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Abstract

Heavy metal contamination is widespread across China, but the differences of dustfall heavy
metals between industrial and non-industrial areas of the country remain incompletely understood.
The research areas were firstly divided into industrial and non-industrial ones. The pollution status of
dustfall heavy metals was comprehensively evaluated using chronological difference and ecological and
health risks. The results showed that (1) As, Hg, Cd, Pb and Zn concentrations were significantly increased
in industrial areas, whereas no significant change was observed for most heavy metals (except Pb and
Zn) in non-industrial areas. The heavy metal concentrations were significantly higher in industrial areas
than in non-industrial areas, which was largely associated with China’s industrial production mode and
mining activities. (2) Cd had the highest ecological risk (£ ), and Cr and Ni had the lowest £’ throughout
China. The E 'of As, Hg, Cu, Pb and Zn were more serious in industrial areas than in non-industrial areas.
(3) The non-carcinogenic risk index of children was higher than that of adults in all exposure pathways
in non-industrial and industrial areas, the carcinogenic risk index of four carcinogenic heavy metals
(As, Cd, Cr and Ni) was within 107°-107%, and the carcinogenic risk was negligible.
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Introduction

Heavy metals refer to metallic chemical elements
that have a relatively high density, including As, Hg,
Cd, Cr, Cu, Ni, Pb and Zn; these metals are usually
toxic for living organisms even at low concentrations
[1-3]. Heavy metals in emissions can return to the soil
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and water through atmospheric depositional processes
via dry and wet precipitation [4]. They have strong
capacities to migrate, enrich and contaminate and
enter the human body through ingestion, inhalation
and dermal contact, exerting a negative influence on
human health [5, 6]. Therefore, detailed investigations
on the environmental impact of heavy metals in urban
environments are of great importance.

Generally, street dust, atmospheric dust and foliar
dust are classified as dustfall. At present, many studies
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have made significant progress in analysing pollution
sources and distribution characteristics and have
conducted pollution and risk assessment of dustfall heavy
metals in some countries [7-12]. Investigating dustfall
heavy metals is undoubtedly important, especially in
developing countries undergoing industrialisation and
urbanisation with high energy consumption and high
emissions. Conducting a nationwide sampling collection
is difficult due to the limitations of sampling period and
confined regions. Therefore, the statistical analysis of
dustfall heavy metals should be conducted in various
regions as a holistic study of the whole nation. Wang
et al. [13] and Zhang et al. [14] conducted a provincial
spatial distribution analysis in China by using statistics
and revealed that heavy metals are distributed in cities
mainly located in southern, central and southeast
coastal areas of China and mainly influenced by mining
activities. However, the differences of dustfall heavy
metals between industrial and non-industrial areas
remain incompletely understood because the results
might overestimate the impact of heavy metals in non-
industrial areas or underestimate the effect of heavy
metals in industrial areas.

For example, Wang et al. [15] found that the Cd,
Pb and Zn concentrations of dustfall in Baoji were
5.5, 408.4 and 715.1 mg/kg, respectively, but Liu et
al. [16] found that the concentrations of these metals
were 62.1, 4201.7 and 5264.1 mg/kg, respectively.
The discrepancy was due to the difference in sample
locations. The sampling areas involved in the study
by Liu et al. [16] were surrounded by industrial areas,
whereas those related to the investigation performed by
Wang et al. [15] were scattered in commercial, traffic
and industrial areas. The application of average of
mathematical statistics to evaluate the pollution degree
of dustfall heavy metals is inaccurate under the absence
of an evident distinction between industrial and non-
industrial areas. In the present work, the study areas
were divided into industrial and non-industrial ones for
the first time to provide more precise data of dustfall
heavy metals.

In addition, chronological difference and ecological
and health risk assessments were adopted to understand
the distribution characteristics of heavy metals and to
estimate the influence of heavy metals on humans and
the environment in non-industrial and industrial areas.
The results will help to accurately assess the pollution
status of dustfall heavy metals and to take measures for
pollution control.

