhibits its loadings from CO2 (0.88), 
O3 (-0.84), NO (0.81), THC (0.80), NMHC (0.79), CO 
(0.77) and NOx (0.74). Most of these parameters are 
highly correlated with each other as shown in Fig. 4.  
The main source of these gases is vehicle fuel 
combustion and the photochemical reactions [40]. 
In addition, gases may be produced by the reactions 
between air constituents near the hot vehicle machine 
like nitrogen and oxygen. This component represents 
the traffic pollution.

PC2 exhibits its loading from PM10 (0.91), SO2 
(0.85) and NO2 (0.81). The source of PM10 varied 
among wind re-suspension of soil dust, vehicle 
exhaust emission and domestic solid waste burning.  
In addition, the environmental conditions during  
the study period may also contribute to the variation 
in PM10 [41-42]. On the other hand, motor vehicle 
emission is the source of NO2, while SO2 is emitted 

from heavy diesel engines, buses and lorries. This PC 
represents the effects of local climate condition and  
the emissions of diesel engines.

Fig. 5 shows inverse relationship between O3 and 
more of the parameters (an angle close to 180 degree) 
versus a weak one with PM10, NO2 and SO2 of PC2 
(an angle close to 90). Additionally, there is a direct 
relationship between THC and CO in winter, which 
coincided with the results of Eslami et al. [43]    

Fig. 4. PC1 loadings versus PC2 for summer season. Fig. 5. PC1 loadings versus PC2 for Autumn season.

Table 5. Principal components loadings with communalities, 
eigenvalues and variance after varimax rotation of air quality 
parameters at autumn season.

Parameter PC1 PC2 Communality

CO2 0.88 -0.05 0.930

O3 -0.84 -0.22 0.942

NO 0.81 0.52 0.899

THC 0.80 0.55 0.916

NMHC 0.79 0.55 0.784

CO 0.77 0.56 0.961

NOx 0.74 0.64 0.755

PM10 0.03 0.91 0.887

SO2 0.41 0.85 0.771

NO2 0.35 0.81 0.827

Eigen values 7.38 1.30

% Variance 73.75 12.98

% Cumulative 73.75 86.73

KMO = 0.839, p<0.001
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For the yearly variation, the analysis of all data 
extracted three PCs which demonstrate 83.11% of 
the cumulative variance in air quality (Table 6). PC1 
exhibits high loading from NO (0.91), CO (0.88), O3 
(-0.87), CO2 (0.81) and SO2 (0.69). These parameters 

undergo more variation along the year as they represent 
the highest part of the cumulative variance with 49.00%. 
It represents the traffic pollution and photochemical 
reactions. The hydrocarbonate gases CH4 (0.96), THC 
(0.95) and NMHC (0.67) are loaded on component 2. 
They have lesser contribution in air quality variation 
with 21.08%, which represent less than half that of PC1., 
as This can be attributed to the fact that PC1 indicates 
the principal source of air pollution [36], besides, 

Fig. 6. PC1 loadings versus PC2 for the study period.

Table 6. Principal components loadings with communalities, eigenvalues and variance after varimax rotation of air quality parameters 
for the study period along a year.

Parameter PC1 PC2 PC3 Communality

NO 0.91 0.24 0.15 0.932

CO 0.88 0.21 0.32 0.871

O3 -0.87 -0.10 -0.08 0.984

CO2 0.81 -0.11 -0.21 0.918

SO2 0.69 0.12 0.57 0.901

CH4 -0.07 0.96 0.04 0.721

THC 0.26 0.95 0.16 0.765

NMHC 0.61 0.67 0.25 0.814

NO2 -0.03 -0.03 0.85 0.721

PM10 0.06 0.40 0.72 0.684

Eigen values 4.90 2.11 1.30

% of Variance 49.00 21.08 13.03

% Cumulative 49.00 70.08 83.11

Rotation sum
of square
loading

Total 3.92 2.56 1.83

% of Variance 39.23 25.57 18.30

Cumulative % 39.23 64.80 83.11

KMO = 0.727, p<0.001

Table 7. Component score coefficient matrix. 

