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Abstract

The fragile ecosystem in the Yellow River Basin (YRB) is sensitive to climatic changes,  
and previous studies have mainly focused on exploring the spatiotemporal relationship between 
vegetation growth and climatic change based on their spatially or temporally averaged values. However, 
few studies unraveled the effect of climatic changes on vegetation growth from both spatial and temporal 
variations separately. In the study, empirical orthogonal function (EOF), singular value decomposition 
(SVD), and trend analysis were used to detect the spatiotemporal variation of net primary productivity 
(NPP) over 2000-2019 and to analyze its response to climatic factors from spatial and temporal aspects, 
respectively, in the YRB. The results showed that the distribution of NPP decreased from southeast to 
northwest. The areas of NPP with significantly improved and degraded accounted for 80.41% and 1.3%, 
respectively. The NPP had greatly increased after 2012, particularly in the central region, but decreased 
in the eastern region. Precipitation was the dominant factor influencing NPP growth, especially in the 
arid and semi-arid regions. Additionally, the characterization of variability in farmland and forest land 
by EOF was better than SVD. This study provides insights into the relationship between vegetation 
growth and climatic changes at a watershed scale.
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Introduction

Vegetation, as a component of the global terrestrial 
ecosystems, plays a critical role in global carbon 
balance, energy exchange, climate regulation and soil 
conservation [1]. The net primary productivity (NPP) is 
the difference between photosynthesis production and 
respiration consumption, and is an important variable 
for global carbon cycle and the feedback between 
terrestrial ecosystems and atmosphere [2]. It is an 
important indicator for earth system science research, 
climate change, and ecological environment assessment 
[3, 4]. With the effect of global warming, the suitable 
bioclimatic condition is more essential for vegetation 
growth, ecosystem functions and human lives [5, 6], 
and many studies analyzed the impacts of climatic 
changes on NPP variation, which is greatly sensitive to 
climatic changes [3, 7].

In general, precipitation and temperature are the 
main climatic factors affecting the variation of NPP. 
Some studies found that the annual precipitation 
had the widest impact on the NPP, particularly in the 
areas where precipitation was less abundant [8, 9]. 
Temperature is conducive to the growth of NPP in 
the Tibet Plateau because of the higher sensitivity 
in alpine vegetation, and solar radiation also have 
a positive impact on NPP in most parts of China [7]. 
The correlation and time-lag effects between NPP and 
climatic factors under vegetation types were detected, 
which might be related to geographical location and 
terrain factors [10, 11]. Furthermore, several studies 
analyzed the spatiotemporal changes of grassland NPP 
under climate scenario RCP2.6 and RCP8.5 by 2050 
[12], evaluating the NPP in response to climatic changes 
in the future [1]. Thus, it is essential to investigate the 
relationships between NPP and climatic factors to better 
understand the driving mechanism of global climatic 
change on ecosystem functions.

Various methods were used to investigate the 
relationship between NPP and climatic factors. The 
Pearson’s correlation coefficients were employed to 
assess the relationship between NPP and the extreme 
climate indices in coastal China from 1986 to 2015 
[13]. The relationship between NPP and climate 
change in different vegetation zones in northwest 
China were assessed based on Ensemble Empirical 
Mode Decomposition (EEMD) detrending analysis 
[14]. Moreover, the threshold segmentation method 
was used to detect the NPP dynamics affected by both 
climate and ecological restoration projects in eight 
ecoregions and its driving mechanisms [15]. Obviously, 
the spatiotemporal changes of NPP in large area is the 
results of interactive effects of climate on both spatial 
and temporal variation. However, previous studies about 
the spatial effects of climate on NPP were mainly based 
on the temporally averaged values of NPP and climatic 
factors ignoring their temporal variation [14, 16], and 
studies about the temporal effects of climate on NPP 
were mainly based on their spatially averaged values 

ignoring their spatial variation [17, 18], which did not 
attempt to disentangle the spatial and temporal effects 
of climate on NPP. 