Material and Methods
Data Source and Processing

Data were obtained from the Web of Science,
Springer Link, Science Direct, China National
Knowledge Infrastructure, Wanfang Data Knowledge
Service Platform and China Science and Technology

Journal Database. The following terms were used for
retrieval: ‘atmospheric dust’, ‘dust’, ‘dustfall’, ‘heavy
metal’ and ‘health risk assessment’. Sampling time
was from 2006 to 2016, and if the sampling time was
not clearly reported, the publication time minus two
years as the sampling time. Data in Jiangxi, Tibet,
Yunnan, Hainan, Hong Kong, Macao and Taiwan were
unavailable.

Statistical Analysis of Data

Given that studies on atmospheric dust are
incomplete, dustfall referred to all kinds of dust that
settled on the surface, including atmospheric dust, road
dust, foliar dust and street dust. Excel 2016, SPASS 22
and Origin 8.0 were used for the statistical analysis
of data. When the data significantly obeyed a normal
distribution at the level of 0.05, the arithmetic mean
value was adopted. If the data significantly obeyed a
lognormal distribution, the value was expressed with
geometric average. When the data obeyed the skewed
distribution, the median was taken [17].

The research areas were divided into industrial
and non-industrial ones, with the latter including
commercial, cultural and educational, residential,
transportation, and tourist areas. The background
values of heavy metals were referred from the China
National Environmental Monitoring Center. The heavy
metal concentrations in dustfall are shown in Tables 1,
S1 and S2.

Research Methods

The ecological risk index and health risk assessment
were used to evaluate the dustfall heavy metals. The
health risk assessment was evaluated using the human
exposure risk assessment model recommended by the
USEPA, which could quantify the daily metal intake
from contaminated dust, carcinogenic risk and non-
carcinogenic risk for both children and adults.

Ecological Risk Index

The ecological risk index was proposed by
Hakanson [18] in 1980. This method has been widely
applied to evaluate the harm of heavy metals in
sediments because the ecological risk is related not only
to the concentration of heavy metals but also to their
toxicological characteristics [19, 20]. The calculation
formulas of the method are as follows:

Ci="
TG (M
E,la = Ti X C,E )

where C is the pollution coefficient for a certain heavy
metal, which can reflect the pollution characteristics of
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Table 1. Dustfall heavy metals in the non-industrial (NA) and industrial areas (IA) (mg/kg)
Element As Hg Cd Cr Cu Ni Pb Zn
Background value 11.2 0.1 0.1 61.0 22.6 26.9 26.0 74.2
NA 333.6 1.1 14.8 436.8 696.1 91.0 559.9 3479.1
Maximum
1A 3912.1 27.6 195.0 1591.8 1674.2 248.2 5287.0 153433
NA 1.1 0.0 0.1 9.4 22.7 16.4 17.8 80.8
Minimum
1A 4.4 0.1 0.0 39.7 24.5 6.5 20.1 89.5
Arithmetic | NA 37.1 0.3 32 1314 118.7 425 171.9 610.8
mean 1A 3624 3.1 22.1 210.9 267.7 51.6 860.6 2338.7
Geometric | NA 18.6 0.2 2.0 105.5 93.0 38.9 127.1 449.4
mean 1A 422 0.7 53 139.5 143.0 41.4 323.7 1180.1
NA 15.8 0.2 2.4 105.6 86.3 41.1 119.4 5222
Median
IA 26.2 0.4 4.7 139.9 113.3 42.0 257.0 1252.5
NA 62.6 0.3 3.1 97.9 106.2 18.2 131.4 574.0
SD
1A 932.1 7.8 374 276.5 382.9 452 1362.0 2802.6
NA 169% 93% 96% 74% 89% 43% 76% 94%
CV(%)
1A 257% 248% 169% 131% 143% 88% 158% 120%
Distribution | NA | Lognormal | Lognormal | Lognormal | Skewness | Skewness | Lognormal | Lognormal | Lognormal
type IA | Skewness | Lognormal | Lognormal | Lognormal | Skewness | Skewness | Lognormal | Lognormal
the investigated region but cannot reveal the ecological ADD =c X SAXSLXABSXEFXED o 1076
effects and hazards. C, is the measured values of heavy dermal BW XAT 3)
metals in the sediments. C_ is the background values
of heavy metals. £ is the ecological risk index of each ADD — % INARXEFXED
heavy metal, and 7, is the response coefficient for the vapour VEXBWXAT ©6)

toxicity of single heavy metals. The toxic response
factors of metals are as follows: Hg = 40, Cd = 30,
As=10,Cu=Pb=Ni=5,Cr=2 and Zn = 1 [18, 21].
According to Hakanson [18], the ecological risk index
is categorized into five levels as follows: low (£ < 40),
moderate (40 < £’ < 80), considerable (80 < E' < 160),
high (160 < £ ' < 320) and serious (320 < E /).

