
Introduction

With the development of economy and society, the 
increase of deep foundation pit projects in the subway, 
underground commercial street, and other places 
inevitably brings about sand flow and pipe surge, which 
causes the collapse of the foundation pit other damage. 
Designers and builders pay the precipitation of the 
foundation pit more and more attention. Predicting and 
controlling the water table is often the key to ensuring 
the pit’s safe construction, which involves the influence 

radius R of the submersible aquifer. At present, the 
methods for determining aquifer parameters usually 
include the Pumping test method, the Pressurized 
water test method, the Water injection test method, 
the Trace test method, etc [1]. However, such pumping 
tests generally require a large amount of exploration 
and test to provide data support, which significantly 
limits the conditions for obtaining parameters. Besides, 
production practice is mainly based on Dupuit and 
Thiem to determine the stable flow pumping test 
formula to determine the impact radius of the diving 
aquifer, and on this basis extended by the linear plot  
[2-3].

Nevertheless, both pumping wells and at least one 
observation well are required for parameters. Making 
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more and more use of single-hole pumping tests 
has the advantages of low cost and simpleness. It is 
worth exploring and studying how to use single-hole 
no-observation holes to determine hydrogeological 
parameters to avoid the influence of field conditions.

In recent years, numerical methods have gradually 
been applied in the test of pumping wells. Zhu and 
Yeh (2005) applied hydraulic tomography to numerical 
methods, explaining the spatial distribution of hydraulic 
parameters of aquifers by inversion [4]. Chen Xiaoyi et 
al. (2016) calculated the parameters of the aquifer by 
parsing numerical simulation and obtained the aquifer 
permeation coefficient value more accurately [5]. Chen 
Chen et al. (2017) used Aquifer Test data to solve 
aquifer parameters using pumping test data, which 
focused on pore permeation coefficients and elastic 
water supply [6]. 

The practical applications of the theoretical 
methods also revealed their limitations in acquiring 
hydrogeological parameters since the complex 
and unknown environment in which most projects 
are located presents significant difficulties to the 
applicability of the proposed approaches. Consequently, 
field pumping test is extensively exploited and applied 
to obtain accurate parameters for relevant problems. 
Regarding the implementation of field pumping tests, 
the high cost and low efficiency are still the main 
limitations in acquiring parameters. For instance, 
Zhao Ruiyu et al. (2021) still adopted the aquifer 
superimposed discharge test to describe the spatial 
distribution of the overall hydrogeological parameters 
in the study area [7].

In recent years, meshless methods have become 
increasingly popular. Addressing the shortcomings of 
the traditional numerical method requires the generation 
of complex meshes and cumbersome calculation times 
to arrive at approximate solutions [8]. The Trefftz 
method can quickly solve the boundary value problem. 
At present, it has been applied in many fields of 
physics, mathematics, and engineering, the approximate 
solution can be expressed as a linear combination of 
functions that satisfy the control equation [9-18]. Li et 
al. (2007, 2008) made a comprehensive comparison of 
Trefftz and other boundary methods to conclude that 
Trefftz is the simplest method of calculation, providing 
the most accurate equation solution and optimal 
numerical stability [19-20]. In 2018, some scholars 
combined the collocation scheme from the method 
of fundamental solutions (MFS) with the collocation 
Trefftz method (CTM) to improve the applicability of 
the method for solving boundary value problems [21]. 
For inverse Cauchy problems, Liu (2008) respectively 
applied indirect and direct Trefftz methods to solve 
these problems [22-23]. However, they could only 
calculate more than 50% of the cases with known 
boundaries and only proposed solutions for single-
connected problems. Liu et al. (2013, 2018) used CTM 
(Collocation Trefftz method) to reduce the known 
boundary to 40% when solving the simply connected 

inverse Cauchy problem, but the unlimited domain 
and double connected problem was not involved  
– and related engineering problems [24-25]. Xiao (2018) 
carried out an application examples of subsurface 
flow problems with free surface in homogenous and 
layered heterogeneous geological media to model 
geofluid flow in heterogeneous geological media [26]. 
Ku Cheng Yu (2019) utilizing Trefftz functions for 
modeling subsurface flow problems, obtain the accurate 
location of the nonlinear moving boundary for transient 
problems by the superposition theorem using the basis 
functions [27]. Yang and Su et al. (2020) used Trefftz 
method and space-time collocation method to simulate 
the fluctuation characteristics of groundwater in coastal 
aquifers, but it was only based on one-dimensional 
homogeneous and isotropic soil, and never involve  
the groundwater problem of two-dimensional soil [28]. 
Xi Qiang (2020) introduces a novel localized collocation 
Trefftz method (LCTM) for potential-based inverse 
electromyography, the sparse linear system is yield 
by satisfying governing equation at interior nodes and 
boundary conditions at boundary nodes and mitigates 
the ill-conditioning resultant matrix encountered in the 
CTM [29].  