The empirical orthogonal function (EOF) and 
singular value decomposition (SVD) analysis have 
the advantages to analyze the geographic variables 
with spatial and temporal variation for decomposing 
them into a set of spatial patterns of variability and 
corresponding time series. The decomposed spatial 
modes could exhibit spatial structure of geographic 
variables and are helpful for understanding their 
physical meanings, which is controlled by the variability 
of spatial variables, and the decomposed temporal 
series could represent detail information of inter-
annual variations [19, 20]. Considering the entangled 
spatiotemporal effects of climatic factors on the spatial 
and temporal variation of NPP, the methods of EOF and 
SVD might be better to characterize the spatiotemporal 
variability of variables. For example, the EOF analysis 
was employed to detect temporal patterns and spatial 
variability of Normalized Difference Vegetation Index 
(NDVI) after typhoons in the mountainous watershed 
[21]. The spatiotemporal variability of NDVI associate 
with deforestation was analyzed in four zones in 
southeastern Peru by using EOF [22]. Some researchers 
applied EOF and SVD analysis to identified the main 
modes of variability of NDVI and their relationships 
with precipitation and temperature [23], and detected 
the temporal lags and the interactions between climatic 
factors at some ecosystems [19]. The EOF and SVD 
analysis were also applied to investigate the coupled 
effects of the dynamics of leaf area index (LAI) and 
climatic variabilities at a watershed scale [24]. However, 
the capabilities of EOF and SVD on separating and 
explaining the spatial and temporal variation of NPP 
were not compared. Therefore, this study attempts 
to analyze the dynamics of NPP and its response 
to climatic change from both temporal and spatial 
dimensions by both methods of EOF and SVD, and to 
explore the differences between the two methods on 
figuring out the spatial and temporal effect of climate 
on NPP in the Yellow River Basin (YRB) of China.

The YRB is the second longest river in China, 
spanning arid, semi-arid and semi-humid climate zones, 
which plays an important role on the regional ecological 
stability. Due to the special geographical location and 
natural conditions, the basin has a fragile ecological 
environment, and its vegetation growth is vulnerable 
to climatic change and human activities. The YRB  
is suitable to explore the mechanisms of climate 
on NPP because of its great variabilities on both 
spatial and temporal dimensions. Thus, the objective  
of this study was to (1) detect the spatial and temporal 
pattern and changing trend of NPP in the YRB from 
2000 to 2019; (2) disentangle the spatial and temporal 
effects of climate on NPP; (3) compare the methods  
of EOF, SVD and traditional correlation analysis (TCA) 
on exploring the relationships between climatic factors 
and NPP.
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Materials and Methods

Case Areas

The YRB is located in north of China 
(95°53´E-119°5´E, 32°10´N-41°50´N) with a total area of 
approximately 750,000 km2, which is one of the most 
important basins in China and constitutes an important 
ecological barrier. The terrain of YRB is high in the 
west and low in the east (Fig. 1a). The source of YRB 
locates at the highest altitude of 4000 m; the altitude 
of the central region ranges from 1000 to 2000 m and 
presents a loess land form with serious soil erosion; and 
the eastern area is 100 m below sea level and is mainly 
composed of the alluvial plain of the Yellow River 
[25]. The geological environment is most fragile in 
the upper reaches of the YRB, followed by the middle 
reaches, and the lower reaches, and the occurrence of 
geological disasters presents an aggregated distribution. 
Under the continental monsoon circulation system, the 
climate in the basin is the transitional regions from 
semi-arid and arid to sub-humid and humid conditions.  
The agricultural land in the YRB is mainly dominated 
by grassland, farmland, and forest land (Fig. 1c). 

Data Source

 The MODIS product MOD17A3h6 NPP data from 
2000 to 2019 was acquired from the Land Processes 
Distributed Active Archive Center (LP DACC), NASA 
(https://lpdaacsvc.cr.usgs.gov/appeears/). The data were 

in HDF format with 1-year temporal resolution and 
500 m spatial resolution. The maximum temperature, 
precipitation and wind speed data were calculated 
from 309 meteorological stations in the YRB over the 
period 2000-2019. The data sourced from Climatic Data 
Center, National Meteorological Information Center 
(https://data.cma.cn/). The land coverage data set 
(MCD12Q1) from 2001 to 2019 across the YRB were 
obtained from the level-1 and atmosphere archive and 
distribution system (LAADS) (https://ladsweb.modaps.
eosdis.nasa.gov/).

