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Abstract

Wastes and dust discharged from aluminum factory generally result in soil contamination  
and may cause enrichment of Cadmium (Cd) in local crops. However, the pattern of Cd enrichment 
in the vegetables by contaminated soil of aluminum factory and their health risk are unclear. In this 
study, a total of 12 species of vegetables including 163 samples were collected around an abandoned 
aluminum factory. The results showed that 21% of the leafy vegetables with Cd exceeding Food Safety 
Standard Limit of China. The Cd in vegetables collected from different distances of four directions 
from the abandoned aluminum factory had no significant differences (p>0.05). Our results indicate 
that the highest hazard quotient (HQ) and carcinogenic risk of Cd in vegetables are 1 km and 7-10 km 
away from abandoned aluminum factory respectively. The HQ values of Cd in vegetables for children 
and adults are within the safe range, however CR values of Cd in vegetables for both children and 
adults are higher than the acceptable limit of USEPA (10-6), suggesting potential health risks. The health 
risks for children aged 2-6 years old are higher than aged 7-17 years old and adults due to the less 
amount of vegetable intake by children. The intake risks of Cd in different vegetables are spinach>green 
vegetables>red leafy vegetables>cabbage>radish leafy>stem vegetables>sweet potato leaves>pumpkin 
leaves>beans.
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Introduction

Cadmium (Cd) is easy to be translocated between 
environmental media or from environment to organism. 
It will not only cause environmental pollution, but 
also cause potential health risks to the population 
[1]. Most scientists cite the identification of Itai-itai 
(ouch-ouch) disease in Japan during the 1960s as the 
first recognition of Cd to health damage [2-4]. Up to 
now, a large number of epidemiological studies and 
animal experiments have shown that Cd poisoning 
could cause a variety of cancers, such as lung cancer, 
prostate cancer, kidney cancer, liver cancer, etc [5, 6].  
The International Agency for Research on Cancer listed 
Cd as a human carcinogen in 1993 [7]; US National 
Toxicology Program also pointed out that Cd was  
a cause of cancer, and classified as Group I in cancerous 
incidence [8].

Vegetables are one of the indispensable foods in life 
and the main source of essential trace elements for the 
human body. Therefore, enrichment of heavy metals in 
vegetables can cause great damage to human health [9, 
10]. Studies show that vegetables contaminated with 
heavy metals were mainly grown around mines and 
the use of agricultural fertilizer [11]. Here, affected by 
the discharge of industrial “three wastes”, untreated 
or unqualified sewage is used for farmland irrigation, 
and heavy metals in sewage gradually accumulate in 
the soil, resulting in the accumulation of heavy metals 
in vegetables [12]. Soil pollutants are mainly heavy 
metals, and the main causes of pollution derived from 
the excessive emissions of industrial and mining wastes 
and smoke [13]. In previous reports, the contaminant Cd 
is pervasive in China. For example, nearly 100 tons of 
rice in Hunan province of China was destroyed because 
of excessive Cd accumulation caused by the long-
term environmental pollution of the mining industry. 
Consequently, health damage caused by Cd has been 
arousing increasingly concern in China [14, 15].

It is clear that the soil around aluminum factories 
was generally contaminated by heavy metals, and 
it is easy to cause enrichment of heavy metals in 
vegetables  [16, 17]. For instance, the maximum value 
of Cd in the soil around the abandoned aluminum 
plant in Guizhou of China was 1.4 mg·kg-1, which was 
2.2 times higher than the standard limit [18]. Cd 
pollution was the most serious in the soil around  
an aluminum factory in Baotou, the average value is 
0.60 mg·kg-1, and the overshoot rate was 100% [19], 
and the spatial distribution of soil heavy metal Cd 
mainly exists in the surface layer [20]. Studies have 
shown that the spatial distribution of pollutants in 
crops around factories is affected by direction, altitude, 
distance and wind direction [21]. In Shandong Province,  
the Cd content in vegetables (spinach and rape) around 
the aluminum factory exceed the National Standard 
Limit of China [22, 23]. In addition, the abandoned 
aluminum plant in Guizhou is surrounded by interlaced 
traffic, dense distribution of population and fields,  

