
Introduction

PM2.5 refers to atmospheric particulate matter with a 
dynamic diameter less than 2.5 μm [1]. With the rapid 
urbanization in China in recent years, the issue of PM2.5 
pollution has attracted more and more attention. PM2.5 
pollution may cause adverse effects on human health 
[2-7] and the environment [8-9], and even influence  

the climate change [10]. Due to the small particle size of 
PM2.5, it is easy to be inhaled, and then it is also easy to 
cause respiratory diseases, affecting the cardiovascular 
system [11] and nervous system [3]. Besides, it can also 
cause to cancer [2] or premature death [4-6]. Once PM2.5 
pollution increases, atmospheric visibility decreases 
[8], which will affect people’s travel, meanwhile, the 
solar radiation time on the ground has become shorter, 
which will affect plant photosynthesis and ecosystems. 
In addition, PM2.5 particles dissolved in rainwater will 
produce sulfuric acid and nitric acid through a series  
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of chemical reactions, which will cause harm to 
buildings and vegetation health [9]. Finally, the presence 
of PM2.5 can even influence climate change by altering 
the earth’s energy balance [10]. 

Therefore, satellite-based PM2.5 pollution mapping 
and the PM2.5 pollution mechanism revealing are of great 
significance for the PM2.5 pollution forecasting, public 
health protecting, environmental pressure relieving, 
and air pollution improvement measures formulating. 
In addition, obtaining large-scale continuous dynamic 
PM2.5 data through model estimation can provide basic 
data guarantee for current atmospheric environmental 
governance, which is a hot issue in current PM2.5 
pollution research.

PM2.5 ground monitoring, atmospheric chemical 
transport modeling, and statistical satellite-based PM2.5 
estimation modeling are three mainly used methods 
for PM2.5 prediction. First, PM2.5 ground monitoring is 
estimated based on the values measured by ground-
based monitoring stations. This method was widely 
used before the development of remote sensing 
technology, the measurement method is simple, and 
the measurement results are not affected by cloud 
coverage and surface conditions [12]; however, the 
ground measurement method is greatly affected 
by the distribution and terrain, etc. When the sites  
in the research area are densely distributed, the 
estimation results are more accurate, while the PM2.5 
estimation results are not that accurate in areas  
with sparse sites [13-14]. Second, the complex chemical 
and physical mechanism inherent between PM2.5 and 
influence factors is considered in the atmospheric 
chemical transport model, and this kind of models is 
theoretically reliable [15]. However, the computational 
time and memory requirements of this model are 
high, which limits the application of it [16-17]. Finally,  
the PM2.5 statistical model based on satellite remote 
sensing is based on the statistical relationship between 
AOD and PM2.5, coupling with other factors affecting 
PM2.5. The PM2.5 estimations results based on remote 
sensing has high timeliness, certain periodicity and is 
continuous in a large spatial coverage.

With the progress of research, the spatial 
representation of the first method, and higher operation 
speed cost of the second method limited the extensive 
continuous dynamic estimation of PM2.5. However, the 
PM2.5 statistical model based on satellite remote sensing 
has become a main method to obtain a large range of 
continuous PM2.5 concentration. PM2.5 statistical model 
based on satellite remote sensing is constantly evolving, 
from the simplest linear model [18-20] to complex 
statistical model. In addition, many studies have shown 
that there is a complex non-linear relationship between 
PM2.5 and many influencing factors. Machine learning 
model can better characterize the complex non-linear 
relationship between PM2.5 and many influencing 
factors, and it can also effectively process big data and 
measure the importance of each influencing factor. 

Taking into account the high accuracy and the simple 
implementation of the machine learning methods, they 
are introduced into PM2.5 estimation at this stage, such 
as BP’s artificial neural network model, support vector 
machine model and random forest [21-22]. Chen et al. 
estimated daily PM2.5 concentrations across China 
from 2005-2016, showing that daily random forest 
models had much higher accuracy than conventional 
regression models [23]. Zhao et al. established a random 
forest model to estimate high resolution daily PM2.5 
concentrations in Beijing-Tianjin with the R2 value of 
0.83 [24].