In this paper, we present a New Method based on 
the infinite domain problem, using Trefftz Method and 
the New Fictitious Time Integration Method (NFTIM) 
[30], to determine the aquifer parameters in the actual 
engineering of the pumping well test problem. This 
method achieves that in the absence of observation 
wells and the uncertainty of hydraulic conductivity  
T and permeability coefficient K, the influence radius 
R of the submersible aquifer is obtained directly 
and the approximate head distribution and deep drop  
in the affected area.

Materials and Methods

Basic Principle

Trefftz Method Class II Boundary Condition 
Substrate

The two-dimensional Laplace equation is derived 
from the following expression:

2 2

2 2 0∂ ∂∆ = + =
∂ ∂

u uu
x y                     (1)

The first kind of boundary condition is the constant 
water head boundary condition (the Dirichlet boundary 
condition), whose boundary value can be expressed as 
several stages:

1

n

v v
v

f α
=

= Ψ∑
                         (2)
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Where f denotes the boundary value for the Dirichlet 
boundary condition, n denotes the total number of items 
in the expansion, αv denotes the coefficient obtained 
from the expansion of order v, Ψv is the Dirichlet 
boundary condition T-complete basis.

By simplifying the Dirichlet boundary condition, 
the 2D Laplace Formula T-complete basis function can 
be organized

{1, ln , cos , sin , cos , sin }v v v vr r v r v r v r vθ θ θ θ− −
 (3)

By adding legal rationale to the Trefftz basis line 
overlay to control equation, approximate solution at 
the Dirichlet boundary condition can be expressed as 
follows:

0 0
1

ln ( ) cos ( )sin
m

v v v v
v v v v

v
u a b r a r b r v c r d r vθ θ− −

=

 = + + + + + ∑
 	

(4)

Where the solution u is the approximated solution 
at the collocation point, t donates the distance between 
the setting point and the source point, and θ donates the 
included angle between the line connecting the setting 
point and the source point and the positive direction 
of the polar axis, m donates the total order of Trefftz 
method. For determining the coefficients such as a0, b0,  
av, bv, cv, dv, we must employ the collocation method.

The second type of boundary condition is the flux 
boundary condition (the Neumann boundary condition), 
whose boundary flux can first be expanded by the 
number of stages as follows:

1

n

vv
v

g α
=

= Ψ∑
                   (5)

Where g denotes the boundary flux for the Neumann 
boundary condition, n denotes the total number of 
items in the expansion, ᾱ v is equal to αv when we solve 
the same problem, Ψ̄  v denotes the Neumann boundary 
condition T-complete basis.

By simplifying the Neumann boundary condition, 
the 2D Laplace Formula T-complete basis function can 
be organized
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Linear superposition of the Trefftz basis by 
addition theorem, and the result of the control equation 
differential when the Neumann boundary condition is 
differentially derived, can be represented as follows:
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Two-dimensional Laplace problems can be simply 
divided into simply connected domain problems, infinite 
domain problems and multiply connected domain 
problems. In this manuscript, the problem of pumping 
well test is an infinite domain problem, the calculation 
domain is infinite in scope, and there is a cavity in the 
domain. When solving, the source point is placed in the 
cavity in the defined domain, and its calculation model 
is shown in Fig. 1. At this point, the T-complete base is 
represented as:

 (8)

New Fictitious Time Integration Method (NFTIM)

In this manuscript, the NFTIM is introduced, 
improving the accuracy; stability of the numerical 
method; and reducing the calculation time effectively 
[30]. Moreover, solving nonlinear equations can 
make the physical significance more precise, ignore  
the Jacobian matrix derivative, and effectively improve 
the morbid problem.