and the planting of vegetables is also common. These 
results indicate that Cd in the soil surrounding the 
aluminum plant remains a significant ecological 
risk regardless of whether the aluminum plant is 
in production or abandoned for many years. If the 
land adjacent to the abandoned land is converted to 
agricultural use, even if the aluminum plant is abandoned 
for many years, there will be a huge potential health 
risk to the local community. As a result, a rigorous risk 
assessment is required before an abandoned area can be 
converted into farmland. Therefore, the main purpose 
of this study is (1) to explore the content and spatial 
distribution characteristics of Cd in different vegetables 
on the basis of previous studies on Cd in soil around 
aluminum plants; (2) To assess the health risks of the 
exposed population after ingesting different vegetables.

Materials and Method

Study and Sample Areas

The study area is located around Guizhou Aluminum 
Factory in Guiyang city, Guizhou Province, China.  
The aluminum factory is established in 1958 and ceased 
in August 2014, which is one of the largest electrolytic 
aluminum plants in China and with an annual output  
of 1.2 million tons of alumina. It is run for more than 60 
years and his numerous industrial wastes were dispersed 
into surrounding environment. The west of the factory 
is a residential area, and the east side is dispersedly 
covered by forest. The annual average temperature  
is 12.5ºC-14.5ºC and the annual average rainfall  
is 1147-1191 mm. The outcropped lithology is mainly 
composed of limestone accompanied by topography 
of low hills. After self-purified for several years, some 
local farmers cultivated vegetables in these abandoned 
lands. 

Vegetables Sampling and Analysis

In this study, a total of 12 species of 163 vegetable 
samples from 5, 8, 9 and 7 sampling areas along the four 
directions (A: Northeast, B: Northwest, C: Southwest 
and D: Southeast) surrounding the abandoned aluminum 
factory were collected (Fig. 1). The studied samples 
were composed of 141 leafy vegetables (cabbage, sweet 
potato leaves, spinach, pumpkin leaves, sweet potato 
leaves and radish vegetables, etc.) and 22 legume 
vegetables (sword beans and corn).

According to the “China National Food Safety 
Standard” [24], the samples are processed as follows. 
Samples were brought back to the laboratory and 
washed with purified water, then dried in an oven at 
60ºC. Dry samples were grinded to 100 mesh and 
stored in bags. About 0.30 grams of solid was weighed 
and translocated in the PTFE tube, then 5.0 mL HNO3 
was added and left overnight. The tube was tightly 
closed with outer tank and placed in an oven at 160ºC 
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for 6 hours. The PTFE tube was placed on electric 
heating plate (100ºC) and heated to nearly dry, then the 
paste was dissolved with diluted HNO3 and stored in a 
50 mL volumetric flask before analyzing.

The Cd content in the digested solution was measured 
by inductively coupled plasma mass spectrometer  
(ICP-MS, NexlON2000). In every batch, reagent 
blanks (4%), reference standards (2%) and duplicate 
samples (10%) was applied to evaluate the accuracy  
and precision. The standard reference substance 
GBW10012 (GSB-3, rice) from China National Standard 
Material Research Center was used to verify the 
accuracy of the method, which showed the Cd recovery 
was 90%-110%. 

Health Risk Assessment

In this study, the carcinogenic risk and the hazard 
quotient (HQ) assessment models were developed based 
on USEPA, which were used to evaluate the health risks 
of Cd in vegetables [25]. The calculation formulas are 
shown in Table 1, and key parameters are displayed 
in Table 2. Where CDI (mg·(kg·d)-1) represents the 
average daily intake of Cd into the human body through 
vegetables; RfD is the dietary reference dose of heavy 
metals recommended by USEPA (1×10-3 mg·(kg·d)-1) 
[25]; HQ is the single health risk of non-carcinogenic 
index of Cd. When HQ value is lower than 1, it is 

considered as the acceptable level for human health 
risk; CR is the single health index of carcinogenic risk 
of Cd; SF is the slope coefficient of carcinogenic of Cd 
through food intake (6.1 (kg·d)·mg-1) [25]; CR values 
less than 10-6 could be considered as safe level, and 
greater than 10-4 means that attention should be paid.