To obtain higher PM2.5 estimation accuracy, it is 
necessary to comprehensively sort out the influencing 
factors of PM2.5. Previous studies found that the main 
factors affecting PM2.5 concentration include: AOD, SO2, 
NO2, meteorological factors, socio-economic factors, 
land use [25-27]. Meanwhile, energy consumption 
and NO2 and SO2 produced by human activities (such 
as automobile exhaust and factory exhaust) are the 
main drivers of PM2.5 concentration [28-31]. Besides, 
meteorological factors can influence the distribution 
of PM2.5 by affecting the formation, diffusion and 
settlement of particulate matter [32-35]. In addition, 
social factors such as regional GDP, population density, 
as well as vegetation cover [36-38] can also affect  
the distribution of PM2.5.

This paper attempted to build a PM2.5 estimation 
model for NCP and generated a spatially surface 
PM2.5 dataset over NCP by using sites-based PM2.5 
observations, MODIS/AOD data, MODIS/NDVI data, 
satellite-observed emissions data (i.e., OMI/SO2 and 
OMI/NO2), meteorological factors, population density, 
gross regional product (GDP), and DEM. Subsequently, 
the random forest model was utilized in to build the 
PM2.5 estimation model, and then daily PM2.5 dataset 
with a resolution of 0.1°×0.1° in NCP was calculated 
and generated from this PM2.5 estimation model. 
Finally, the spatial and temporal distribution of PM2.5 
concentration was revealed. The study aims to: (1) 
construct a high resolution daily PM2.5 estimation 
model suitable for NCP, and (2) explore the spatial and 
temporal distribution patterns of PM2.5 in NCP using 
PM2.5 estimation results.

Data and Methods

Study Area

NCP was the study area in this paper (shown in 
Fig. 1). NCP locates at 32°N~42°N, 110°E~120°E, 
and there are five provinces in this region including 
Beijing, Tianjin, Hebei, Henan and Shandong. Besides, 
it is also the political, economic, and cultural center of 
China, and it has high temperature and rain in summer, 
frequent sand and dust storms in spring, cold and 
dry winter, increased coal heating, large population, 
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industrial pollution emissions, automobile gas and 
dust from construction sites, and sharp contradictions 
between resource environment and urban development. 
The air quality in this region has always been  
the focus and urgent need of environmental research 
today of China [39]. Establishing a regional PM2.5 
estimation model and obtaining a large-scale continuous 
coverage of PM2.5 estimation results are of great 
significance for mitigating regional PM2.5 pollution, 
formulating relevant measures, and alleviating 
development contradictions.

Data

In this study, 16 kinds of data were utilized, and 
the data types, data representation, time range, spatial 
resolution, temporal resolution, and data sources of 
these datasets were shown in the Table 1.

PM2.5 Monitoring Sites 

PM2.5 measurements from the ground-based sites 
in NCP were used to build the PM2.5 simulation model. 

Fig. 1. Location of the study area (left), and spatial distribution of PM2.5 monitoring sites in NCP (right).

Table 1. Overview of the relevant data in this study.

