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Abstract

Urban air pollution is an important issue facing China in the midst of rapid urbanization  
and economic development. To investigate the regional air quality characteristics and its drivers  
in Northeast China, this paper compares the spatial and temporal characteristics of air quality between 
cities and analyzes the influence of socioeconomic variables by using statistical analysis methods  
and geographic model. The results show that the air quality index (AQI) showed a downward trend  
in time and decreased from southwest to northeast in space. The duration of heavy pollution 
condition was not only controlled by the distribution of pollutant concentrations, but also influenced 
by the topography. Based on the mean concentrations of the 6 pollutants, 37 cities were divided 
into 4 categories by cluster analysis, reflecting the levels and characteristics of pollution. The level  
of industrialization was the most important cause for air quality, followed by the size of the city and the 
degree of economic development. The AQI predicted by geographic weighted regression model (GWR) 
showed a lower goodness of fit in developed cities, indicating that the factors controlling air quality  
are more complex in these regions. The influence of different socioeconomic metrics on AQI 
showed large spatial differences. AQI was more sensitive to variations in socioeconomic metrics in 
less developed small and medium-sized cities. This study provides a theoretical basis for revealing  
the causes of urban air pollution and formulating pollution control measures in Northeast China.
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Introduction

Air pollutants are characterized by fast propagation 
speed, strong diffusion ability and wide influence range, 
and thus it is difficult to perform good treatment within 
a short time [1-4]. The continuous deterioration of air 
quality will become a major threat to human health [5, 
6]. In recent decades, air pollution is no longer limited 
to the local scale, and regional, national and even global 
air pollution is becoming more and more common  
[7, 8]. Since 1980s, a large amount of energy has been 
consumed in China due to the rapid growth of economy, 
and a great amount of air pollutants has been produced 
and emitted. Previous studies have shown that the annual 
emissions of CO2 and SO2 in China are the highest 
in the world. In addition to the traditional air pollution 
caused by single pollutant types, air pollution  
problems with complex sources such as haze and 
photochemical smog have become increasingly 
prominent in China [9]. In recent years, large-scale 
and persistent air pollution incidents represented by 
haze have occurred frequently in China, which has 
had a great negative impact on residents’ quality 
of life and economic development [10]. How to 
accelerate the improvement of ambient air quality 
and effectively control air pollution is one of the most 
important challenges of China’s effort on environmental 
protection at present. In Northeast China, the problem 
of air pollution is severe as the population is densely 
distributed, the number and size of industrial and 
mining enterprises are large, and the heating period 
relying on coal burning in winter is long.

The temporal and spatial evolution of air quality is 
a complex dynamic process under the joint influence of 
natural factors (e.g., meteorology and terrain conditions) 
and socio-economic factors (e.g., economy, population 
and land) [11-16]. Since the beginning of 21st century, 
the global air pollution has gradually intensified with 
the accelerated economic growth, urban expansion 
and population explosion [16-18]. Particularly, air 
pollution caused by anthropic factors such as population 
agglomeration, traffic congestion and excessive energy 
consumption has become increasingly prominent during 
the process of urbanization [13, 19, 20]. Therefore, a 
comprehensive exploration on the temporal and spatial 
variation of urban air quality and its socio-economic 
drivers is not only conducive to scientific understanding 
of air pollution characteristics, but also provides 
reference for the formulation of regional prevention and 
control measures. In previous studies, the influence of 
socio-economic factors on atmospheric environment 
has been widely reported in different spatio-temporal 
scales. For example, the nonlinear relationship between 
economic growth and atmospheric environment is 
analyzed based on the Environmental Kuznets Curve 
[21, 22]; Buehn, et al. (2013) investigated the temporal 
and spatial variation of air quality across 122 countries 
in the past 20 years, and found that economic growth 
shows closely relation with air quality. The energy 

consumption and industrialization are important factors 
leading to deteriorated urban air quality, as they are 
accompanied with the emission of pollutants, especially 
the consumption of coal. In the maturity developing 
stage with high energy efficiency, the air pollution 
can be greatly reduced [23]. The spatial distribution 
of population and roads has also been proved to be 
significantly related to air quality [24, 25]. The increase 
of population is generally associated with the increased 
scale of productive activities, motor vehicle emissions, 
industrial pollution and construction dust, which will be 
another important factor intensifying the air pollution 
[26].