In this study, health risk assessment was conducted 
on the median P50 (50th percentile) of heavy metal 
contents in vegetables. The assessment results are 
limited to point estimates, and can only represent 
the health risk status of the middle-level population. 
Therefore, the uncertainty is introduced that the 10th 
percentile (P10) of the sample is determined as the lower 
limit of uncertainty, and the 90th percentile (P90) of 
the sample is the upper limit of uncertainty. The safety 
limit of HQ and ILCR should below 1×10-4 respectively  
[28].

Statistical Analysis

SPSS was used to complete descriptive statistics, 
variation coefficient and Spearman rank correlation. 
Because all of the data were non-normally distributed, 
the significant differences in the Cd concentrations of 
vegetables were analyzed by the Mann-Whitney U test. 
The Spearman rank correlations were performed to 
determine the relationships between the Cd exposure  
of direction and distance.

Table 1. Calculation formula of health risk assessment model.

Fig. 1. Study area and sampling distribution in Yunyan district, Guiyang, Guizhou, China.

Type of risk Calculation formula

Chronic Daily Intake
 (1)

Non-carcinogenic risk
 (2)

Carcinogenic risk  (3)
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Results and Discussion

Pollution Concentration of Cd in Vegetables 

The average Cd concentrations of leafy vegetables 
and legumes are 0.035 mg·kg-1 and 0.014 mg·kg-1, 
respectively. The average Cd concentrations are 
significantly different between two groups (p<0.01), 
which suggested that leafy vegetables have higher 
accumulate capacity of Cd than beans. Our result 
indicates that Cd in about 21% of leafy vegetables 
and none beans exceeded the China National Food 
Safety Standard (CNFSS) (Table 3). The 90th quantile 
is 0.08 mg·kg-1, which indicates potential risks for 
local residents. Research results showed that the 

highest cadmium content in spinach around Donga 
Aluminum Plant was 0.049 mg·kg-1, with an average of 
0.031 mg·kg-1 (measured by fresh weight) [29]. This 
is similar to the results of this study. The cadmium 
uptake and accumulation of crops from high to low 
were roots, stems, leaves, ears and seeds, among which,  
the accumulation of cadmium in roots accounted for 
50%~80%, while the cadmium in seeds only accounted 
for a small part of the total amount of cadmium 
in plants, and distributed evenly in seed coat and 
endosperm [30, 31]. Therefore, the cadmium content 
in stem and leaf vegetables is higher than that in fruit 
vegetables. 

Taking the aluminum plant as the center, there 
was no statistically difference in the cadmium content 

Fig. 2. Box diagram analysis of cadmium concentration in vegetables around the aluminum plant in different directions and distances.

Table 2. Exposure parameters of health risk assessment.

parameter mean adult child (6-17years) child (2-6years) references

BW weight /kg 60 39.63 16.61
 [26]

IR intake rate /(kg·d-1) 0.402 0.183 0.132

ED Exposure Day /a 54 62 70  [25]

EF Exposure Frequency /d·a-1 365 365 365  [25]

Fd The proportion of fresh weight 
converted to dry weight 0.1 0.1 0.1  [27]

MC Median Cd content /(mg·kg-1)

AT Average contact time /d ED×365 ED×365 ED×365  [25]
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of vegetables in the four directions (p>0.05). Among 
them, the Northeast (NE) direction had the highest 
concentration of cadmium in vegetables, with an over-
standard rate of 27%, and the lowest Cd excess rate in 
vegetables in the northwest was 13%. This may suggest 
that wind direction was not the main factor affecting 
cadmium pollution around aluminum plants (Fig. 2a).