Data Types Abbreviation Time Spatial
Resolution

Temporal 
Resolution Data Sources

AOD MODIS/AOD 2015~2020 0.05°×0.05° 24h NASA LAADS 
DAAC

NDVI MODIS/NDVI 2015~2020 0.05°×0.05° 16d NASA LAADS 
DAAC

SO2 OMI/SO2 2015~2020 0.25°×0.25° 24h NASA EARTH 
DATA

NO2 OMI/NO2 2015~2020 0.25°×0.25° 24h NASA EARTH 
DATA

Elevation DEM 2015 1km×1km - RESDC

Economic GDP 2015 0.1°×0.1° - RESDC

Population POPU 2015 0.1°×0.1° - RESDC

Boundary Layer Height BLH 2015~2020 0.1°×0.1° 1h ECMWF

Surface Solar Radiation SSRD 2015~2020 0.1°×0.1° 1h ECMWF

Relative Humidity RH 2015~2020 0.1°×0.1° 1h ECMWF

Wind Speed WS 2015~2020 0.1°×0.1° 1h ECMWF

Wind Direction WD 2015~2020 0.1°×0.1° 1h ECMWF

Surface Pressure SP 2015~2020 0.1°×0.1° 1h ECMWF

Temperature T 2015~2020 0.1°×0.1° 1h ECMWF

Total Precipitation TP 2015~2020 0.1°×0.1° 1h ECMWF

Total Cloud Cover TCC 2015~2020 0.1°×0.1° 1h ECMWF
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China established the national air pollution (including 
PM2.5) monitoring network at the end of 2012, and the 
PM2.5 data was released on the national air quality release 
platform from 2013 (http://106.37.208.233:20035/).  
The spatial distribution of the ground-based monitoring 
sites in NCP is shown in Fig. 1.

Satellite Data

AOD is a measure of the sun’s beam blocked by air 
pollutants and is widely used as an indicator of near-
Earth pollutants [40], is of great significance in the 
study of air pollution, MODIS AOD product is the 
most widely used aerosol optical thickness dataset 
in the PM2.5 simulation. The MODIS AOD product 
is one of the atmospheric products carried by the 
medium-resolution imaging spectrometer on the Terra  
and Aqua satellites, which were successfully launched 
by NASA on December 1, 1999 and April 18, 2002, 
respectively. MODIS AOD has the characteristics of 
large spatial-coverage, wide spectrum range, fast data 
update, and MODIS data can be freely downloaded. 
Therefore, MODIS AOD data was selected in this 
study as one of the important input factors for  
PM2.5 estimation. In addition, Terra and Aqua satellites 
have different transit times, and AOD products 
from these two satellites cover different spatial 
ranges. Therefore, in order to improve the temporal 
representation of AOD data and expand the spatial 
coverage of AOD data, MOD09CMA and MYD09CMA 
aerosol products from Terra and Aqua satellites from 
2015 to 2020 were averaged in this study, and then the 
averaged AOD data was utilized to estimate surface 
PM2.5 data in NCP during 2015 and 2020. The spatial 
resolution of these two daily MODIS AOD products is 
0.05°×0.05°.

In addition to AOD, the SO2, and NO2 emitted by 
human activities also have significant influence on 
the production of PM2.5. The SO2 and NO2 data from 
2015 to 2020 used in this work were L3 daily products 
observed by the Ozone Measurement Instrument (OMI) 
loaded in the AURA satellite, and the spatial resolution 
of these daily datasets is 0.25°× 0.25°. The OMI is 
a sensor jointly developed by the Netherlands and 
Finland to measure the concentrations of ozone, HCHO, 
NO2, and SO2, as well as multiple data on aerosols, 
clouds, and surface ultraviolet radiation. Besides, the 
Normalized Difference Vegetation Index (NDVI) can 
reveal the variations of vegetation coverage, impact the 
environment and climate, and also influence the PM2.5 
concentration changes. MODIS 16 days NDVI product 
MYD13C1 from 2015 to 2020 with the spatial resolution 
of 0.05°× 0.05°was used in this work. Finally, MODIS 
AOD data [18, 41-42], OMI SO2 and OMI NO2 data [27, 
43-45] and NDVI product involved in this work were 
widely used in previous studies and the quality and 
product accuracy of them are well illustrated in these 
articles.

Meteorological Reanalysis Data

Meteorological factors can affect the distribution 
of PM2.5 concentration by influencing the formation, 
diffusion, and sedimentation of particulate matter.  
[33-35,46]. Through the literature review, boundary 
layer height, surface solar radiation, relative humidity, 
wind speed, wind direction, surface air pressure, 
temperature, total precipitation, and total cloud cover 
were selected as main PM2.5 influencing meteorological 
factors. Hourly ERA5 meteorological reanalysis 
data from the European Mid-scale Weather forecast 
Center (ECMWF, European Center for Medium-
Range Weather Forecasts) with a spatial resolution of  
0.1°× 0.1° was used in this work to build the 
PM2.5 estimation model, and the time range of the 
meteorological data was from 1 January 2015 to 31 
December 2020. The quality and product accuracy 
of these reanalysis data were documented in previous 
studies [47-50].