Parameters PC1 PC2 PC3

NO 0.235 0.001 -0.020

CO 0.216 -0.044 0.103

O3 -0.255 0.024 0.140

CO2 0.272 -0.099 -0.188

SO2 0.146 -0.108 0.298

CH4 -0.121 0.469 -0.132

THC -0.031 0.408 -0.081

NMHC 0.094 0.221 -0.001

NO2 -0.075 -0.158 0.565

PM10 -0.082 0.064 0.400
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PC2 are less affected by seasonal variation. This PC2 
represents the decomposition of organic materials 
and unburned vehicle fuel especially at their stopping 
in the nearby traffic light intersection. PC3 shows  
the parameters of least seasonal variation, NO2 (0.85) 
and PM10 (0.72). They represent 13.03% of the variation 
in air quality during the study period. The main 
source of NO2 is mainly from fuel burning in vehicles. 
As the PM10 is emitted from diesel by motor vehicle 
exhaust, Also it can be produced by wind gusts. Ozone 
shows reverse correlation with air quality parameters 
loaded on PC1. On the other hand, it correlates weakly 
with parameters loaded on PC2 and PC3 (Fig. 6). 

From the PCA for all seasons, the parameters 
loaded more on PC1 are CO, NO, NOx, O3, THC 
and CO2 which constitute the traffic pollution gases 

and those of photochemical reactions. This means that 
these parameters are subjected to more variation than 
others as PC1 covers the higher percentage of variance 
in the data. This can be attributed to the location of  
the monitoring station which lies on a side of main 
highway and near traffic light intersection. In addition  
to the variation in traffic volume and the effect of 
weather condition on the emitted gases. 

PCA was used to study the monthly and weekly 
temporal assessment of air quality in the study station. 
Component score coefficient matrix was used to 
calculate the components scores for each month and 
week for the study period (Table 7). The scores of the 
components were merged using variance contribution 
rate (percentage of variance for each component) listed 
in Table 6 and converted to Equation (3) which was used 

Period (week) PC1 Rank PC2 Rank PC3 Rank PC Rank

1-7 Feb13 1.59 47 0.24 27 -0.50 12 0.71 45

15-21 Feb13 0.91 42 0.10 13 -0.61 8 0.33 38

22-28 Feb13 0.60 38 0.03 8 0.08 30 0.31 37

1-7 Mar13 0.65 40 -0.45 6 -0.17 24 0.13 32

8-14 Mar13 0.48 36 -3.08 1 -0.52 11 -0.83 1

15-21 Mar13 0.33 33 -2.43 4 -0.34 17 -0.66 6

22-28 Mar13 0.37 35 -3.05 2 0.05 28 -0.75 2

29 Mar-4 Apr13 0.13 30 -2.50 3 0.17 33 -0.67 5

5-11 Apr13 -0.33 24 -1.53 5 -0.47 13 -0.73 3

12-18 Apr13 -0.39 21 0.16 19 -0.74 7 -0.30 12

19-25 Apr13 0.06 29 -0.19 7 -0.99 4 -0.25 16

Table 8. Month factor score and ranking. 

Table 9. Week factor score and ranking. 

Period 
(month) PC1 Rank PC2 Rank PC3 Rank PC Rank

Feb-13 0.82 10 0.08 3 -0.25 5 0.36 9

Mar-13 0.42 8 -2.15 1 -0.29 4 -0.53 1

Apr-13 -0.19 6 -0.91 2 -0.38 2 -0.45 2

May-13 -0.39 5 0.17 5 -0.13 6 -0.16 7

Jun-13 -0.89 2 0.22 6 0.32 9 -0.28 4

Jul-13 -1.06 1 0.25 7 0.26 8 -0.37 3

Aug-13 -0.86 3 0.34 10 0.53 10 -0.19 6

Sep-13 -0.65 4 0.16 4 0.17 7 -0.22 5

Oct-13 -0.10 7 0.33 9 0.80 11 0.23 8

Nov-13 0.69 9 0.48 11 0.53 10 0.59 11

Dec-13 1.02 11 0.32 8 -0.32 3 0.51 10

Jan-14 1.64 12 0.82 12 -1.28 1 0.75 12
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26 April–2May13 -0.41 20 0.20 21 -0.11 25 -0.15 26