The analysis of the distance from the aluminum 
factory shows that the vegetables have the highest 
content of cadmium at 1 km and 7-10 km from the 
aluminum factory. It can be found from Fig. 2b) that 
the cadmium content in vegetables had a downward 
trend with the increase of distance in 6 km. When the 
distance exceeded 6 km, the Cd content in vegetables 
began to increase again, and the difference in the 
degree of cadmium enrichment between distances 
was statistically significant (p<0.05). The distance 
to the mining area is not the main factor affecting 
soil heavy metal pollution, but may also be related to 
factors such as topography, slope direction and wind 
direction [10]. For large-scale smelting enterprises, the 
distance of artificial diffusion halo can reach 25-30 km, 
and the content of metal pollutants in plants is power-
dependently reduced from the pollution source to the 
background area [32, 33].

Source Analysis

Correlation Analysis

The correlation between the Cd content of different 
varieties of vegetables and the planting altitude is 
shown in (Fig. 3). After fitting the scatter plot, it is 
found that the correlation between the total vegetable 
samples and planting altitude is not significant  
(r = -0.07, p = 0.35). Among them, the Cd content in 
cabbage, beans, pumpkin leaves and green vegetables 
(Fig. 3a, Fig. 3b, Fig. 3d, and Fig. 3e) showed  
a decreasing trend to varying degrees with the increase 
in altitude. As the slope increased, heavy metal contents 
increased then decreased [34, 35]. Cd content in 
sweet potato leaves, stem vegetables and radish leaves  
(Fig. 3c, Fig. 3f and Fig. 3g) showed a different degree 
of upward trend with the elevation. The correlation 
analysis between the Cd content in vegetables and the 
distance from the aluminum plant of the four directions 
is shown in (Fig. 4). After fitting the scatter plot, it is 
found that the cadmium content in vegetables increases 
with distance in the NE, SW and SE directions. There is 
an upward trend in varying degrees, but the opposite is 
true in the NW direction. Wind directions have a great 
influence on the distribution of metals in coal, gold, and 
fluorite mine area. The concentration of heavy metals 
in mine area increased with the distance from the 
center of the mine, then reached a peak, then decreased 
gradually [36]. In this study, the results obtained are 
somewhat different from these studies. In theory, man-
made environmental geochemical anomalies should be 
concentric circles, and the concentration of diffused 

elements gradually decreases from the pollution source 
to the surrounding area [37, 38]. But in fact, concentric 
circles are often destroyed under the influence of the 
prevailing wind direction and atmospheric precipitation 
[39, 40]. The width of the pollution zone changes 
drastically. The air masses carrying aerosols are also 
affected by the terrain when they move. Therefore, 
the anthropogenic geochemical anomalies of heavy 
metals may be extended or shortened and have irregular 
contours. This also explains the irregular distribution 
characteristics of cadmium content in soil around the 
abandoned aluminum plant in Guizhou, resulting in 
no significant correlation between cadmium content in 
vegetables and altitude.

Influence Factor

The Cd enrichment of vegetable samples in 
different directions didn’t reach significant level, but 
the Cd content of P50 in the NE direction was the 
largest, with a value of 0.031 mg·kg-1. The content 
of Cd in vegetables is relatively higher in the range 
of 1 km and 7-10 km from the abandoned aluminum 
factory. The lowest area in the research region locate 
at 7-10 km northeast of the abandoned aluminum 
factory, with an altitude of 1172 m (Fig. 5). Besides,  
the perennial wind direction is southeast and northeast 
wind (Fig. 6), which may be the main reasons for the 
highest content of Cd in vegetables in this direction. 
The possible reasons for this result are that the waste 
or smoke generally deposit on the low-lying areas. 
Some reports found the source and the distance to the 
mining area were not the main factor affecting soil 
heavy metal pollution, but may also be related to factors 
such as topography, slope direction and wind direction  
[10, 34, 41]. Cadmium pollution in aluminum plant 
production can be divided into three parts (waste gas, 
waste residue and waste water), and the pollution range 
of waste residue and waste water is greatly affected by 
human factors. However, meteorological factors may 
directly affect the precipitation of cadmium-containing 
soot and aerosols in the exhaust gas, leading to more 
serious cadmium pollution in perennial wind direction. 
In this wind direction, the natural factors of wind may 
carry cadmium-containing soot to distant soil, resulting 
in soil cadmium pollution, and cadmium is mainly 
absorbed by plants through soil.