Northeast China is a base of heavy industry, 
where resource-based enterprises with high energy 
consumption and high pollution are concentrated, and 
the atmospheric environment is seriously polluted. In 
some areas, the harmful gases produced by the massive 
combustion of coal, oil and natural gas in industrial 
production are directly emitted into the atmosphere 
without treatment, causing serious air pollution, thus 
leading to a series of environmental and human health 
problems. In recent years, the environmental treatment 
projects led by government and environmental 
protection policies, the transformation of economic 
production mode and the optimization of industrial 
structure have made the air quality significantly 
improved in some regions, but the regional air pollution 
problem is still severe. In Northeast China, the 
distribution of socio-economic factors varies greatly 
in space. In some cities, heavy industry such as heavy 
machinery, steel, petrochemical industry and equipment 
manufacturing still works as the pillar of economy. 
Economic recession and population loss happen in these 
cities because of the over-capacity, but the air pollution 
is severe. In other cities, industry transformation has 
been completed and the air pollution has been mitigated, 
leading to gradual population inflow. Because of the 
pronounced spatial heterogeneity, the relationship 
between economic structure, social characteristics and 
air pollution is complex in Northeast China. In some 
studies, the sources and temporal evolution of pollutants 
in Northeast China have been investigated [27]. 
However, to our knowledge, there is still few research 
to systematically analyze the present situation, spatial 
heterogeneity of air quality and its socio-economic 
causes in Northeast China by using multivariate 
statistical methods, which is of great significance 
for regional environmental protection, sustainable 
economic development and residents’ health.

Based on the monitoring data of air quality and 
socio-economic indicators in Northeast China from 
2015 to 2019, this paper aims to determine the dynamic 
mechanism and spatial differences of socio-economic 
controls on air quality in Northeast China. The specific 
objectives of the present study are as follows: first, 
describe the characteristics of spatio-temporal variation 
of air pollution and socio-economic conditions; and 
then, determine the dynamic mechanism and spatial 
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differences of socio-economic controls on air quality  
in Northeast China.

Methods and Materials 

Study Area

Northeast China, including provinces of 
Heilongjiang, Jilin and Liaoning, is the geographical 
unit with the highest latitude in China. The geographical 
location of northeast China and the distribution of 
cities are shown in Fig. 1. Northeast China is rich in 
mineral resources, mainly including coal, iron ore and 
oil. Coal resources are mainly distributed in central 
and western Liaoning and northeast Heilongjiang, iron 
ore resources are mainly concentrated in Anshan and 
Benxi cities, and oil resources are mainly distributed 
in Songnen Plain and the middle and lower reaches 
of Liaohe River. In the early days of the new China, 
Northeast China formed an industrial system dominated 
by heavy industries such as steel, machinery, oil and 
coal relying on the abundant resources, and became 
an important heavy industry and commodity grain 
base in China, playing an important role in promoting 
economic and social development. Since 1990s, the 
growth of traditional industries has stagnated due to 
the adjustment of national economic layout, making 

the population and economy in Northeast China have 
presented a decreasing trend. The serious ecological 
and environmental problems have occurred due to 
the extensive economic growth pattern at the expense 
of resource consumption and environmental damage, 
which have become one of the important reasons that 
constrain the economic development in Northeast 
China.

Description of Data

Air Quality Index (AQI) is a comprehensive index 
proposed by the Ministry of Ecology and Environment 
of China, which is used to synthetically quantify 
air quality and inform the public about levels of air 
pollution. It is calculated based on 6 types of pollutants 
namely PM2.5, PM10, SO2, NO2, CO and O3. The smaller 
the value, the better the air quality. According to the 
Chinese Ambient Air Quality Standards (CAAQS, 
GB3095-2012), AQI is divided into 6 categories 
according to their level of hazard to human health.  
The value below 50 is determined as Class I, that 
between 51 and 100 is determined as Class II, that 
between 101 and 150 is determined as Class III, that 
between 151 and 200 is determined as Class IV, that 
between 201 and 300 is determined as Class V and 
that above 301 is determined as Class VI. Among  
the categories, Class I and Class II are considered 

Fig. 1. Location of study area and the distribution of cities in Northeast China.
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to have little impact on human health, Class III and 
Class IV will affect the heart and respiratory system 
of sensitive groups, and Class V and Class VI will 
generally endanger human health. In the present study, 
AQI data comes from the data interface of the data 
center of the Ministry of Ecology and Environment of 
China (http://datacenter.mee.gov.cn/websjzx/queryIndex.
vm).