Daily Intake Estimation of Heavy Metals

According to the migration and transformation of
pollutants in the environment, heavy metals enter the
human body mainly through the following pathways:
ingestion, inhalation and dermal contact. The risk of
Hg being absorbed by outdoor steam also needs to be
considered. The average daily exposure dose (ADD, ¢
4DD,,. ADD, . ADD . mg/kg-day) of heavy
metals via various pathways was determined using
the following equations:

INgRXEFXED -
ADDjpg4 =cx 20 w1078
BWXAT 3)
INRRXEFXED
ADDiTlh =cX

PEFXBW XAT “)

where IngR is the ingestion rate (200 and 100 mg/day
for children and adults, respectively), nhR is the
inhalation rate (7.6 and 12.8 m?*day for children and
adults, respectively), EF' is the frequency of exposure
(350 days/year), ED is the exposure duration (6 and
24 years for children and adults, respectively), SA4 is the
exposed skin area (2800 and 5700 cm? for children and
adults, respectively), SL is the skin adherence factor
(0.2 and 0.07 mg/(cm? day) for children and adults,
respectively), ABS is the dermal absorption factor (0.001
for all elements), PEF is the particle emission factor
(1.36 x 10° m¥kg for all elements), BW is the average
body weight (15 and 70 kg for children and adults,
respectively), AT is the averaging time (non-carcinogens,
ED x 365 days; carcinogens, 70 x 365 days), and VF
is the volatilization factor (32675.6 m*/kg for Hg) [22].

Health Risk Assessment of Heavy Metals

Based on the calculation of the exposure dose via
the possible exposure pathways, the hazard quotient
(HQ) was calculated for each exposure pathway (Egs.
(7) and (8)). RfD is the corresponding reference dose



2286

Wang M., et al.

for individual heavy metals and exposure pathways.
The values are given in Table S3.

HQ;; = ADD; ;/RfD, e

HI =¥ YT HQ; @®)

where HQ, . is the non-carcinogenic risk value of
heavy metal i to human body through the j pathway.
The non-carcinogenic risk index (H/) was the potential
health risk of heavy metals via multiple pathways.
When HQ, <1 or HI<I, the risk is generally considered
small or neglected when HQ, >1 or HI>1, humans are
considered to tolerate the non carcinogenic risk [23].
ADD, ; means the average daily dose exposure of heavy
metal i through the j pathway, and RfD indicates the
reference dose of non-carcinogenic risk of heavy metal i
through the j pathway.

Among the several heavy metals, As, Cd, Cr and Ni
pose carcinogenic risks to human health, and the risks
are closely related to the corresponding carcinogenic
slope factor (SF). Given that SF is available only for
the inhalation exposure pathway, the carcinogenic risk
was calculated from exposure to inhalation route in the
present study:

RiSki = ADDinh X SF (9)
RiSkT = ZRlSkl = Z(ADDl'nh X SF) (10)

where Risk, is the individual carcinogenic risk of heavy
metals and Risk, is the total carcinogenic risk of multiple
carcinogenic heavy metals. The SF, values of As,
Cd, Cr and Ni are 1.5, 6.3, 42.0 and 0.84, respectively.
Carcinogenic risks exceeding 1 x 107* are regarded as
unacceptable, risks below 1 x 1076 are considered to pose
no significant health effects, and risks within the range of
107°~10~* may pose a carcinogenic health risk [24].