Potential Health Assessment

From the perspective of different directions, 
distance range and total samples, non-carcinogenic 
and carcinogenic health risks of cadmium content in 
cultivated vegetables were assessed (box image plot 
and normal curve), as shown in (Fig. 7). As can be seen 
from the normal curve, the distribution of HQ and CR 
of cadmium in vegetables is skewed, so the median 
(the median line of the box plot) is used to describe 
the results. Fig. A, B and C are the non-carcinogenic 
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health risk (HQ) evaluation. As shown in the figure, the 
non-carcinogenic risk (HQ adults = 0.01, HQ children  
(7-17 years) = 0.01, HQ children (2-6 years) = 0.02) 
caused by cadmium in total vegetable samples to local 
residents are all less than 1. But the non-carcinogenic 
risk is highest in children aged 2-6. From the direction  
of aluminum plant, NE direction has the highest risk 
(HQ children (2-6 years) = 0.025, HQ children (7-17 
years) = 0.01, HQ adult = 0.02), NW direction has the 
lowest risk; from the distance to the aluminum plant, 
the non-carcinogenic risk of cadmium in vegetables 
from 2-3km away from the aluminum plant (HQ 
children (2-6 years) = 0.03, HQ children (7-17 years) = 
0.02, HQ adults = 0.02) is the largest, and the minimum 
from 4-6km away. (Fig. 7d, e and f) are the evaluation 

of carcinogenic risk  [42]. The results showed that in 
total vegetable samples, CR children aged (2-6 years) 
= 1.0×10-4, CR children aged (7-17 years) = 0.5×10-4, 
and CR adults = 0.8×10-4. NE direction has the highest 
risk of cancer (CR children (2-6 years) = 1.5×10-4, CR 
children (7-17 years) = 0.8×10-4, CR adults = 1.3×10-4).
The range of 2-3km has the highest risk of cancer (CR 
children (2-6years) = 1.7×10-4, CR children (7-17years) 
= 0.9×10-4, CR adults = 1.5×10-4). Cancer risk is greater 
than 10-4 in children (2-6 years) and 10-6 in children 
(7-17 years) and adults. These associated risks deserve 
attention to ensure the safety and health of children.

The Cd enrichment degree in different vegetables 
(cabbage, beans, sweet potato leaves, etc.) around 
the abandoned aluminum factory was statistically 

Fig. 3. Correlation between Cd content and altitude in different vegetables around the abandoned aluminum factory.
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Fig. 4. Correlation between Cd content and radius of vegetables around the abandoned aluminum factor.

Fig. 5. Altitude cross-sections of abandoned aluminum plants in different directions [21].
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Fig. 6. Perennial wind direction in Guizhou Province.

Fig. 7. Non-carcinogenic and carcinogenic health risk assessment of Cd in vegetables around the abandoned aluminum plant to people 
with different characteristics.
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described in Table 4. From the median of Cd in all 
samples, spinach>green vegetables>red leafy vegetables 
>cabbage >radish leafy>stem vegetables>sweet potato 
leaves>pumpkin leaves>beans, among which spinach 
has the highest value of 0.06 mg·kg-1. From the 90th 