DEM and Socioeconomic Factors Data

Digital Elevation Model (DEM) affects the 
transmission and diffusion of air pollutants. Besides, 
Gross Domestic Product (GDP) and population density 
(POPU) indicates the level of urban development, the 
human activity intensity, and they can also influence the 
pollutant emissions [51-53]. Therefore, the DEM, GDP, 
and POPU data served as the terrain and socioeconomic 
influencing factors of PM2.5. All these datasets were 
obtained from the Resource and Environmental Science 
and Data Center of Chinese Academy of Sciences.  
The spatial resolution of the DEM, GDP and POPU 
data are 1km×1km, and all these data were resampled  
to 0.1°× 0.1°grids. The latest available data provided 
by the website is the GDP and POPU data of 2015,  
and these two data of 2015 were used in this work.

Research Technique

Space-Temporal Matching of Multi-Source Data

All the PM2.5 influencing factors were spatiotemporal 
matched and resampled to establish the 0.1°×0.1°grids 
for all data. The spatial resolution of OMI/SO2, OMI/
NO2 is 0.25°×0.25°and these two datasets were 
interpolated to the 0.1°×0.1°grids. Besides, the fused 
MODIS/AOD, MODIS/NDVI (0.05°×0.05°), and DEM, 
GDP and POPU data (1km×1km) were resampled to 
0.1°×0.1°. Moreover, the temporal resolution of MODIS/
NDVI data is 16 days, so we use the NDVI value of the 
day when the NDVI observation value is available to 
replace the NDVI value of the next 16 days. In addition, 
SSRD and TP used in this work are the daily cumulative 
data, and the T used is the daily highest temperature. 
While other meteorological factors used in this work 
are daily average values (local 8 am to 22 am).
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PM2.5 Estimation Models

Random Forest is first proposed as a classifier 
by Leo Breiman and trained on training samples 
using multiple trees [54-55]. It takes the decision 
tree as the basic unit, combined with the bootstrap 
resampling method (random sampling), and improves 
the classification accuracy through the combination of 
multiple decision trees. Later, the random forest model 
can also be used for nonlinear regression, and the 
algorithm is easy to implement and the accuracy of it is 
high [56]. Meanwhile, the Extreme Gradient Boosting 
(XGBoost) model is also a machine learning algorithm 
implemented in the Gradient Boosting framework, and 
it classifies and predicts the datasets based on the CART 
regression tree [57-58].

In this study, the nonlinear relationship model 
between PM2.5 and various variables established with 
random forest model and XGBoost model can be 
described as follows:

   (1)

Where NO2 and SO2 represent the concentration of 
nitrogen dioxide and sulfur dioxide, T, RH, WS, WD, 
SSRD, BLH, TCC, TP are meteorological data, and 
the relevant details of these parameters are shown in  
Table 1. Besides, GDP denotes gross domestic 
product, POPU is population density, DEM represents  

the elevation of the corresponding position, and NDVI 
means the Normalized Difference Vegetation Index.

In the modeling progress of RF and XGBoost, 10% 
of the sites were randomly selected as the validation 
sites, and the remaining 90% of the sites were used 
as the modeling training data and testing data.  
In these remaining 90% sites, 80% of the data samples 
are randomly selected as model training data, and the 
remaining 20% of the data samples are used as testing 
data. Finally, the accuracy of both models was evaluated 
by the validation sites data.

Results and Discussion

Models Verification Accuracy

The sites data were randomly divided into validation 
sites (10%), modeling training data (90%×80%), 
and modeling testing data (90%×20%). The cross-
validation results of the RF PM2.5 estimation model and 
XGBoost PM2.5 estimation model are shown in Fig. 2. 
As shown in Fig. 2, the accuracy of the test results of 
these two models is relatively high, and the correlation 
coefficients (R value) between the model simulation 
results of these two models and the observation data 
are both higher than 0.81. Similarly, the accuracy  
of the validation results of these two models is also 
relatively high with the R values both higher than 0.80. 
However, when the test and validation results of the RF 
model and the XGBoost model are compared, the results 
show that the accuracy of the XGBoost model are 

Fig. 2. Comparison results of the cross validation accuracy between RF model and XGBoost model. (a-c) present the scatter plots 
between observed and estimated PM2.5 using RF model. (d-e) are similar with (a-c) but for the results of XGBoost model.
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higher with the both R values of the test and validation 
results are 0.84, which are higher than the results of the 
RF model (R value of 0.81 and 0.80).