According to the results of previous studies 
regarding the relationship between air quality and socio-
economic parameters [28, 29], 10 factors are selected as 
potential controls to be considered on the air quality 
(shown in Table 1). The socio-economic data comes 
from the China City Statistical Yearbook of 2019.

Statistical Methods for Global Analysis

Cluster Analysis

Cluster analysis is a multivariate statistical method 
to classify targets based on proximity or similarity, 
which can be used to reveal the inherent characteristics 
between them. Hierarchical clustering is the most 
commonly used analysis method, which gradually form 
higher clusters by measuring the similarity between 
points by Euclidean distance. In this study, based on 
the average values of AQI and six air pollutants (i.e., 
PM2.5, PM10, SO2, NO2, CO and O3) from 2015 to 2019, 

hierarchical clustering method is used to reveal the 
differences of air pollution characteristics among cities. 
The clustering results are represented by dendrogram, 
which reflects the homogeneity within groups and the 
differences between groups. Cluster analysis is realized 
by IBM SPSS Statistics 22.

Pearson Correlation Analysis

Pearson correlation coefficient (r) is a real number 
between [-1, 1], which is a parameter used to measure 
the correlation between two variables x and y. The 
larger the absolute r value between variables, the 
stronger the correlation. When the r value equal to 
0, there is no correlation between the parameters. 
Generally recognizing, it is considered to have a strong 
correlation between variables when the r value is higher 
than 0.6, a moderate correlation when r is between 0.3 
and 0.6, and a weak correlation when r is between 0.1 
and 0.3. In this study, Pearson correlation coefficient 
matrix is used to reflect the correlation between AQI 
and various socio-economic indicators, and Two-tail 
test is used to identify whether the correlation between 
variables is significant. Correlation matrix is drawn 
by Hiplot data visualization analysis online platform 
(https://hiplot.com.cn).

Principal Component Analysis

Principal component analysis (PCA) is a method to 
transform multiple original variables into independent 
variable sets (principal components, PC) containing as 
much information as possible. It can be used to decrease 
the influence of collinearity among variables, reduce 
the dimension of data set and determine the interaction 
between different variables. In this study, PCA is used 
to quantify the contribution of different socio-economic 
indicators to AQI variation, and explore the potential 
factors to explain the air quality in Northeast China. 
KMO and Bartlett’s sphericity test is employed to 
determine the applicability of data used for PCA [30]. 
PCA is performed by IBM SPSS Statistics 22.

Spatial Statistical Models

Spatial interpolation is a method for estimating 
the features of unknown points through discrete 
known points and generate continuous surfaces, which 
originates from the similar related laws in geography. 
Kriging interpolation is a regression algorithm for 
spatial modeling and prediction of stochastic processes 
based on covariance function, which has been widely 
used in geographic information and meteorological 
research. Due to the limited number of monitoring 
stations in this study, the continuous change of 
pollution index in space cannot be observed directly. 
The ordinary Kriging interpolation method is used 
to transform the distribution of AQI in cities into  
a continuous spatial pattern.

Table 1. Overview of the socio-economic and air quality 
variables.

Type of 
parameters Metrics Unit

Socio-
economic 
indicators

Population (POP) Millon

Gross domestic product (GDP) ×109 RMB

Per capita GDP (PERGDP) RMB

Urban land area (ULA) km2

Ratio of urban land area (RULA) %

Green land area (GLA) km2

Ratio of green land area (RGLA) %

Ratio of primary industry (RoI_1) %

Ratio of secondary industry 
(RoI_2) %

Ratio of tertiary industry (RoI_3) %

Air quality 
indicators

AQI /

PM2.5 μg/m3

PM10 μg/m3

SO2 μg/m3

NO2 μg/m3

CO μg/m3

O3 μg/m3
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Based on the spatial distribution of socio-economic 
variables, a spatial regression model is established by 
using GWR model to reflect the spatial heterogeneity of 
AQI and its response to the change of driving factors. 
Compared with the global regression model based on 
the least square method, GWR model considers the 
spatial relationship as a weight during the operation, 
and the relationship between independent and dependent 
variables changes with the spatial position, which can 
be used for scenario analysis considering the spatial 
heterogeneity of multiple variables. The mathematical 
equation is as follows:

where y represents the predicted AQI values; βi0 
represents the intercept parameter of the i-th city; m 
represents the number of independent variables; βik 
represents the regression coefficient of the k-th variable; 
xik represents the value of the k-th variable in the i-th 
city and ε represents random error. The spatial change 
of prediction results is performed by establishing a 
local model of each variable, and regressing each factor 
falling within the bandwidth. Optimized bandwidth is 
determined based on the minimum AICc. Due to the 
deficiency of many social and economic indicators in 
the published yearbooks, cities of Yanbian and Great 
Khingan are not included in GWR model to avoid errors.
The spatial visualization of Kriging interpolation model 
and GWR model is performed by ArcGIS 10.2.1.

Results and Discussion

Temporal Variation and Spatial Pattern 
of Air Pollutants

Temporal Comparison of AQI between 2015 and 2019

All the detected pollutants show pronounced 
downward trend in 2019 when comparing with those 
in 2015. For PM2.5, the average values in Liaoning, Jilin 
and Heilongjiang provinces are 43.61, 40.05 and 38.81, 
respectively; for PM10, the average values in Liaoning, 
Jilin and Heilongjiang provinces are 74.97. 68.77 and 
55.33, respectively; for SO2, the average values in 
Liaoning, Jilin and Heilongjiang provinces are 27.08, 
19.23 and 14.39, respectively; for NO2, the average 
values in Liaoning, Jilin and Heilongjiang provinces are 
29.09, 26.67 and 20.32, respectively; for CO, the average 
values in Liaoning, Jilin and Heilongjiang provinces 
are 1.01, 0.93 and 0.68, respectively; for O3, the average 
values in Liaoning, Jilin and Heilongjiang provinces are 
62.93, 57.70 and 53.20, respectively. All the pollutants 
show similar pattern within Northeast China, showing 
that the behaviors of them are similar. Therefore, 
AQI is used as a comprehensive indicator to represent  
the general characteristics of pollutants.

The comparison of air quality between 2015 and 
2019 is presented by the box-plot of mean AQI values in 
Fig. 2. In 2015 and 2019, the variation range and average 
value of AQI among the provinces in Northeast China 
are significantly different. In 2015, the order of AQI 
average is Liaoning (85.22) > Jilin (83.03) > Heilongjiang 
(64.09). Compared with 2015, although the order  

Fig. 2. Box-plot showing the range of AQI in 2015 and 2019. The box presents the 25 % and 75 % percentile, and the whisker presents 
the maximum and minimum values. The square within the box shows the mean value.
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of mean AQI didn’t change, that of provinces of 
Liaoning, Jilin and Heilongjiang decreased to 69.90, 
59.88 and 51.60 respectively in 2019, with the largest 
decline of up to 27.9 % existing in Jilin province. 
The significant decrease of AQI value reflects the 
improvement of air quality in Northeast China, 
and indicates the positive impact of government-
led environmental treatment projects and published 
environmental policies on air quality during the study 
period.

Spatial Patterns for Air Quality

Cluster analysis is preformed to determine  
the similarity of air pollutants between cities (Fig. 3). 
According to the results of cluster analysis, when the 
relative distance is selected as 20, 37 cities in Northeast 
China can be divided into 4 clusters, showing significant 
differences in the degree of air quality degree and 
the characteristics of pollutants in Northeast China. 
Cluster 1 only includes Benxi City located in the east of 
Liaoning Province, reflecting that there are significant 
differences in pollutant characteristics between this city 
and others. According to the mean concentrations of 
the 6 pollutants in cities of Northeast China (shown in 
Table 2). Among the 6 types of pollutants, the average 
CO concentration of Benxi City from 2015 to 2019 
(1.51 μg/m3) is much higher than that of all cities in 
the study area (0.88 μg/m3), which may be related to 
the local pillar of iron and steel industry and the huge 
coking coal and steel output. Previous studies have 
shown that industrial processes related to iron and steel 
production are important factors related to regional CO 
concentration, and there is a strong correlation between 
the control of CO emissions and the improvement of 
combustion efficiency of iron and steel enterprises [31]. 
Cluster 2 contains three cities of Shenyang, Jinzhou 
and Huludao, representing the areas with most serious 
air pollution in Northeast China. All 6 pollutants in 
these 3 cities show significantly higher concentrations 
than the regional average. All three cities are located 
in Liaoning Province, adjacent to Beijing-Tianjin-Hebei 
Economic Circle, with high level of regional economic 
development, developed industry, dense population 
and high pollutant emissions. In addition, this region 
is connected with the North China Plain, where air 
pollution is the most serious across the country, the 
migration of pollutants may also be one of the reasons 
for the decline of air quality. Cluster 3 contains three 
cities: Heihe, Daxinganling and Yichun. These cities 
are all located in the mountainous areas in the north of 
Heilongjiang Province, which belongs to the highest-
latitude area in China. Due to the low population density 
and the high proportion of rural and woodland area, the 
ecological environment in this area is good, and the air 
quality is slightly disturbed by human activities. The 
average AQI of all the three cities is below 50, which 
is the lowest in Northeast China and belongs to Class 
I, which also reflects the very low degree of pollution. 