quantile point of view, cabbage (0.09 mg·kg-1), stem 
vegetables (0.07 mg·kg-1), radish leaves (0.10mg·kg-1) 
and green cabbage (0.16 mg·kg-1 ), which exceed 
the CNFSS Limit standard (0.05 mg·kg-1). From the 
health risks of children and adults, HQ (Children  
2-6 years old)>HQ (Adults)>HQ (Children 7-17 years 
old), CR (Children 2-6 years old)>CR (Adults)>CR 
(Children 7-17 Years old); Cd has the greatest health 
risk in spinach, HQ (Adults) = 0.04, HQ (Children 
7-17 years old) = 0.03, HQ (Children 2-6 years old)  
= 0.05; CR (Adults) = 2.4×10-4, CR (Children 7-17 years 
old) = 1.6 ×10-4, CR(Children 2-6 years old) = 2.9×10-4.
The carcinogenic risk exceeds the safety limit (10-4) 
2.4, 1.6 and 2.9 times, respectively. The carcinogenic 
risk of sweet potato leaves was the lowest, which was 
within the safety limit set by the USEPA. For children  
(2-6 years old), only beans vegetables (CR = 0.34×10-4), 
sweet potato leaves (CR = 0.34×10-4) and pumpkin leaves 
(0.39×10-4)<1×10-4. However, other types of vegetables 
have cancer risk. For children (7-17 years old), CR (red 
leafy vegetables) and CR (spinach)>1×10-4. For adults, 
CR (cabbage), CR (red leafy vegetables), CR (radish 
leaves), CR (green vegetables) and CR (spinach)>1×10-4. 
Previous studies found that vegetables enriched of Cd 
in the order of spinach>Chinese cabbage>radish [43, 
44], which is consistent with our results. Because of the 
species difference among different plants, the ability 
of cadmium enrichment from soil is also different, 
that is, the bioconcentration factor (BFC) of cadmium 
is different among different vegetables, leading to the 
different content of cadmium in different vegetables 
[45]. The Cd in the total vegetable samples has no 
non-carcinogenic risk, but the carcinogenic risk factor 
exceeds the acceptable safety limit of 10-6, suggested 
potential carcinogenic risk.

There were researches discussed the health risks of 
heavy metals in soil and vegetables in mining areas to 
the human body, they found that the health risks caused 
by children are higher than those of adults, which are 
different from the results of this study [20]. The reason 
is that health risk assessment is not only relate to the 
degree of enrichment and potential harm of heavy 
metals in vegetables, as well as weight coefficient and 
food intake amount. This study focuses on comparing 
the health risks of children 2-6 years old, children  
7-17 years old and adults.

This study aims to understand the degree of 
cadmium accumulation in vegetables around abandoned 
aluminum plants in Guizhou, to explore the factors 
affecting cadmium accumulation in vegetables, and 
to assess the health risks of oral intake by children 
and adults. However, the evaluation of the health 
risks of single-factor Cd is more limited. In order to 
more accurately understand the health risks caused by Ta
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heavy metals, the combined effect of multiple factors  
and multiple exposure factors should be further 
considered [46, 47]. In areas that are heavily polluted 
by Cd, local residents should be encouraged to grow 
beans and vegetables, or in heavily polluted areas can 
be forested through land, through a long-term natural 
purification process to eliminate high levels of heavy 
metals in the soil.

Conclusion

The vegetables around the abandoned aluminum 
factory showed significant enrichment of Cd. Affected 
by the geomorphic and meteorological conditions, the 
Cd contents in vegetables were not significantly related 
to the direction and the distance from the abandoned 
aluminum factory. This may be mainly influenced by 
the soil environment

The CR values for non-carcinogenic risks of 
vegetables in the studied area were all in the scope of 
the safety range, but the carcinogenic risk exceeded the 
safety limit, which indicated that there was a potential 
carcinogenic risk. Among different vegetable species, 
spinach has the highest enrichment of Cd, and legumes 
have the lowest enrichment. Due to effect of vegetable 
intake amount, the health risks of Cd in vegetables 
for children 2-6 years old were higher than children  
6-17 years old and adults.

The observation on the enrichment of Cd in collected 
vegetables indicated that the impact of abandoned 
aluminum factory on the surrounding environment exist 
persistently for many years, stringent risk evaluation 
is necessary before these abandoned area converts to 
agricultural field.  
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