Fig. 1. Diagram of two-dimensional Laplace infinite domain 
problem.
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First, consider a nonlinear algebraic array such as

           (9)

Introduce a virtual time parameter τ, assuming a 
time-related function 

( ) (1 )i iy xτ τ= +                    (10)

The control parameter ℜ  is introduced, and the 
former difference method is used for integration. It can 
be obtained that

       (11)

H denotes the fictitious time step, K denotes the Kth 
discrete, τK denotes accumulation of the fictitious time  
τK = KH.

Eq. (11) NFTIM solves the numerical time integral 
formula of linear equations and nonlinear equations.

Virtual time function in the method q(τ) = 1 + τ, 
three conditions have to be met:
(1) q(τ) must be a differentiable function;
(2) q(0) = 1;
(3) q(∞) = ∞.

Based on this, a new virtual time function with  
a broader meaning is proposed, which can effectively 
improve the stability of solving highly nonlinear 
problems:

( ) (1 ) ,0 1wq wτ τ= + ≤ ≤                (12)

Where w denotes the fictitious time parameter, can 
rewrite the Eq. (10) to 

( ) (1 )w
i iy xτ τ= +                      (13)

than

           (14)

The difference method of the preceding item is used 
to integrate Eq. (14), can be expressed as

  (15)

H denotes the fictitious time step, w denotes the 
fictitious time parameter, K denotes the Kth discrete, 
τK denotes accumulation of the fictitious time, and 
τK = KH. Eq. (15) is the numerical time integral formula 
for solving linear equations and nonlinear equations by 
NFTIM. 

Calculation Process

Modeling and Matching Points

Groundwater control equation, or Laplace equation

2 2

2 2 0u u
x y

∂ ∂+ =
∂ ∂                       (16)

Given the calculation domain and the initial 
condition 

: ( , ) ( , )D u x y f x yΓ =                   (17)

( , ): ( , )N
u x y g x y

n
∂Γ =

∂                (18)

Where f(x, y) denotes the first kind of boundary 
condition function of the constant head, g(x, y) denotes 
the second kind of boundary condition function of 
constant flow, it is assumed that both the Dirichlet and 
the Neumann boundary conditions are satisfied.

As shown in Fig. 2, N points are arranged on the 
boundary of a given computing domain Ω. The specific 
location of boundary points 1~n1 is known. The position 
of boundary points n1 + 1~n1 + n2 is unknown; convert 
rectangular coordinate system (xi, yi) to the cylindrical 
coordinate system (ri, θi).

Solve the Pending Coefficients

According to the given boundary conditions above, 
the collocation points at each known position are 
respectively substituted into the boundary condition 
functions of class 1 of constant head f (x, y) and class 2 
of constant flow g (x, y). The accurate boundary value 
calculated is substituted into Eqs (4) and (7), and all 
the boundary points at known positions can be jointly 
established into a set of linear algebraic equations.  
We introduce the characteristic length R0 to improve 
the accuracy of the solution while maintaining the 
stability of the matrix [31].

Fig. 2. Schematic diagram of Trefftz inverse calculation model.
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Calculate the Location of the Unknown Boundary

Use polar coordinate systems (ri, θi), θi of n1 + 1~ 
n1 + n2 boundary points with unknown boundaries can 
be set to known values. Only ri is needed to determine 
each point’s specific position to determine the shape of 
unknown boundaries.

Assuming that ri = r0, r0 donates initial guess value, 
according to the obtained undetermined coefficient 
vector α, substitute the Dirichlet boundary condition 
and the Neumann boundary condition basis function to 
obtain the matrix operation form of A'α = B' 

  
(25)

The polar coordinate system (ri, θi) of the unknown 
boundary points is converted into a Cartesian 
coordinates system (xi, yi), and substituted into Eqs.
(17), (18) to obtain fi and gi. The error δ of the unknown 
boundary points is calculated. If the error is less than 
the convergence precision, then (ri, θi) is the desired 
position point. 

{ }max ' , 'i i i if f g gδ = − −
             (26)

If the error is greater than the convergence accuracy, 
The NFTIM needs to quickly find the ri satisfying 
condition. At this point, the newly assumed ri can be 
obtained by the following equation 

1

(1 )
K K

i i w
K

Hr r δ
τ

+ ℜ= −
+                   (27)

Where H denotes the fictitious time step, w denotes 
the fictitious time parameter, K denotes the Kth 

discrete, τK denotes accumulation of the fictitious time, 
and τK = KH. 