Results and Discussion

Heavy Metal Concentrations in the Dustfall
of Various Countries

The heavy metal concentrations of dustfall
collected in China and other countries worldwide
are shown in Table 2. According to the data analysis
in Table 2, both in China and other countries, the
dustfall heavy metals (As, Hg, Cd, Cr, Cu, Ni, Pb
and Zn) are generally polluted to a certain extent.
The heavy metal concentrations were higher than
the Chinese soil background values in industrial
and non-industrial areas. However, the concentrations
of As, Hg, Cd, Cu, Pb and Zn in industrial and non-
industrial areas were greatly different. For example, the
concentrations of As, Hg, Cd, Cu, Pb and Zn were 26.2,
0.7, 5.3, 113.3, 3237 and 1180.1 mg/kg in industrial

areas and 18.6, 0.2, 2.0, 86.3, 127.1 and 4494 mg/kg
in non-industrial areas, respectively. The concentrations
of all heavy metals were significantly higher in industrial
areas than in non-industrial areas. The difference was
largely associated with China’s industrial production
mode and mining activities.

Moreover, the concentrations of Cd, Cr, Cu and
Zn in non-industrial areas of China were much higher
than those in India, Iran, Spain and Bangladesh.
The concentrations of Cr, Cu, Ni, Pb and Zn in non-
industrial areas of China were lower than those in
Singapore. The concentrations of As and Pb in non-
industrial areas of India were much higher than those
in China. However, the concentrations of As and Pb in
industrial areas of China were much higher than those
in all other countries. The concentration of Ni in China
was not different from that in other countries except
Singapore. The concentrations of Cr, Cu, Ni and Zn in
China were much lower than those in Singapore, which
may be attributed to the local metal-related industries
such as hardware and stainless steel in Singapore.

Chronological Difference of Heavy Metals
in China

The data were divided into two periods (2006-2010
and 2011-2016) in China over the past years to better
understand the changes of dustfall heavy metals (Fig. 1).
The heavy metal concentrations in non-industrial areas
showed no obvious change or decrease in recent years.
Conversely, the concentrations of heavy metals (except
Cr, Cu and Ni) in industrial areas increased significantly.
The decrease in heavy metal concentrations in non-
industrial areas suggests that the projects of heavy-
polluting enterprises, which relocated and centralized in
industrial parks, took a positive effect during the period
of the ‘11" Five-Year Program’ and ‘12" Five-Year
Program’ [45-47]. According to previous studies, As is
mainly derived from coal burning [48]; Cu originates
from brake abrasion in wurban environments; Cd
pollution mainly comes from the aging of automobile
tires, gasoline use, car body wear and brake lining wear
[49]; Cr mainly comes from vehicle emissions [50]. By
the end of 2018, the number of civilian cars in China
reached 240.28 million, which explained the subtle
change of As, Cd, Cr and Cu in non-industrial areas.

In industrial areas, although the emission standards
for pollutant concentrations have been strictly limited
recently, the total amount of pollutants discharged
continues to increase, which is closely associated with
the clustering of industries in China. The concentrations
of As, Hg, Cd, Pb and Zn in industrial areas increased,
which were largely affected by the huge amount of coal
burning and smelting emissions [51, 52]. As signature
elements of metal smelting, Cr and Ni were largely
influenced by alloy industrial emissions [48, 52, 53].
The concentrations of Cr and Ni decreased in industrial
areas, suggesting that the management of dust emission
in China’s high-energy industries (e.g. iron and steel
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Table 2. Dustfall heavy metals in non-industrial (NA) and industrial areas (IA) of various countries (mg/kg)
Study area Areas As Hg Cd Cr Cu Ni Pb Zn Reference
) NA 18.6 0.2 2.0 105.6 86.3 38.9 127.1 4494 )
China This study
1A 26.2 0.7 5.3 139.5 1133 42.0 323.7 1180.1
Soil background 0 115 0.1 0.1 61.0 22,6 26.9 26.0 74.2 -
value (China)
Us NA - - - 95.0 105.0 - 73.0 240.0 [25]
o 1A - 151.5 0.1 597.5 23.7 475 3.0 474.6 [26]
) NA 16.4 - 4.2 86.4 26.3 4.7 46.0 388.0 [27]
Mexico
1A 10.1 - - 101.5 167.0 52.8 226.9 649.4 [28]
NA - - 1.9 - 134.7 20.4 111.3 180.0 [29]
Korea
IA - - 8.0 - 142.4 52.1 217.8 132.0 [30]
Indi NA 95.6 0.7 29.3 423 - 202.7 303.2 [31,32]
ndia
1A 3.6 - 0.3 64.4 57.0 40.3 81.0 280.5 [32,33]
I NA - 0.4 0.7 53.1 84.5 46.5 110.8 237.2 [34-36]
ran
1A - - 0.1 49.1 30.2 61.9 11.9 123.0 [36]
Soai NA - - 1.2 259 57.5 37.8 78.2 128.6 [37-39]
ain
P 1A - - 3.6 129.0 120.3 74.3 210.8 398.3 [38,39]
) NA - - 0.5 195.7 335.2 53.6 145.5 995.1 [40]
Singapore
1A - - 2.4 823.5 4899.0 194.8 309.0 1672.5 [40,41]
NA - - - - 111.0 177.0 245.0 [42]
Turkey
1A - - 2.5 29.0 36.9 44.9 74.8 112.0 [43]
NA 5.7 - - 93.7 273 243 44.7 105.3
Bangladesh [44]
1A 7.0 - - 136.0 105.0 35.0 54.0 169.0