Table 2 shows the statistical results of the R2, RMSE 
and mean error between the observed PM2.5 and model 
estimated PM2.5 using RF model and XGBoost model. 
The R2 values of four seasons are all higher than 0.79, 
and this means that these two PM2.5 estimation models 
have higher model accuracy. Besides, the prediction 
accuracy of both models in autumn and winter are 
higher than that in spring and summer, and the highest 
value appears in winter while the lowest is in summer. 
From the perspective of RMSE and the mean error, 
the largest RMSE and mean error value are in winter 
while the smallest values are in summer. This is due 
to the serious pollution and the large base of pollutant 
concentration in winter. Although the absolute error 
value is relatively large, it is not inconsistent with the 
high relative accuracy of R2. In conclusion, the accuracy 
of the XGBoost model is higher than that of the RF 
model, so the PM2.5 estimation results using XGBoost 
model were derived and selected for further analysis.

Order of Influence Factor Importance

The relative importance of the 16 variables used in 
the PM2.5 estimation model is shown in Fig. 3. It reveals 
that NO2 is the most important influencing factor in 
the PM2.5 estimation model with the highest relative 
importance, accounting for about 11.4%. Previous 
studies have shown that PM2.5 mainly derived from the 
NO2 and SO2 emitted from fossil fuel combustion and 
human activity [28-31]. Besides, Fig. 9 revealed that the 
severe PM2.5 pollution generally showed a significantly 
downward trend with the proportion of severe PM2.5 
pollution in NCP reduced from 1.9% (2015) to 0.4% 
(2020). Generally, PM2.5 pollution is mainly controlled 
by emissions caused by human activities, and then the 
generation of PM2.5 pollution is ultimately caused by 
human activities, so the main reasons for the decline in 
PM2.5 pollution in NCP from 2015 to 2020 was due to 
the reduction of NO2 and SO2 emissions from human 
activities in the same period of time. This result is 
consistent with previous relevant research results [59-

Fig. 3. The relative importance of each influencing factor in the 
PM2.5 estimation model.

Fig. 4. Spatial distribution of daily mean estimated PM2.5 in NCP 
from 2015 to 2020.

Table 2. Statistical results of RF model and XGBoost model in each season in NCP.

Season Sample number R2 RMSE
(μg m-3)

Mean error
(μg m-3)

RF

Spring 22138 0.84 12.42 7.37

Summer 16680 0.80 8.45 5.29

Autumn 17113 0.86 13.24 7.54

Winter 19496 0.87 19.46 11.55

XGBoost

Spring 22138 0.85 11.63 7.60

Summer 16680 0.79 8.56 5.90

Autumn 17113 0.87 12.08 7.39

Winter 19496 0.89 16.78 9.51
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61]. And it also shows that the air cleaning plan started 
by the Chinese government in 2013 is more effective.

Besides, temperature also has a great influence on 
PM2.5, and higher temperature will increase atmospheric 
turbulence, which is conducive to the diffusion of 
pollutants and can reduce the concentration of pollutants 
[62], while low temperature in the winter heating season 
often leads to the burning of fossil fuels and the emission 
of polluting gases, which has an impact on the formation 
of PM2.5. Moreover, the contribution of SO2, RH, WS, 
NDVI, AOD, SSRD, and WD are roughly similar with 
a relative importance of more than 6.9%. Among them, 
meteorological factors including RH, WS, SSRD, and 
WD affect the concentration of PM2.5 by influencing the 
diffusion and deposition of particulate matter [32-35, 62-
63], and these results are in consistence with previous 
studies [64]. Under high humidity conditions, aerosols 
can attach more impurities, so the PM2.5 concentration 
also increases [65]. AOD reflects the concentration of 
near-ground pollutants [18, 25, 40], while areas with high 
vegetation cover have less human activity, and NDVI 
have a positive effect (reducing pollutant concentrations) 
on the deposition of PM2.5 particles [66, 67], and then 

both factors contribute to PM2.5 estimation. The relative 
importance of BLH, TCC and month to PM2.5 is between 
5.4% and 6.5%. In addition, the relative importance of 
DEM, GDP, POPU and TP for PM2.5 is less than 4%, 
indicating that social factors, altitude information and 
precipitation are not the key factors affecting PM2.5 
concentration. 