Cluster 4 contains the remaining 30 cities, showing 
moderate air pollution.

The distribution patterns of AQI in Northeast 
China in 2015 and 2019 are spatially visualized by 
ordinary Kriging interpolation model (shown in  
Fig. 4 a, b). In 2015 and 2019, the spatial variation of 
AQI showed a decreasing trend from southwest to 
northeast. The central part of Liaoning Province is the 
region with the highest AQI, showing the most serious 
air pollution. This is because this region is characterized 
by densely distributed heavy industry enterprises, and 
is close to the North China Plain where air pollution is 
the most serious in China, and thus is easily affected 
by the migration of pollutants. In the eastern part of 
Jilin Province and the northern part of Heilongjiang 
Province, the AQI shows lower concentration, 
indicating that the air quality in these areas is better. 
This is likely to be related to the sparse population  
and agriculture as the main industry. Compared with 
2015, the high value of AQI decreases in 2019, and the 
area of high pollution zone decreases, especially in the 
south of Heilongjiang and the middle of Jilin, which 
reflected the effectiveness of air pollution control and 
the promotion of energy saving and emission reduction 
measures in this area. The distribution of percentage 
of Class V & VI (representing severe polluted days) 
and Class I & II (representing good-air quality days) is 
shown in Fig. 4(c, d), respectively. The distribution of 
the percentage of Class V & VI is generally consistent 
with that of AQI, and that of Class I & II shows the 
opposite trend to AQI distribution, reflecting the 
positive correlation between pollution duration and 
pollutant concentration. Although Harbin does not show 
the highest concentration of AQI, the proportion of its 
severe pollution period is the highest. This may be due 
to the hilly and mountainous terrain around it, which 
is not conducive to the diffusion of pollutants, resulting 
in a long time of being affected by seriously polluted 
air. The coastal areas in eastern and southern Liaoning 
is characterized by developed industries and dense 
population, but its AQI is lower among the cities in this 
province and the proportion of Class I & II is higher, 
which is likely because of the air circulation between 
land and sea accelerating the discharge of pollutants.

Socio-Economic Controls on AQI Identified 
by Statistical Analysis

Pearson Correlation Matrix, which shows the 
relationship between the daily average AQI value and 
the selected socio-economic metrics in northeast China, 
is shown in Fig. 5. AQI is significantly correlated 
with population, the proportion of urban land and 
the contribution of primary, secondary and tertiary 
industries to GDP at a confidence level of 0.05. 
The strongest positive correlation (r = 0.55) appears 
between AQI and urban land area, indicating that urban 
expansion is an important reason for the increase of 
pollutant concentration and the deterioration of air 
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Table 2. Daily mean values of AQI and concentrations of 6 air pollutants (in μg/m3) during the period of 2015~2019.