industry, smelting industry, etc.) has been successfully
achieved in recent years.

In conclusion, limiting the concentration of pollutants
was far from enough in the process of pollution control.
Based on the dual control of total energy consumption
and pollutant discharge, the industrial structure needs
to be optimised to prevent the serious regional pollution
caused by industrial concentration.

Ecological Risk Assessment of Heavy Metals

The ecological risk of dustfall heavy metals in
industrial and non-industrial areas is shown in Fig. 2.
In most areas of China, the pollution of Cd was more
serious than that of other heavy metals, whereas the
pollution of Cr and Ni was less serious than that of
other heavy metals, which present the same distribution
patterns in non-industrial and industrial areas. Dustfall
heavy metals were mainly concentrated in China’s
central and eastern regions, and the ecological risk of
dustfall heavy metals in industrial areas was generally
higher than that in non-industrial areas.

In non-industrial areas, Hg and Cd caused higher
ecological hazards than other heavy metals. The E
values of Hg in Inner Mongolia, Guangdong, Guizhou
and Sichuan were 337.14, 52571, 400 and 628.57,
respectively. The £ values of Hg in Shanghai, Jiangsu,
Shanxi and Heilongjiang were under considerable

ecological hazards. The E' value of Cd was serious
in non-industrial areas (except in Inner Mongolia,
Ningxia and Xinjiang). The ecological hazards caused
by As were high in Jilin, considerable in Shaanxi
and moderate in Guangdong and Henan. In industrial
areas, the £ values of Cr and Ni were lower than 40,
indicating slight ecological risk. As caused ecological
hazards in Henan and Guangxi, which posed serious
ecological risk level (E > 320). The £ value of As in
Guangdong was 116.07, posing a high ecological risk.
The E' values of As in Shaanxi and Jilin were within
40 < £ < 80, indicating a moderate ecological risk. The
E values of Hg in Fujian, Zhejiang, Liaoning, Guizhou
and Guangxi were >320, indicating serious ecological
hazards, whereas those in Jiangsu and Hebei were
160 < E’< 320, posing high ecological hazards.
In Xinjiang and Shaanxi, the £’ values of Hg were
40 < E' < 80, indicating moderate ecological hazards.
The ecological hazards caused by Pb were mainly
distributed in Shaanxi, Henan, Chongqging and
Tianjin with £ > 320. The maximum £ value of Zn
in Hubei was 117.69, posing a considerable ecological
risk. Cd caused the main ecological hazards in industrial
arecas (except in Ningxia, Shaanxi and Shandong);
however, the £’ value of Cd in non-industrial areas
was more than 320, indicating that Cd posed more
ecological risk in non-industrial areas than in industrial
areas.
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Fig. 1. Changes of dustfall heavy metals in non-industrial (NA) and industrial areas (IA) of China.