Methods and Data Processing 

Spatial Distribution of Temporal Trends for NPP

The linear least-square regression method was 
adopted to detect the trend of the spatially averaged 
NPP and climate-related variables. The time series of 
each pixel was computed to obtain the slope coefficients 
of the trend line. The slope was calculated as follows:

   (1)

where i is the number of the year, NPPi represents 
the NPP of the i-th year, and slope is the temporal 
trend of NPP from 2000 to 2019. A slope>0 indicates 
an increasing trend, whereas a slope<0 indicates  
a decreasing trend.

Fig. 1. a) Elevation and the distribution of selected meteorological stations; b) The spatial distribution of averaged annual NPP over 2000-
2019; and c) Land use types of 2019 in the Yellow River Basin; and d) inter-annual variation of the NPP.
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Empirical Orthogonal Functions (EOF) Analysis 

EOF has been extensively used to analyze the 
spatiotemporal variability of NPP and climatic factors 
by decomposing the data into a set of spatial modes, 
which represents spatially changed pattern, and a 
set of corresponding time series that describes how 
this pattern oscillates in time [20]. Taking NPP as an 
example, suppose that we have removed the mean of 
each time series in NPP, and the NPP (F) could be 
represented the product of a spatial eigenvectors (C) and 
temporal coefficients (T):

                                (2)

Find the covariance matrix: 

         (3)

Calculate the eigenvectors and temporal coefficients 
of NPP:

                             (4)

                              (5)

where R is the covariance matrix, C is the eigenvectors 
and T is the temporal coefficient. Λ represents a 
diagonal matrix of the eigenvalues. The eigenvectors are 
ordered in accordance with the size of the eigenvalues. 
For example, the first mode of NPP is the eigenvector 
associated with the greatest eigenvalue, which represents 
overall variation of NPP and other patterns reflects 
regional difference. In general, the EOF concentrates 
the information of multiple variables on a few variables 
to explain the typical characteristics of variable field as 
much as possible. A detailed description of EOF can be 
found in previously studies [21, 26].

Singular Value Decomposition (SVD) Method

The SVD analysis can isolate coupled modes of 
spatial patterns and associated time series, identifying 
the relationship simultaneously between the NPP and 
climatic factors. The temporal correlation between the 
corresponding pairs of time series indicates the degree 
of coupling between NPP and climatic factors. Suppose 
that the mean of each time series in NPP (S) and 
climatic factors (P) fields has been removed, and form 
the covariance matrix C:

                              (6)

Perform the singular value decomposition of C: 

                            (7)

where the singular vectors for S are the columns of U, 
and the singular vectors for P are the columns of V. 

Each pair of singular vectors is a mode of co-variability 
between the NPP and climate fields, and when the trends 
of U and V are consistent (both high or low), indicating 
that the NPP and climatic factors are positively 
correlated. Λ is the diagonal matrix.

Calculate the temporal coefficients of NPP and 
climatic factors:

                  (8)

where A and B represents time series of each mode, 
describing how each mode of variability oscillates in 
time. The detailed description of SVD can be found in 
previous studies [26].

Data Processing

The Kriging interpolation method was used to 
generate gridded meteorological data with the same 
geographic coordinate system and spatial resolution 
as those of the NPP data. The slope of linear least-
square regression was calculated to detect the temporal 
variations of NPP in the YRB. TCA was employed to 
explore the relationship between NPP and climatic 
factors, and the spatial patterns and temporal series of 
EOF and SVD also was decomposed to identify the 
response of NPP to climatic changes. Finally, the results 
of the three methods of EOF, SVD, and TCA were 
compared.