Then, matrix calculation is carried out for the newly 
assumed ri, and the convergence accuracy is compared 
until the error is less than the convergence accuracy. At 
this time, (ri, θi) is the desired position point. As long as 
the points are dense enough, all the calculated position 
points can be combined to obtain the shape of all the 
unknown boundaries. 

The exact calculation steps are shown in Fig. 3.

Calculate the Internal Point Water Head Value

Substituting the undetermined coefficient into  
the approximate solution composed of the Trefftz basis, 
the corresponding water head value u(xi, yi) can be 

Considering the Dirichlet boundary condition of 
constant head, the approximate solution is shown as 
follows:

0
1 0 0

ln ( ) cos ( ) sin ( , )
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v vi i
i v i v i i i

v

r rb r b v d v f x y
R R

θ θ− −

=
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+ + = 

 
∑

 
(19)

Considering the Neumann boundary condition of 
constant flow, the approximate solution is shown as 
follows: 
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i i
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(22)

The linear algebraic equations jointly established 
at all known boundary points can be expressed as the 
matrix operation form of Aα = B:

(23)

Where A is an aa×bb matrix composed of Trefftz 
basis functions, B is an aa×1 vector composed of 
boundary values. The pending factor α is an bb×1  
vector, and aa = 2n1, bb = 2m + 1.

Due to the Trefftz basis function is derived from 
the groundwater control equation, and the Trefftz 
method itself has strong stability and is not susceptible 
to disturbance, so as long as the boundary point of 
partially known locations can meet the boundary 
conditions well, the pending coefficient can be solved 
by the left division operation in Matlab program

α = A/B                         (24)
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calculated from B = Aα any point in the calculation 
domain. 

0
1 0 0

( , ) ln ( ) cos ( ) sin
m

v vi i
i i i v i v i

v

r ru x y b r b v d v
R R

θ θ− −

=

 
= + + 

 
∑

	
(28)

We should pay attention to whether the internal 
water head value meets the actual physical phenomenon. 
The accuracy of the undetermined coefficient vector α 

obtained by partial known boundary should be initially 
determined. 

Case Study

Engineering Overview

Harbin is located in the central and southern part of 
Heilongjiang Province, which belongs to the Songnen 
Plain. The overall terrain is relatively flat, and the 

Fig. 3. Calculate the flowchart.

Fig. 4. Study area section V of phase II investigation of Harbin Metro Line 3.
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landforms are mainly flowing water landforms. The 
famous Songhua River runs through Harbin from west 
to east. Harbin Metro Line 3 belongs to the second 
phase of the project [32]. The mainline has a total 
length of about 32 km, with all underground lines 
and underground stations. Survey the V section of  
6 stations, with a total length of the line about 6.37 km. 
There are nine drilling holes and two observation 
holes for pumping tests in Section V of the Phase II 
engineering survey. The engineering data used in this 
case is from hole ZK03 of Qunli Fifth Avenue Station, 
Section V of Phase II engineering survey of Line 3, 
with an observation hole attached, as shown in Fig. 4. 
After well completion, a steady flow pumping test 
will be carried out. The water pumping test hole has  
a diameter of 400 mm and a depth of 47-56 m after  
good completion, penetrating the Quaternary strata. 
The observation hole has a diameter of 108 mm and  
a depth of 35 m. 

The engineering area belongs to the submersible 
groundwater, water-conducting, water-rich, rock 
permeability gradually increases with the particles 
thickening from top to bottom, weighted average 
penetration coefficient is 18.85~33.21 m/d, inferred 
water inflow is 3000~5000 m3/d. According to the 
formation lithology extracted during drilling, the 
measured data of initial water level and stable water 
level, as well as the average permeability coefficient 
of the aquifer of hole ZK01, as shown in Table 1,  
the permeability coefficient of hole ZK03 selected 
in Qunli Fifth Avenue Station in this study can be 
estimated to be 20.17 m/d.