Additionally, the ecological pollution levels of pathways, which was consistent with the results of Fang
dustfall heavy metals (except Hg and Cd) in non- et al. [54]. The outdoor vapour inhalation of Hg was the
industrial areas ranged from low to moderately polluted, most important exposure pathway. The exposure doses
whereas those in industrial areas mostly ranged from of children and adults in non-industrial areas were
considerable to serious, except Cr and Ni with low 3.42 x 10°° mg/(kg-day) and 1.23 x 10° mg/(kg-day),
ecological pollution level. respectively, and those in industrial areas were

1.02 x 10°° mg/(kg-day) and 3.70 x 107 mg/(kg-day),

Daily Exposure Doses of Heavy Metals respectively, which were consistent with the results of
Via Various Pathways Zheng et al. [55]. The order of the non-carcinogenic
exposure dose by the three pathways for children

The exposure doses of dustfall heavy metals are and adults in non-industrial and industrial areas
shown in Table 3. was Zn>Pb> Cr>Cu>Ni>As>Cd>Hg and Zn>Pb>Cu

The exposure doses of dustfall heavy metals are >Cr>As>Ni>Cd>Hg, respectively. Zn and Hg had the
shown in Table 3. Amongst the three contact exposure maximum and minimum exposure doses, respectively,
pathways, ingestion was the main exposure pathway, which were consistent with the results of heavy metal
followed by dermal contact and inhalation (Table 3). concentrations in non-industrial and industrial areas.
The non-carcinogenic exposure dose for children The carcinogenic exposure doses of As, Cd, Cr and
was higher than that for adults in all three exposure Ni for children were lower than those for adults both in
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Fig. 2. Ecological risk index of dustfall heavy metals in non-industrial (NA) and industrial areas (IA) of China.
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non-industrial and industrial areas. Cr had the highest
exposure dose amongst them. The exposure doses of
Cr for adults and children were 4.65 x 10~ mg/(kg-day)
and 3.23 x 107 mg/(kg-day) in non-industrial areas and
6.17 x 107° mg/(kg-day) and 4.27 x 10~ mg/(kg-day) in
industrial areas, respectively.

Human Health Risk Assessment

Different heavy metals have different toxicities, so
the health effects of heavy metals on humans cannot be
accurately assessed via exposure dose alone. Thus, the
non-carcinogenic and carcinogenic risk indices of eight
dustfall heavy metals in non-industrial and industrial
arcas were calculated based on the above exposure
doses.

The results are shown in Table 4. The hazards
of dustfall heavy metals on children and adults in
non-industrial and industrial areas of China were
inconsistent. In non-industrial areas, the HI was
1>As>Cr>Pb>Cd>Cu>Ni>Zn>Hg for children and
1>As>Cr>Pb>Cd>Cu>Ni>Zn>Hg for adults. In industrial
areas, the HI was As>Pb>1> Cr>Cd>Zn>Cu>Hg>Ni
for children and 1>As>Pb>Cr>Cd>Zn>Cu>Hg>Ni for
adults. In non-industrial areas, the non-carcinogenic
risk for children and adults was consistent with the
exposure doses. The health risk of the three pathways
for children and adults was less than 1, indicating that
the risk was low and negligible. However, in industrial
areas, the non-carcinogenic risk of As and Pb exceed
the safety threshold of 1. As is related to diseases
of the nervous system, blood and skin ulcer in both
children and adults [56]. The HQ of As for children
via the ingestion pathway was 1.80 in industrial areas,
indicating that the potential non-carcinogenic risk of As
in industrial areas was more severe than that in non-
industrial areas. Moreover, the non-carcinogenic health
effects for children were much more vulnerable than
those for adults.

For the carcinogenic risk index, the carcinogenic
risk values of As, Cd, Cr and Ni were within the range
of 107%-107*, but attention should be still paid to the
ecological hazards of Cr because the carcinogenic risk
index is close to 107°.

Uncertainty in Risk Assessment

It can be seen from the analysis results of different
methods that the sources of atmospheric dustfall in
China are extensive and the composition is complex,
and the maximum contents of different heavy metal
elements are distributed in different areas. The data
collected in this study come from different research
literature. Different papers have different divisions
of functional fields, and the heavy metals studied in
each literature are also different. Limited by objective
factors such as time and space, it is difficult to collect
data of heavy metals, and the research scope of this
study cannot cover the whole country. For example,

Jiangxi, Tibet, Yunnan, Hainan, Hong Kong, Macau
and Taiwan Province have not yet carried out relevant
studies. In addition, the sampling methods, time
and analysis methods of different literatures will also
have an impact on the research results. At present,
there is no unified and complete detection system for
heavy metals in dustfall in China, so it is suggested
that the above factors should be taken into account
in the follow-up research.