Results and Discussion

The Spatiotemporal Variations of NPP  

The spatial pattern of averaged NPP is presented 
in Fig. 1b), which decreased gradually from southeast 
to northwest over 2000 to 2019. Specifically, the areas 
with greater NPP (NPP>500) increased from 1.39% 
in 2000 to 13.54 % in 2015 (Table 1), and they were 
mainly distributed in the southeast and southern reigns. 
Furthermore, the areas with lower NPP (NPP<100) 
decreased from 18.36% in 2000 to 6.29% in 2015, 
where they were located in the western and northern 
regions. Notably, the area of the greatest NPP gradually 
increased from 2000 to 2015. In addition, the unchanged 
land types from 2001 to 2019 were extracted, and  
the averaged NPP showed the spatial heterogeneity  
in different land types: forest land had the highest  
mean NPP (503.07 C g/m2), flowed by shrubland 
(448.51 C g/m2), farmland (372.76 C g/m2), wetland 
(316.67 C g/m2), and grassland (229.99 C g/m2). 

The annually averaged NPP showed a significant 
upward trend over 2000 to 2019 in the YRB, indicating 
that the overall vegetation had been improved (Fig. 1d). 
The areas with an increasing trend accounted for  
94.35% of the whole areas, and the area with a 
significantly greening trend was about 80.41% (p<0.01) 
(Fig. 2a and 2b). These areas mainly distributed  
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of ecological restoration programs and the wet-warmer 
climate condition promoted the increment of NPP [9, 
28]. The degraded NPP were mainly distributed in 
the grassland of western regions, possibly caused by 
intensive overgrazing, which resulted in the decreasing 
vegetation productivity and damaged soil surface, and 
thus accelerating soil erosion [29]. Moreover, some 
studies confirmed that the frequency of extreme climate 
events had increased, particularly droughts, which 
would aggravate the regional grassland degradation 
[24]. Furthermore, the lower reaches of the YRB had 
experienced rapid urbanization and population growth, 
with great human disturbance on the construction land 
and farmland, resulting in regional degradation of 
NPP [30]. In recent years, a large number of ecological 
constructions for green space, artificial lakes, and 
river shelter forests have been implemented by the 
local government, which alleviated the pressure of 
urbanization on vegetation growth and limited the 
further expansion of the negative impact caused by 
human activities [31]. Therefore, it was essential to 
rationally allocate the green space and ecological 
network, which could effectively improve vegetation 
growth and ecological system functions [32, 33].

Correlation Analysis between NPP 
and Climatic Factors

The annual precipitation had a wide effect on the 
NPP over the Yellow River Basin, and the area with a 
significant positive correlation accounted for 52.65% 
(p<0.05) (Fig. 3a), which was widely distributed in 
the grassland of the north and northwest regions. 
Furthermore, the maximum temperature also had an 
important impact on NPP, having 20.22% (p<0.05) 
area with significantly positive correlation (Fig. 3b). 
These areas were mainly located in the grassland  
and farmland in the western and southern regions.  
The areas, where maximum temperature inhibits 
vegetation growth, were mainly distributed in the 
northwest regions. Moreover, positive correlations 
between wind speed and NPP were mainly in the centra 

in the central southern regions, which were mainly 
located in the grassland, farmland and forestland. 
The area percentage with decreased NPP was 5.65%, 
and significantly decreased areas accounted for 1.3% 
(p<0.01). Areas of significant vegetation degradation 
were few and scatter, which mainly located in the 
grassland in the western regions. The remaining 
degraded vegetation areas were located in the lower 
reaches of the YRB, which might be related to human 
activities.

On the whole, the area in the south had a higher 
NPP, because forest land and farmland were the 
main land types, with abundant precipitation, strong 
photosynthesis, and vigorous vegetation growth. In 
addition, the northern and western parts of the basin 
were located in arid areas with scarce rainfall, and the 
main land types were barren and grassland. The low-
precipitation and serious desertification conditions made 
vegetation difficult to survive, resulting in lower NPP 
[27]. Generally, biomass and productivity varied across 
ecosystems, such as forest land with the highest value 
of NPP in the YRB, and the conversion of farmland 
to forest land increased the NPP in the central-south 
regions. Thus, the NPP was related to vegetation type 
and hydrothermal conditions, which was in agreement 
with other studies [10, 15].

The region of NPP significant improvement 
(66.36%) was much greater than that of degradation 
(0.88%). The combined effects of the implementation 

Table 1. The percentage of NPP in 2000, 2005, 2010, 2015.