Spatial and Temporal Variation of PM2.5

According to the PM2.5 estimation model established 
above, daily gridded PM2.5 results were calculated, 
and the spatial distribution of the average PM2.5 from 
2015 to 2020 is shown in Fig. 4. It is indicated that  
the PM2.5 concentration in NCP is in the range of 
75~120 μg m-3, and most parts of this region are in 
heavy PM2.5 pollution with the high PM2.5 concentration 
in the range of 90~110 μg m-3. The distribution of PM2.5 
concentration has obvious spatial agglomeration, and 
the pollution in the south of 40°N, the north of 34°N 
and the east side of Taihang Mountain is heavier, while 
the highest concentration of PM2.5 occurs at the junction 
of Beijing, Hebei, Shanxi and Henan provinces. Shanxi 

Fig. 5. Spatial distribution of mean estimated PM2.5 in four seasons, (a-d) present the results of spring, summer, autumn and winter, 
respectively.



Wang X., et al.3886

Province, Hebei Province, and Beijing have large-
scale areas with high concentrations of PM2.5, which 
are related to the industrial structure of them. Shanxi 
Province has a large number of coal fields, and the 
high-value areas are exactly where the coal mines 
are located. Coal mining and transportation lead to 
elevated PM2.5 pollution. Meanwhile, Hebei Province 
is dominated by heavy industry, and the first pillar 
industry is the iron and steel industry that emits a lot of 
nitrogen oxides. In addition, as the political and cultural 
center of China, it is not surprising that Beijing has a 
high level of pollution with a dense population, frequent 
human activities and heavy traffic.

To reveal the seasonal spatial patterns of PM2.5, 
the seasonal average PM2.5 results are shown in Fig. 5. 

The results show that the PM2.5 pollution level is the 
highest in winter, and the scope of pollution is also the 
largest. Following winter, spring and autumn are the 
other two seasons with the most serious PM2.5 pollution. 
However, summer is the season with the lightest PM2.5 
pollution. For PM2.5 pollution in winter, the most severely 
PM2.5 pollution regions are concentrated in southern 
Hebei, northern Henan and southern Shandong with 

Fig. 6. Spatial distribution of PM2.5 concentration changes in adjacent two years.

Table 3. PM2.5 pollution standard values (k represents PM2.5 
concentration).

PM2.5 concentration (μg m-3) Grade

0<=k< = 35 Excellent

35<k< = 75 Good

75<k< = 115 Mild pollution

115<k< = 150 Middle level pollution

150<k< = 250 Heavy pollution

k>250 Serious pollution

Fig. 7. Spatial distribution of PM2.5 exceedances (daily mean 
PM2.5 >150 μg m-3) in each grid during 2015 and 2020 over NCP.
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PM2.5 concentrations ranging in 112~128 μg m-3, and it is 
related to winter heating in NCP, where a large amount 
of coal is burned, accompanied by a large amount of 
polluting gas emissions. Meanwhile, the temperature 
is low in winter and air convection slows down. These 

two factors make it difficult for the pollution to spread 
effectively, and PM2.5 pollution increases in this region. 
In the terms of PM2.5 in summer, the temperature is 
higher, and the air convection is accelerated, which is 
conducive to the diffusion of PM2.5 pollution. Therefore, 
PM2.5 pollution in summer is the lowest in four seasons 
with PM2.5 concentration in most areas ranging in 
64~104 μgm-3. In early spring, NCP is still affected 
by the northwesterly wind from Mongolia-Siberia.  
The vegetation and loose soil in the area where the 
monsoon passes are sparse. Therefore, the monsoon 
will carry a lot of dust and be blocked by the Taihang 
Mountains, resulting in a high PM2.5 concentration on 
the northwest side of the Taihang Mountains.