Province City AQI PM2.5 PM10 SO2 NO2 CO O3

Liaoning

Anshan 79.42 38.76 66.88 20.58 25.37 0.88 58.47 

Benxi 72.31 44.10 78.25 30.69 33.50 1.51 50.64 

Chaoyang 71.62 39.11 73.15 27.37 21.31 1.32 61.16 

Dalian 67.17 36.71 65.10 18.48 28.10 0.83 77.07 

Dandong 62.32 36.86 62.74 23.46 23.00 1.10 57.27 

Fushun 77.84 45.69 81.20 23.80 31.86 1.03 59.90 

Huludao 81.30 47.08 84.19 40.17 33.78 1.26 67.71 

Fuxin 75.16 41.09 81.49 34.01 25.04 0.93 63.45 

Liaoyang 79.40 46.49 82.51 24.07 29.25 1.20 61.60 

Panjin 73.35 40.89 65.52 21.92 27.05 0.93 71.63 

Shenyang 82.67 50.90 88.17 36.52 38.64 0.96 58.79 

Wafangdian 71.09 45.23 58.28 24.58 25.49 0.59 51.70 

Tieling 79.93 47.00 83.31 18.87 29.81 0.76 59.08 

Yingkou 77.68 43.22 71.14 17.56 28.84 0.85 79.02 

jinzhou 84.05 51.08 82.63 44.08 35.34 1.05 66.49 

Heilongjiang

Harbin 79.11 50.86 78.57 24.67 39.79 0.96 49.59 

Hegang 55.89 30.71 57.05 8.33 13.65 0.74 58.74 

Heihe 43.91 21.36 40.05 16.70 13.73 0.53 54.32 

Jixi 53.95 29.67 56.18 12.82 18.64 0.79 48.91 

Mudanjiang 62.43 36.15 66.20 12.09 24.16 0.66 48.71 

Qitaihe 65.99 39.12 67.03 12.98 23.42 0.66 57.23 

Qiqihar 59.98 32.73 59.71 20.06 20.45 0.71 53.41 

Shuangyashan 56.11 33.62 55.99 12.02 17.34 0.72 53.52 

Suihua 60.18 35.22 59.43 15.21 21.19 0.62 53.65 

Yichun 40.10 20.02 35.79 7.70 12.57 0.47 47.00 

Daqing 58.99 34.17 56.29 12.90 23.77 0.64 61.59 

Greater Khingan Range 43.19 19.41 38.23 23.04 15.82 0.69 48.71 

Jiamusi 53.15 30.46 48.74 8.55 19.69 0.68 56.25 

Jilin

Jilin 72.89 43.19 71.83 17.93 26.61 0.85 68.42 

Liaoyuan 70.17 43.43 60.57 18.79 26.23 1.03 60.06 

Siping 77.12 45.58 81.75 19.33 30.48 0.91 60.35 

Songyuan 69.10 34.90 72.80 12.17 20.18 0.82 60.63 

Tonghua 64.01 36.55 66.21 23.78 29.44 1.13 47.45 

Yanbian 54.64 29.73 47.38 12.51 20.69 0.75 55.86 

Changchun 75.98 45.20 78.09 21.55 36.20 0.89 57.53 

Baicheng 69.04 40.52 69.46 22.54 26.37 0.91 57.91 

Baishan 68.61 41.36 70.81 24.44 23.84 1.13 51.11 

Total mean 67.29 38.60 66.56 20.71 25.42 0.88 58.24 
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quality. AQI shows the strongest negative correlation 
with the economic contribution of the primary 
industry, indicating that agriculture will not cause the 
deterioration of air quality (or has a slight impact). 
Moderate positive correlation is also observed between 
AQI and population (r = 0.38), economic proportion 
of secondary industry (r = 0.44) and tertiary industry  
(r = 0.44), suggesting that air pollution shows an 
increasing trend in densely populated, industrialized 
and urbanized cities. There is a weak and insignificant 
positive correlation between AQI and GDP as well as 
per capita GDP, reflecting that air pollution mainly 
depends on industrial structure rather than economic 
level. This also explains that in Northeast China, most 
resource-based cities are facing the dual pressures of 
economic recession and environmental deterioration.

Interestingly, AQI shows a weak and insignificant 
positive correlation with urban green land area  
(r = 0.22) and green space ratio (r = 0.01), which is 
counter-intuitive. Previous studies showed that urban 
green land has marked blocking, filtering and adsorption 

effects on smoke and dust, and is able to remove a large 
number of air pollutants [32, 33]. In Northeast China, 
the area of urban green land is positively correlated 
with population, GDP, per capita GDP, urban area 
and the economic contribution of secondary industry, 
indicating that the area of urban green space is larger in 
areas with concentrated population, large urban size and 
high degree of economic development. Our result shows 
that the positive effect of urban green land on reducing 
air pollution may be covered up by other factors that 
promote pollutant emission, especially in developed 
large cities.