2000 2005 2010 2015

0-100 18.36% 12.54% 5.91% 6.29%

100-200 32.96% 27.91% 25.23% 24.84%

200-300 24.04% 21.39% 22.15% 19.98%

300-400 18.92% 23.27% 24.71% 20.79%

400-500 4.32% 10.97% 14.74% 14.56%

>500 1.39% 3.92% 7.27% 13.54%

Fig. 2. a) The annual change trends in NPP; b) Four types of the overall trend. 
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and central-northern regions, which accounted for 
41.9% (p<0.05) (Fig. 3c). The negative correlation 
was mainly located in the northwest parts of the 
basin. Furthermore, the area significantly affected by 
precipitation was larger than the area affected by the 
wind speed and maximum temperature, indicating that 
precipitation was the dominant factor on NPP growth in 
the YRB.

In the study, the precipitation in the north of the 
YRB played a dominant role in NPP, which had the 
remarkable impact on grassland. Several studies 
confirmed that the contribution of each climatic factor 
varied in different vegetation type, which might be 
caused by the diversity of plant physiological structures 
and their adaptations to environmental variations [10, 
34]. Meanwhile, some studies and this study found 
that precipitation had a primary factor to control the 
vegetation variations over arid and semiarid areas [7, 
11, 20], because abundant precipitation was known 
to prolong the growing season into the autumn and 
alleviate the water stress for vegetation growth [35]. 
The effect of precipitation on NPP was relatively low in 
the south and southeast, which might be due to the fact 
that these regions were located in sub-humid areas, and 
moisture was not the main limiting factor for vegetation 
growth. In addition, these regions were mainly farmland 
and forestland, and the implementation of Yellow River 
Diversion Project and water conservancy measures 

decreased rainfall requirements for crop growth. 
Nevertheless, the excessive precipitation could make 
hypoxia of vegetation roots, and nutrient deficiency, 
causing the negative effect on NPP. 

The maximum temperature in the western and 
southern of the YRB had a promoting effect on NPP, 
and most plants photosynthesize during daytime, 
and they were more sensitive to the maximum 
temperature [25, 36]. As the increment of maximum 
temperature, accelerating the thawing the frozen 
soil layer, and the growing season was prolonged, 
which was beneficial to plant growth. However, the 
maximum temperature exhibited inhibition for NPP 
in the northwest and southeast. Warmer conditions 
might accelerate evapotranspiration, while the higher 
temperature aggravated water deficiency and drought 
stress, especially in spring and summer, suppressing the 
growth of NPP [34].

The wind speed displayed a decreasing trend in the 
basin, which had a positive impact on NPP growth in 
north and central-south regions. Because of moderate 
wind speed could promote the gas exchange around 
the leaves, improve transpiration rate and increase the 
concentration of CO2, accelerate the net photosynthetic 
rate of vegetation, thus resulted in the increment of 
the NPP. However, the wind speed had a significantly 
negative effect in northwest areas of the YRB. 
Excessive wind speed destroyed the leaf surface, which 

Fig. 3. The location-specific correlation relationship between NPP and climate factors. a) precipitation; b) maximum temperature,  
c) wind speed.
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reduced the transpiration and net photosynthetic rate of 
the plant, and weakened the photosynthesis and carbon 
assimilation ability of the plant, thus inhibiting the 
growth of NPP [37]. 

The Response of NPP to Climatic Factors 
Based on EOF

The spatial and temporal variations of NPP over 
the YRB were decomposed by the EOF. The spatial 
pattern and the associated temporal series at the first 
two dominant EOF modes, accounted for 54% of the 
total variance. The first EOF mode explained 30.6% 
of the total variance, which represented the mainly 
spatiotemporal variability of NPP (Fig. 4a). Most of the 
values in the first pattern were positive, indicating that 
the NPP change in the basin had a spatial consistency. 
The maximum positive value was located in the central 
of the basin, which implied that NPP in the area was 
sensitive and varied greatly. The first time series of NPP 
showed an increasing trend from 2000 to 2019, which 
indicated that the gradual improvement of NPP in the 
YRB, especially in the central region. The time series 
from 2000 to 2012 was negative, while after 2012 was 
positive, reaching the maximum value in 2016 (Fig. 4b). 
This showed that the vegetation growth status in the 
YRB had been greatly improved after 2012, especially 
in 2016. 