3-9 May13 -0.09 27 0.21 22 -0.17 23 -0.01 29

10-16 May13 -0.36 23 0.15 17 -0.60 9 -0.26 15

17-23 May13 -0.53 17 0.09 12 -0.07 26 -0.24 18

24-30 May13 -0.66 16 0.25 31 0.21 34 -0.19 24

31 May-6 Jun13 -0.95 9 0.27 34 -0.29 18 -0.43 9

7-13 Jun13 -0.80 11 0.21 23 0.49 39 -0.20 21

14-20 Jun13 -0.68 14 0.09 11 0.66 42 -0.15 27

21-27 Jun13 -0.96 8 0.23 26 0.67 43 -0.23 19

28 Jun-4 Jul13 -0.96 6 0.22 24 0.15 32 -0.35 10

5-11 Jul13 -1.02 5 0.27 33 0.40 38 -0.31 11

12-18 Jul13 -1.44 1 0.23 25 -0.34 16 -0.68 4

19-25 Jul13 -1.12 3 0.25 29 0.07 29 -0.44 8

26 Jul- 1 Aug13 -0.96 7 0.27 32 0.76 44 -0.20 22

2-8 Aug13 -1.07 4 0.28 35 0.60 41 -0.29 13

9-15 Aug13 -1.17 2 0.36 38 0.03 27 -0.44 7

16-22 Aug13 -0.52 18 0.41 43 0.87 48 0.07 30

23-29 Aug13 -0.79 12 0.28 36 0.55 40 -0.17 25

30 Aug- 6 Sep13 -0.69 13 0.15 16 0.82 46 -0.10 28

7-13 Sep13 -0.81 10 0.10 14 0.30 36 -0.28 14

14-20 Sep13 -0.68 15 0.16 18 0.13 31 -0.24 17

21-27 Sep13 -0.37 22 0.20 20 -0.37 14 -0.20 23

28 Sep- 5 Oct13 -0.18 26 0.33 37 0.82 47 0.20 35

6-12 Oct13 -0.49 19 0.25 30 -0.28 19 -0.22 20

13-19 Oct13 0.34 34 0.40 41 1.95 51 0.72 46

20-26 Oct13 0.04 28 0.07 10 0.34 37 0.12 31

27 Oct- 2 Nov13 -0.20 25 0.54 45 1.30 49 0.36 40

3-9 Nov13 0.32 32 0.43 44 1.66 50 0.65 43

10-16 Nov13 0.31 31 0.40 40 -0.58 10 0.14 34

17-23 Nov13 0.55 37 0.38 39 0.27 35 0.44 42

24-30 Nov13 1.43 46 0.68 48 0.77 45 1.05 51

1-7 Dec13 1.06 45 0.82 49 -0.37 15 0.67 44

8-14 Dec13 0.94 44 0.07 9 -0.24 21 0.41 41

15-21 Dec13 0.67 41 0.25 28 -0.26 20 0.34 39

22-28 Dec 13 0.62 39 0.11 15 -0.88 6 0.13 33

29 Dec13- 4 Jan14 2.00 51 0.40 42 -0.20 22 1.02 49

5-11 Jan14 0.93 43 0.67 47 -1.69 1 0.27 36

12-18 Jan14 1.71 48 0.94 50 -1.44 2 0.78 48

19-25 Jan14 1.97 50 1.03 51 -0.91 5 1.05 50

26-31 Jan14 1.79 49 0.64 46 -1.22 3 0.78 47

Table 9. Continued.
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to calculate the overall score for each month (Table 8) 
and each week (Table 9). The results show that the best 
air quality was recorded in March with lowest score, 
then April (Table 8). On the other hand, the highest 
score or the worst air quality is noticed in January.  
The parameters loaded on PC2 in March contributed 
in its lower score. In contrast, the parameters loaded 
on PC1 and PC2 in January contributed in its highest 
score. 

PC score = (39.234PC1 + 25.569PC2 
+ 18.304PC3)/83.107                      (3)

For weekly scores, the best air quality was found in 
spring season (Table 9). The week 8-14 March in rank 1 
with lowest score, then the week 22-28 March (rank 2) 
and 5-11 April (rank 3). On the other hand, the worst air 
quality week was recorded in autumn at the week 24-30 
November (rank 51).   

Conclusions

Principal component analysis declares the degree  
of variation in the concentration of air pollutants 
according to seasons. The pollutants NOx, NO and 
SO2 exhibited more variation in Winter and Spring 
versus Winter and Summer for NO2. CO shows more 
variation in all seasons versus lower variation for 
CH4. Additionally, O3, NMHC and TH exhibits more 
variation along the year except in Summer for O3 
and Spring for NMHC and TH. The higher variation 
in CO2 concentration was recorded in Summer and 
Autumn versus Winter for PM10. It is worth mentioning 
that air pollutants of low variation may be at high or 
low level, but they do not exhibit a significant change 
along the study period. It was found that the local 
traffic emissions are responsible for 56.91% in winter  
to 73.75% in autumn of the variation in air quality  
in the monitoring site. The results of PCA can be 
useful for the design of measurement intervals for air 
pollutants. The pollutants included in PC1 (NO, CO, 
O3, CO2, SO2) exhibit more variation and must have 
the intense measurements of low intervals. On the other 
hand, the parameters included in the other components 
must have longer interval of measurements as they 
exhibit lower variation. The temporal assessment 
of air quality shows that the best air quality occurs  
in March, while the worst one occurs in January. 
Principal component analysis has been proved as  
a useful tool to reduce the dimensionality of a large 
amount of data to identify the sources of pollution and 
to find the scores for temporal assessment. 
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