PCA can be used for variables that do not contribute 
significantly in the original variable data set, thus 
simplifying the data structure. To better understand 
the control of different socio-economic characteristics 
on air quality, PCA is employed to determine the 
correlation between socio-economic indicators. 
The KMO of selected socio-economic indicators is 
0.615, and the P value of Bartlett’s sphere test is less 
than 0.001, indicating that the data set is suitable for 

Fig. 3. Dendrogram exhibiting the similarities of air pollution metrics among the 37 cities in Northeast China. X-axis means the rescale 
distance cluster combine.
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performing PCA. Based on eigenvalue (>1), three 
principal components were selected, accounting for 
80.56% of the total variance. The eigenvalue of PC1 
is 4.900, which explains 49.00% of the total variance. 
The eigenvalue of PC2 is 1.895, which explains 18.95% 
of the total variance. The eigenvalue of PC3 is 1.261, 
which explains 12.61% of the total variance.

According to the empirical values reported in 
previous studies, the absolute load values of variables 

of >0.75, 0.75-0.50 and 0.49-0.30 can be classified as 
“strong”, “medium” and weak correlation in PCA, 
respectively [34]. Our results show that PC1 is strongly 
correlated with GDP, per capita GDP, urban land area 
and green land area, and moderately correlated with 
population and economic contribution of primary, 
secondary and tertiary industries, reflecting the 
city scale. PC2 is strongly related to the economic 
contribution of the secondary industry and moderately 

Fig. 4. Spatial pattern of mean AQI values in (a) 2015 and (b) 2019, and the distribution of percentage of (c) Class V & VI and (d) Class 
I and II performed by Kriging Spatial Interpolation.
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related to the population, which represents the degree 
of industrialization. PC3 is moderately related to the 
economic contribution of the tertiary industry and the 
proportion of urban area, which represent the level of 
economic development. Combining the result of PCA 
and the correlation between variables shown in the 
Pearson correlation matrix, it can be shown that the 
air quality is dominantly controlled by the degree of 
industrialization, followed by the level of economic 
development and city scale.

Analysis of the Spatial Variability of Main Drivers 
based on GWR Model

GWR model can be used as an instrument to 
evaluate the response of AQI to the changes of various 
variables. According to the results of Pearson correlation 
matrix and PCA, population, ratio of urban land area, 
GDP, ratio of urban green land area and economic 
contribution of secondary industry are selected as 
explanatory variables of the spatial distribution of 
AQI. The result of GWR model is shown in Fig. 6. By 
comparing the predicted AQI with the measured results 
(Fig. 6a, b), it can be seen that the spatial characteristics 
of the observed AQI can be mostly reproduced by 
using GWR model. In the west of Liaoning Province, 

the predicted AQI is slightly underestimated, while in 
the west of Heilongjiang, it is overestimated. The local 
R2 value ranges from 0.48 to 0.67, and a decreasing 
trend from southwest to northeast can be observed. 
The highest R2 value appears in the eastern part of 
Heilongjiang, showing that the variables selected can 
better explain the AQI variation in this area. However, 
the poor performance of the model is observed in the 
southwest of Liaoning Province (R2<0.5), indicating 
that the variation of AQI is more complicated and driven 
by other natural or anthropogenic factors in areas with 
developed economy, concentrated population and high 
urbanization level.

A positive correlation between population and 
AQI can be observed across the whole region, and the 
regression coefficient shows little difference among 
different cities (Fig. 6d), indicating that population 
aggregation promotes the deterioration of air quality, 
and the impact of population growth on air quality 
deterioration is relatively stable in space. The regression 
coefficient between the proportion of urban area and 
AQI increases from south to north (Fig. 6e), which is 
consistent with the spatial trend of urban scale and 
economic level, indicating that urbanization imposes 
a more significant impact on air quality in small 
and medium-sized cities. The regression coefficient 