The second EOF mode accounted for 23.4% of the 
total variance, which mainly represented by the NPP 
variation in the Lower Reach of the YRB (Fig. 4c). 
The maximum positive value was mainly located in the 
eastern part of the basin. The temporal variability of 
NPP showed a decreasing trend, indicating that the NPP 
decreased in the east. The variation range of the second 
time coefficient (PC2) was smaller than that of PC1, and 
most of the NPP PC2 were positive before 2012, and 
then were negative, indicating that the spatial pattern in 
the eastern regions had changed after 2012 (Fig. 4d). 

The spatial and temporal patterns of precipitation, 
maximum temperature and wind speed were 
decomposed by EOF. The first precipitation EOF 
mode accounted for 27.2% of the total variance  
(Fig. 5a). The maximum value appeared in the northwest 
regions, suggesting that variation in these areas were 
sensitive and increased rainfall. The corresponding 
PC time series showed an increasing trend with strong 
interannual variability, and the highest value appeared 
in 2017 (Fig. 5c). The second precipitation EOF mode 
accounted for 23.3% of the total variance, which 
decreased from the southeast to the northwest and was 
similar to the spatial distribution of NPP (Fig. 5b). The 
temporal variability illustrated a downward trend with 
fluctuation and there was a peak around 2003 (Fig. 5d). 
The first maximum temperature EOF mode explained 
87.34% of the total variance, revealing the spatial 

Fig. 4. a) The spatial patterns of EOF1NPP; b) The time series of PC1NPP; c) The spatial patterns of EOF2NPP; (d) The time series of PC1NPP.
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consistency change of the maximum temperature in the 
study area (Fig. 5e). The maximum positive value was 
located in the west part of the basin, which implies that 
the region had stronger temperature variations. From 
2000 to 2015, the temporal coefficient was negative 
with fluctuated. After that, it dramatically increased 
in 2016, and reached a maximum value, showing an 
upward trend (Fig. 5g). The second mode illustrated 
7.75% of the total variability (Fig. 5f). The maximum 
value appeared in the central and the minimum appears 
in the west of the reign, and the time series of mode2 
showed dramatic fluctuation (Fig. 5h). The first wind 
speed EOF explained 63.27% of the total variance  
(Fig. 5i). The maximum value appeared in the southeast 
and the minimum value appeared in the northwest. The 
time series showed an upward trend from 2000 to 2019, 
with a sharp increase in 2016 (Fig. 5k). The second EOF 

accounted for 21.76% of the total variance (Fig. 5j).  
The time coefficient showed a decreasing trend from 
2000 to 2012, reached the minimum value in 2004, 
followed by an increasing trend (Fig. 5l).

The time series reflected how the spatial mode 
change with time, so the relationship between NPP 
and climatic factors was detected by the first time 
series of EOF. The correlation coefficients between 
PC1pre, PC1wind, PC1mtem and PC1NPP was 0.415, 0.645, 
and 0.669, respectively (Table 2), indicating that the 
climatic factors both were conducive to NPP growth. 
Furthermore, the relationship between NPP and the 
remaining climatic factors were strongly affected after 
removing maximum temperature and precipitation, 
respectively. This indicated that NPP was determined by 
the comprehensive effects of multiple climatic factors, 
among which maximum temperature and precipitation 

Fig. 5. The spatiotemporal variability of precipitation: a) EOF1Pre, b) EOF2Pre, c) PC1Pre, d) PC2Pre; The spatiotemporal variability of 
maximum temperature: e) EOF1Mtem, f) EOF2Mtem, g) PC1Mtem, h) PC2Mtem; The spatiotemporal variability of wind speed: i) EOF1Wind, j) 
EOF2 Wind, k) PC1Wind,(l) PC2Wind.

Table 2. Partial correlation analysis of the time coefficient of EOF mode1.