The engineering situation of the Zk03 hole in the V 
standard section of Harbin Metro Line 3 is summarized 
into the following parameter table for subsequent 
calculation and analysis as shown in Table 2:

Model Building

This case study area is an infinite domain problem 
with the following shape parameters:

{( , ) ( )cos , ( )sin } 0 2x y x yρ θ θ ρ θ θ θ πΩ = = = ≤ ≤
 

{( , ) ( )cos , ( )sin } 0 2x y x yρ θ θ ρ θ θ θ πΩ = = = ≤ ≤                          (29)

( ) 0.2r θ ≥                           (30)

Two-dimensional homogeneity steady state control 
equation:

( , ) 0h x y∆ =                         (31)

The problem of pumping wells usually involves only 
the boundary of the head, all the boundaries, in this 
case, meet the Dirichlet boundary conditions, and the 
specific boundary conditions are set as follows:

1( , ) 108.50 ( , )h x y m x y= ∈Γ       (32)

2( , ) 111.05 ( , )h x y m x y= ∈Γ       (33)

According to the Thiem formula, set the analytical 
solution expression to

ln
2
Qh r C

Tπ
= +

                (34)

Table 1. Zk03 single-hole pumping test, observation hole layout table.

Main hole number Observation 
hole

Observe the borehole diameter 
(mm)

Observe the depth 
of the hole (m) Illustrate

Zk03 C2 108 35 Away from the main hole 15 m

Table 2. Zk03 pumping test data table.

Parameter Unit Value Comment

Water level /Buried deep m 111.05/7.2 Dalian elevation

Pumping well radius rw m 0.2 \

Observation wells and Pumping wells distance m 15 \

Aquifer thickness m 34 Cumulative thickness

Quantity of flow Q m3/h 50 \

Main well deep m 2.55 \

Observation wells Drop deep m 1.76 \

Permeability coefficient k m/d 20.17 \
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where

2 2ln
2C C

QC h r
bkπ

= −
            (35)

and

2
2

ln
2 C

C

Q rh h
bk rπ

= +
            (36)

This case considers configuring 400 boundary 
points evenly distributed on the boundary, of which 
200 points are known internally, and 200 points are 
unknown external boundaries. The order of the selected 
basis function is 20, and the position and range are 
shown in Fig. 5 and the radius of the impact range in 
the figure is hypothetical. Because the location of the 
outer boundary is unknown, the internal point spacing 
configured within the calculation domain is 2, and the 
details of each parameter are detailed in Table 3.

Results and Discussion

Observation Well Verification

First of all, we use the Trefftz method to reverse the 
verification of the location of the observation well under 
the condition that the inside is the pumping well head, 
to verify the feasibility of this method in the pumping 

well experiment, at this time, the boundary condition of 
the unknown boundary is

2( , ) 110.03 ( , )h x y m x y= ∈Γ      (37)

The location of unknown observation wells is 
restored using the Trefftz method in the known pumping 
well location and the stable pumping head boundary 
conditions, as shown in Fig. 6. It can be concluded from 
the figure that the boundary position of the calculated 
water head of 110.03m is highly coincident with  
the position of r = 15m the observation well, indicating 
that the recovered observation well position fits with  
the height of the correct observation position. The result 
of the recovery boundary is calculated with an absolute 
error of the correct boundary, as shown in Fig. 7, 
θ donates angle of unknown boundary points. 
The absolute error between the restored boundary 
position and the correct boundary was 9.94×10–10,
which shown a very considerable accuracy.  
The calculation parameters are illustrated in Table 4.

Next, the case is parsed and verified with the Thiem 
formula. Specifically, under the Dirichlet boundary 
conditions, the known boundary is only the inner 
boundary, the location range of the pumping well, 
and the head height. The trefftz method is used to 
calculate the numerical solution in the domain, and it 
is compared with the Thiem formula for the analytical 
solution. A total of 522,459 internal points are arranged 
by the distance of 1m from the shaft of the pumping 
well. Fig. 8 shows the error distribution of numerical 
and analytical solutions, where the calculation domain 
is from the known inner boundary of the pumping 
well to the unknown outer boundary of the observation 
well. From the figure, it can be seen that the maximum 
absolute error of the two is 3.52×10-18. The error 
fluctuations are concentrated near the inner boundary 
and farther away from the inner boundary; absolute 
error is flattened. The error distribution is uniform 
and maintained at 10-18 under the high precision range. 
There is no convergence, indicating that the pumping 
well test in using the Trefftz method compared to the 
Thiem formula is comparable, with a high degree of 
accuracy. 

Table 3. Pumping well test calculates the model parameter table.