To reveal the temporal variations of PM2.5 
concentration, the spatial distribution of PM2.5 
concentration variation in adjacent two years was 
obtained by calculating the difference of the average 
PM2.5 concentration in these two years and the result is 
shown in Fig. 6. From 2015 to 2020, the PM2.5 pollution 
concentration generally shows a decreasing trend. 
Most notably, compared with 2019, the PM2.5 pollution 
in NCP has decreased significantly in 2020, and the 

Fig. 8. PM2.5 exceedances (daily mean PM2.5 >150 μg m-3) in each season, (a-d) present the results of spring, summer, autumn and winter, 
respectively.

Fig. 9. Statistical results of annual cumulative exceedances ratio 
(left axis) and exceedances of PM2.5 (right axis) in each year 
during 2015 and 2020 in NCP.
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main reason for this phenomenon may be the impact of  
the COVID- 19 epidemic.

Spatial and Temporal Patterns of PM2.5 
Exceedances

To better reveal the temporal and spatial variation 
of PM2.5 pollution, the temporal and spatial variation 
characteristics of PM2.5 pollution exceedances according 
to the national ambient air quality standards (GB 3095-
2012) [68] were calculated and analyzed. Furthermore, 
the 24-hour average standard values of PM2.5 pollution 
is shown in the following Table 3.

In order to focus on the situation of heavy  
PM2.5 pollution, this study uses k>150 μg m-3 as 
the PM2.5 pollution standard according to the air 
pollution standards in the Table 3, and the counts and 
frequency of PM2.5 pollution exceedances (daily mean 
PM2.5 >150 μg m-3) in the study area was calculated and 
showed in the following parts of the work.

The number of exceedances in each grid during 
2015 and 2020 over NCP was calculated and shown 
in Fig. 7. The results reveal the spatial distribution of 
the cumulative counts of PM2.5 pollution exceedances 
during 2015 and 2020. As shown in the figure, the 
distribution of exceedances is generally in line with 
the daily average distribution patterns revealed in 
Figure 5, and the severe PM2.5 pollution with higher 
exceedances mainly locate in the border of Hebei and 
Shanxi, the border of Hebei and Henan and southern 
Shandong province. Compared with the higher average 
concentration of PM2.5 in eastern Shanxi, the days 
exceeding severe PM2.5 pollution standards in east 
Shanxi is lower, which shows that most region in 
eastern Shanxi are moderately polluted, and PM2.5 
concentration does not exceed the standard of serious 
pollution (<150 μg m-3). At the junction of Henan, 
Hebei and Shanxi provinces, PM2.5 exceedance 
occurs more frequently. In terms of topography, this 
region with severe PM2.5 pollution is low in terrain, 
surrounded by mountains in the west and north, which 
is not conducive to the diffusion of pollutants. From the 
perspective of industrial structure, Hebei Province is a 
major province of heavy industry, Shanxi province is a 
major province of coal resources, and Henan Province 
is a major agricultural province with emissions from 
the straw burning and the using of nitrogen fertilizer. 
In addition, the number of exceedances in southern 
Shandong Province is also higher, which is a well-
known industrial area in China.

Fig. 8 reveals the spatial distribution of the statistical 
results of the number of exceedances of severe PM2.5 
pollution in each season. Summer is the season with 
the least exceedances of PM2.5, and there is almost no 
exceedance of PM2.5 in most regions of NCP, indicating 
that there is rarely heavy PM2.5 pollution in summer. 
On the contrary, the number of exceedances of PM2.5 
in winter is the largest in four seasons, and the spatial 
coverage of the exceedances of PM2.5 is also the largest. 

The highly polluted regions in winter mainly located 
in south Hebei, the junction of Shandong and Henan, 
and the exceedances in most parts of these regions 
are between 60-80 days. It is related to the large 
amount of coal burning in the cold season. In addition,  
the numbers of exceedances in spring and autumn are 
less than that in winter, and the number of exceedances 
is less than 60 days in most regions of NCP. Meanwhile, 
the number of the exceedances in spring is slightly less 
than that in autumn. In addition, the spatial distribution 
of the exceedances in the two seasons is different, and 
the PM2.5 pollution in spring mainly distributes in the 
northern region while in autumn it mainly distributes in 
the southeast of NCP, and it is related to wind direction, 
temperature in this region. Finally, spatial distribution 
pattern of PM2.5 exceedances in different seasons 
(Fig. 8) is roughly similar with that of average PM2.5 
concentration shown in Fig. 5.