 Fig. 5. Pearson’s Correlation matrix presents the relationship between AQI and socio-economic parameters.
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between AQI and GDP is low (Fig. 6f), with slight 
spatial variation, indicating that GDP is not the main 
variable driving AQI change. Except a small area 
in the west of Liaoning province, there is a positive 
correlation between the ratio of green land and AQI 
(Fig. 6g), suggesting that the positive effect of urban 
greening on air quality is easily concealed by other 
variables related to industrialization and economic 
development level. This is consistent with the results of 
PCA in the previous chapter. A positive correlation is 
observed between AQI and the economic contribution 
of the secondary industry, and the regression coefficient 
presents an increasing trend from southwest to 
northeast, indicating that energy-consuming industries 
relying on resource exploitation serve as an important 
source leading to the deterioration of atmospheric 
environment in Northeast China. The pollutants emitted 
during the process of rapid industrial development are 
the main causes of atmospheric pollutants, and also 
represent the pressure brought by industrialization on 
the improvement of atmospheric environment. In the 
agglomeration areas of small and medium-sized cities 
in the east of Heilongjiang Province, the population 
density and economic development level are low with 
high economic contribution of agriculture, and the air 
pollution is relatively slight. However, the predicted 
AQI based on socio-economic metrics in these areas 
shows the largest local R2 value, and high regression 
coefficient is observed between AQI and population, 
GDP, ratio of green land and economic contribution 

of secondary industry. This suggests that in small and 
medium-sized cities with underdeveloped economy 
and low urbanization, air quality is more sensitive 
to economic development, urban expansion and 
improvement of industrial level.

To summarize, the air quality in Northeast China 
is greatly dependent on socio-economic factors. The 
aggregation of population leads to more crowded 
traffic and heavier emission of atmospheric pollutants, 
which is thus negatively related to air quality. GDP 
is not a dominant driving factor on air quality in 
Northeast China, which may be because the developing 
patterns vary between cities. Whereas, the economic 
structure (i.e., proportion of primary, secondary and 
tertiary industry) is a very important control on air 
quality. In city areas, the level of pollution is mainly 
controlled by the pillar industries. Areas with large 
economic contribution from heavy industries, such 
as petrochemical industry, thermal power production 
and steel industry, is characterized by dramatic 
pollutant emission and thus much prone to be exposed 
to hazardous pollutants. Although previous studies 
showed that the increased area of green land has 
positive influence on air quality improvement [17, 
24], such effect is very insignificant as the emitted 
atmospheric pollutants far outweighs the absorption 
capacity of vegetation in Northeast China. Therefore, 
the adjustment of industrial structure can be regarded 
as the most effective way to optimize the air quality  
in Northeast China.

Fig. 6. The comparison between (a) observed and (b) GWR-predicted AQI patterns, (c) the local coefficients of determination R2,  
and (d-h) the spatial distribution of coefficient of explanatory variables on AQI.



Yang M., et al.3384

Conclusions

Based on the records of air pollutants and socio-
economic metrics of cities in Northeast China from, 
this paper analyzes the temporal changes and spatial 
patterns of air quality by combining mathematical 
statistics with geospatial models, and identifies the 
driving mechanisms of different types of variables on 
the evolution of air quality. Compared with 2015, the 
average and extreme values of AQI in all provinces 
decreased significantly in 2019, showing the reduction 
of air pollution. The cities in Northeast China are 
divided into four categories according to the mean 
value of 6 pollutant types, including CO enrichment 
group, seriously polluted group, medium polluted 
group and good quality group. Air pollution shows a 
decreasing spatial trend from southwest to northeast 
direction, and the duration of severe pollution depends 
not only on the concentration of pollutants but also on 
topography. The proportion of urban area, population 
and the economic contribution of the primary, 
secondary and tertiary industries are significantly 
related to AQI. The air pollution in Northeast China 
is mainly controlled by the degree of industrialization, 
followed by the level of economic development and 
city scale. On the whole, GWR model can reflect the 
spatial characteristics of AQI and the driving factors on 
air quality variation, but its prediction of air quality is 
poor in the southwest of Liaoning Province, reflecting 
that the driving factors in this region are more complex. 
The impacts of different socio-economic indicators on 
AQI show spatial differentiation. In areas with small 
city scale, sparsely population and underdeveloped 
economy, air quality is more sensitive to the changes of 
socio-economic metrics. This study indicates that the 
multivariate statistical method can provide information 
for the comprehensive evaluation of air quality, and 
provide insights for environmental protection, industrial 
structure adjustment and sustainable economic 
development with adaption to local conditions.
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