Table 4. Pumping well test observation well verification simulation parameter table.

parameter Space boundary points Known boundary points Internal point spacing Order

Value 400 200 1 20

project Initial guess convergence steps Convergence 
condition

Fictitious time steps 
H 

Control parameters 
ℜ  

Time parameter 
w 

parameter 10 2333 10–9 0.8 1 0.1

Fig. 5.  Boundary and interior points layout diagram.
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Impact Radius

After verifying the feasibility of the calculation and 
proof method within the observation well, the radius 
of the impact range of the pumping well is calculated. 
The impact radius is the distance from the shaft of the 
pumped well to the groundwater level drop of zero, 
which is a constant value, and a distance can simply 
express the impact radius.

When calculating the impact radius, the known inner 
boundary is still the head of the pumping well, and the 
Trefftz method is used for the reverse calculation of the 
influence radius. In this case, the boundary condition of 
the unknown boundary is the elevation of the original 
water head of the pumping well 

2( , ) 111.05 ( , )h x y m x y= ∈Γ    (38)

Details of parameters calculated for the radius  
of influence of the pumping well test are shown  
in Table 5. Because two decimal places are reserved 
for the test data, the boundary convergence condition 
is set as 10–2, that is, three decimal places are reserved 
to ensure the validity of the calculation results. Data 
retention will be discussed again in the following paper. 

As shown in Fig. 9, the unknown boundary  
is restored to find the radius of the impact range  

Fig. 6. Observation well boundary recovery check diagram.

Fig. 7. Observation well checking boundary absolute error 
diagram.

Fig. 9. Impact range boundary diagram.

Fig. 8. An absolute error distribution map of analytical and 
numerical solutions in an observation well domain.

Table 5. Calculation and simulation parameter table of influence radius of pumping well test.

Project Initial guess Convergence 
steps

Convergence 
condition

Fictitious time 
steps H 

Control parameters 

ℜ
Time parameter 

w

Parameter 300 2659 10–2 2 2 0.1
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of the pumping well, as can be seen from the figure,  
the impact radius of the pumping well is 563.81 m. 

Drop Deep 

After drawing a diagram of the boundaries of the 
impact range of the entire pumping well, we calculated 
the head value within the range of the impact radius, 
in which an internal point was arranged 1m apart from 
the shaft of the pumping well, with a total of 988048 
internal points. The results of the distribution of the 
head within the range were calculated as shown in 
Fig. 10, the cross represents the depth reduction at a 
certain distance from the pumping well axis, and the 
line represents the fitting curve of the depth reduction 
at each point. From the figure, it can be seen that the 
closer the distance from the shaft of the pumping well, 
the faster the head changes, the smaller the change of 
the head when the influence radius is more significant.

After obtaining a diagram of the overall distribution 
of the head in the range, When θ = 0 is selected, 
the relationship between the height of water level drop 
when the distance R from the axis of the pumping well 
increases is obtained, that is, the drop deep curve.  
As shown in Fig. 11, when the distance from the axis of 
the pumping well is less than 50 m, the depth reduction 
changes significantly; when the distance is greater 

than 100 m, the water level begins to decline slowly  
at a certain speed. When the distance exceeds 450 m, 
the water level changes little, and the overall law 
conforms to the objective fact. 

Next, we try to verify the analytical solution with 
Thiem formula. Specifically, under the Dirichlet 
boundary conditions, the known boundary is only the 
inner boundary, the location range of the pumping 
well, and the head height. Trefftz method is used 
to calculate the numerical solution in the domain, 
compared with the Thiem formula. Fig. 12 shows the 
error distribution of numerical and analytical solutions 
within the influence range, where the calculation area 
is from the known inner boundary of the pumping well 
to the outer boundary of the unknown impact radius.  
It can be seen from the figure that the maximum 
absolute error of the two is 1.11×10-15, and the error 
fluctuation is evident in the calculation domain.  
The error fluctuation is the largest near the pumping 
well. However, the error always remains within 
the accuracy of 7×10-16~1×10-15. There is no non-
convergence, which indicates that the Thiem formula is 
verifiable in this kind of problem. 

Although Thiem formula is also applicable to  
the single-well pumping problem, it can be seen from 
Eq. (39) that the constant C must be determined first

ln
2
Qh r C

Tπ
= +

                   (39)

To confirm the constant C, an observation well 
must be present, and the distance from the observation 
well to the pumping well must be accurately measured.  
The water level of the observation well after the 
pumping is stable. The deformation of Eq. (39) is 
transformed into Eq. (40).

Fig. 12. Absolute error distribution diagram of analytic and 
numerical solutions within the influence range.