To further reveal the levels of exceedances in 
different years, annual cumulative exceedances ratio 
and exceedances of PM2.5 in each year during 2015 
and 2020 was showed in Fig. 9. From 2015 to 2020, the 
severe PM2.5 pollution generally showed a significantly 
downward trend with the proportion of severe PM2.5 
pollution in NCP reduced from 1.9% to 0.4%. However, 
the severe PM2.5 pollution levels also experienced some 
repetitions between 2015 and 2020, in which the severe 
PM2.5 pollution in 2019 increased compared with 2018. 
In addition, the proportion of severe PM2.5 pollution 
in 2020 has dropped significantly compared to 2019, 
which may be due to the impact of the COVID-19 
epidemic in NCP in the first half of 2020. The “Air 
Pollution Prevention and Control Action Plan” was 
promulgated during 2013-2017 and mainly aimed 
to reduce ambient PM2.5 pollution. Previous studies 
reported that the Action Plan led to 59% and 21% 
decreases in anthropogenic SO2 and NOX emissions 
[59-61], respectively.

Conclusions

The MODIS AOD, NDVI, DEM, population density, 
OMI/SO2 and OMI/NO2 data and meteorological 
reanalysis data from 2015 to 2020 were used to 
construct the PM2.5 estimation models with RF model 
and XGBoost model. After two PM2.5 estimation 
models were built, the accuracy of these two models 
was validated and compared to reveal which model is 
more accurate and more suitable for establishing PM2.5 
in NCP. The accuracy of both PM2.5 estimation models 
is relative high, but the accuracy of XGBoost model 
is higher and the verification R2 value of randomly 
selected site is 0.71. Meanwhile, the relative importance 
of each influencing factor in PM2.5 estimation model 
was revealed, and NO2, T, SO2, RH, WS, NDVI, AOD, 
SSRD and WD play an important role in dominating the 
PM2.5 concentration. Among these factors, NO2 is the 
primary influencing factor, which is inseparable from 
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the formation mechanism of PM2.5. Subsequently, the 
XGBoost model was chosen to estimate daily average 
PM2.5 results in NCP during 2015 and 2020. In terms 
of spatial-temporal distribution, PM2.5 concentration 
in NCP has obvious spatial agglomeration. The areas 
with heavier PM2.5 pollution are concentrated in the 
areas south of 40°N latitude, north of 34°N latitude and 
east of Taihang Mountains. The highest concentration 
of PM2.5 locates in Beijing and the junction of Hebei, 
Shanxi and Henan. PM2.5 concentration in NCP has a 
strong seasonal pattern with the highest PM2.5 pollution 
level appears in winter, while the lowest PM2.5 pollution 
level is in summer. The PM2.5 pollution in NCP 
generally showed a downward trend, and the PM2.5 
concentration in 2020 decreased significantly compared 
with 2019. Overall, this work provides a high precision 
PM2.5 estimation model in NCP, and daily gridded PM2.5 
results with spatial resolution of 0.1°×0.1°from 2015 to 
2020 in NCP were estimated by the estimation model. 
Furthermore, spatiotemporal variation characteristics 
of PM2.5 were also revealed in this work. In addition, 
the relative importance of each influencing factor to 
PM2.5 pollution in NCP was quantitatively revealed. The 
severe PM2.5 pollution generally showed a significantly 
downward trend in NCP during 2015 and 2020. And 
the leading roles of NO2 and SO2 in PM2.5 pollution in 
NCP were revealed in this work. Generally, the main 
reasons for the decline in PM2.5 pollution in NCP from 
2015 to 2020 were due to the reduction of NO2 and SO2 
emissions from human activities. This study reveals that 
the Chinese government’s air pollution prevention and 
control plan is effective, which also provides treatment 
ideas and technical support for further reducing PM2.5 
pollution in China, especially in NCP.
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