Conclusions

In recent years, many scholars within domestic and
foreign research areas have carried out a large number
of studies on heavy metal pollution in atmospheric
dustfall. However, most of these research areas are
concentrated in a kind of specific functional area, such
as urban streets [55], parks [3] and multiple functional
areas [5]. Compared with other studies within domestic
and foreign research areas, the study is first divided
into industrial and non-industrial areas, and the
spatial distribution of heavy metals is relatively more
comprehensive.

The distribution characteristics and ecological and
health risk assessment of dustfall heavy metals in non-
industrial and industrial areas of China were evaluated
in this study. Compared with relevant studies within
domestic and foreign research areas, the results showed
that (1) the respective concentrations of As, Hg, Cd,
Cr, Cu, Ni, Pb and Zn were 1.07-333.06, 0.04-1.10,
0.06-14.77, 9.43-436.76, 22.74-696.09, 16.40-91.00,
17.81-559.85 and 80.81-3479.07 mg/kg in non-industrial
areas and 4.35-3912.08, 0.07-27.60, 0.01-195.00,
39.70-1591.80, 24.46-1674.19, 6.47-248.23, 20.10-5287.00
and 89.50-15343.27 mg/kg in industrial areas, the
concentration of heavy metals in industrial areas
was significantly higher than that in non-industrial
arcas. Liu et al. [16] found in relevant studies that
the concentration of heavy metals in industrial areas
was significantly higher than that in surrounding
areas, but the study areas were only industrial areas
and surrounding areas, so it might not be possible
to accurately judge the he degree of heavy metal
pollutions. (2) The chronological statistics indicated
that the heavy metal concentrations decreased in non-
industrial areas but increased in industrial areas from
2006 to 2016, which suggested that only controlling
the concentration of heavy metals was limited for heavy
metal pollution. (3) The ecological risk assessment
of dustfall heavy metals varied widely, the ecological
risk of heavy metals in industrial areas is generally
higher than that in non-industrial areas, and the
ecological risk was mainly caused by As, Hg and
Cd. The pollution levels were mostly moderate to
considerable. In industrial areas, the ecological
pollution of As, Hg, Cd, Pb and Zn mainly ranged
from considerable to serious, and the ecological risk
of Liaoning, Shaanxi, Beijing-Tianjin-Hebei, Hubei
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and the southwest and southeast coastal regions of
China was serious. However, Das et al. [31] and Kim
et al. [8] found that the concentrations of As and Pb
in non-industrial areas in India were much higher
than those in industrial areas. The study found that
the concentrations of As and Pb in China’s industrial
areas are higher than those in India, while those
in non-industrial areas are much lower than those
in India. (4) The results of human health risk assessment
show that among all the investigated heavy metals,
the headquarters of industrial area has the highest
content of As. The HI value of heavy metals indicates
that the non-carcinogenic risks of children and adults
in industrial areas are significantly higher than that in
non-industrial areas, and the non-carcinogenic health
effects of children are far more vulnerable than adults.
Shabbaj etal. [57] found that the carcinogenic risk
(CRA) of heavy metals in Jeddah was within the safe
limits for children and adults, and the CRA value of
children was higher than that of adults. In view of these
results, the government should put forward measures to
monitor and control heavy metal pollution.
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Table S3. RfD and SF of the heavy metals in dustfall.

As Hg Cd Cr Cu Ni Pb Zn
RD,, 3.00E-04 3.00E-04 1.00E-03 3.00E-03 4.00E-02 2.00E-02 3.50E-03 3.00E-01
RD,, 3.01E-04 8.57E-05 1.00E-03 2.86E-05 4.02E-02 2.06E-02 3.52E-03 3.00E-01
RMD, 1.23E-04 2.10E-05 1.00E-05 6.00E-05 1.20E-02 5.40E-03 5.25E-04 6.00E-02
RD,,.. 8.57E-05
SF,, 1.5 6.30 42.0 0.84