Fig. 10. Water head distribution diagram.

Fig. 11. Depth-dropping graph.
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0
0

ln
2
Q rh h

T rπ
= +

                   (40)

At this point, water head, depth drop and other 
parameters can be calculated at any point within  
the calculation range. However, in actual engineering, 
due to the limited site conditions, it is sometimes 
impossible to carry out borehole observation. Secondly, 
when the impact radius range of the pumping well  
is uncertain, the validity of the borehole location of  
the observation well cannot be confirmed. If the 
distance is too close to the pumping well will cause 
large error. However, if the distance is too far, the water 
level will change too little or even remain unchanged 
beyond the impact radius range, resulting in the failure 
of the data of the observation well. In addition, drilling 
work has a certain cost. Therefore, by comparison,  
the Trefftz method can highlight the advantages of  
the inverse calculation of pumping well problems. It is 
more practical and effective to complete the regional 
head calculation and estimate the boundary of the 
affected area without the existence of the observation 
well and with higher accuracy. 

Engineering Impact Assessment

Due to the engineering measurement error,  
the experimental data is reserved to two decimal 
places, and the calculation is used to reserve three 
decimal places for reference. In actual engineering, 
if two decimal places are retained, the impact radius 
of the pumping well can be regarded as 408.20 m.  
The depth drop here is less than 0.1 m, so it can be 
basically regarded as the influence radius of the pumping 
well. The reference range of the given influence radius 
is 331~538 m according to the real pumping test, and 
408 m is calculated. The results are in good agreement 
with those calculated in this paper. 

According to the above data, the water flow in 
the working area of the test site affected the overall 
topography, landform and stratigraphic lithology 
of the area. The exploration found that there were 
silty clay, fine sand, medium sand, coarse sand, and 
gravel in the strata. At the same time, the superior 
water system conditions bring abundant groundwater. 
The characteristics of the thick aquifer, strong water 
permeability, and groundwater depth make foundation 
pit dewatering work necessary for constructing 
primary buildings such as the subway. In foundation pit 
dewatering, the original underground water flow field 
will be changed, resulting in water head difference. 
In addition, under the influence of dynamic water 
pressure itself, fine soil particles will flow through 
the pores of larger particles under scouring, forming 
potential erosion, leading to the destruction of regional 
soil structure, and even the formation of underground 
quicksand. 

Subway occupies most of itself because of the part 
below the groundwater level. Considering that the 
groundwater will have a significant buoyancy effect on 
the foundation, the design should be prepared to deal 
with the floating effect of groundwater on the whole 
region under long-term adverse conditions. Therefore, 
an anti-floating calculation should be carried out. 

Conclusions

Taking the V standard paragraph of Harbin Metro 
Line 3 as a typical case study, using the real data of 
Zk03 hole pumping test to model, comparing the real 
data by parsing and verification, and calculating the 
hydrogeological parameters such as the influence radius, 
head distribution and depth curve of the pumping well, 
provide hydrogeological parameters for the design and 
construction of subway projects. 

(1) In this paper, the multilinear equation is 
transformed into a monistic nonlinear equation to 
solve the problem of the deformation of the Laplace 
equation Cauchy problem, and explore the numerical 
algorithm error estimation to achieve the optimal order.  
The calculation process and step design of the 
groundwater inverse problems are carried out by the 
Trefftz method complete basis function under the 
Dirichlet and Neumann boundary conditions and 
combined with the NFTIM. 

(2) This paper verifies that the NFTIM method has 
improved the computational accuracy compared with 
the traditional iterative method. It has more evident 
advantages in the problem of the large and complex 
computational workload. The possibility of calculating 
the impact range of pumping wells is verified by the 
case of rule-type infinite domain inverse calculation.  
The results show that the maximum absolute error 
between the numerical solution and the analytical 
solution is less than 10-15. The error fluctuation mainly 
concentrates near the area where the unknown boundary 
distribution points are concentrated. 

(3) The method presented in this paper was applied 
to an actual case of pumping well in Section V of Harbin 
Metro Line 3. Through analytical solution verification 
with the Thiem formula, the maximum absolute error 
of the water head in the region is less than 10-17, and 
the error fluctuation is mainly concentrated near the 
inner boundary. Secondly, the absolute error is less than 
10-9 compared with the observed well location, proving 
that the Trefftz inverse calculation method is more 
maneuverable and has a high degree of accuracy.
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