Factor Precipitation Wind speed Maximum temperature

NPP 0.415* 0.645** 0.669**

NPP Precipitation 0.494* 0.58**

NPP Wind speed 0.407* 0.664**

NPP Maximum temperature -0.065 0.725**

Note: * and ** represent p<0.05 and p<0.01, respectively
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had great effects on ecosystem structure.  Notably, 
wind speed had a relatively independent and remarkable 
effect on NPP in the YRB.

The result of spatial pattern and temporal coefficients 
in EOF exhibited that the ecological environment in the 
YRB had greatly improved, in agreement with the result 
of the trend analysis and other studies [38, 39]. The 
greatest sensitive regions of NPP were appeared in the 
central regions, located in the hilly and gully region of 
the Loess Plateau, with serious soil erosion and broken 
terrain, and some agricultural production activities 
and urbanization caused the frequently vegetation 
change in this area [34]. According to the decomposed 
spatiotemporal patterns of NPP and climatic factors, 
the implementation of ecological projections such as 
returning farmland to forest and grass and Three-North 
Shelter Forest Program were the main reasons for the 
remarkable improvement of NPP after 2012. Meanwhile, 
the NPP in the eastern regions had a decreasing trend, 
which might be related to the rapid urbanization and 
decreased precipitation. In addition, the maximum 
temperature and wind speed had a pronounced upward 
trend in 2016, which accelerated photosynthetic and 
transpiration rates, increased capacity exchange 
between vegetation and soil and atmosphere, and thus 
promoted vegetation growth in the YRB. Furthermore, 
the implementation of the newly revised environmental 
protection law in 2015 was also the cause of increased 
NPP. Overall, the relationship between NPP and 
climatic changes came from both spatial and temporal 
dimensions, which was controlled by the complex of 
ecosystem environment and the interaction between 
climatic factors. Wind speed played an essential role 
in NPP in the northwestern and southeastern regions, 
which were the wind erosion area and cultivation area 
in the YRB, respectively. In addition, this study and 
previous studies confirmed that the first spatial mode in 
EOF was similar to the trend analysis in general [20, 24, 
40]. We could see that the trend analysis based on pixels 
mainly focused on the overall trend change of time 
series, which cannot describe the regional variation of a 
certain period in detail. 

The Response of NPP to Climatic Factors 
Based on SVD

The SVD can separate coupled modes of variability 
between two fields and identify their relationship.  

The first paired mode of the NPP and precipitation 
together explained about 30.7% of the squared variance 
(Table 3). The spatial pattern of NPP was positive in the 
whole basin except the southern regions, among which 
the greatest sensitive regions appeared in the central 
and northern of the basin (Fig. 6a). The associated 
precipitation mode was positive in the central, 
northwest and west, and negative in the southern and 
northeastern regions (Fig. 6b). Moreover, the correlation 
between time series of NPP and precipitation was 0.568 
(p<0.01), and the time series of PC1NPP and PC1Pre both 
exhibited an upward trend (Fig. 6c). With the increment 
of precipitation, NPP increased in the north, northwest 
and central part of the basin, decreased in the southern 
regions. The second paired mode explained 12.42% 
of the squared covariance, among which the mode of 
precipitation had an obviously negative center in the 
northwest, and a positive center in the northern regions 
(Fig. 6e). The positive center was located in the central-
southern regions (Fig. 6d). Combining with the time 
series, the decreased precipitation contributed to NPP 
decreasing in the central-southern regions (Fig. 6f). 
Additionally, the correlation between the second time 
series was 0.673 (p<0.01). Overall, precipitation had a 
promoted effect on the growth of vegetation, and the 
most dominant effect of precipitation on NPP occurred 
in north rather than in south. 

The first paired modes between NPP and maximum 
temperature explained 65.04% of the squared variance. 
The NPP mode was positive in the most of the regions 
(Fig. 7a). The greatest positive temperature mode 
was located in the west and north, and the negative 
temperature was in the northwest (Fig. 7b). Therefore, 
the increased maximum temperature contributed to 
the increased NPP in the west and north, and reduced 
NPP in the northwest. The correlation between the 
time series was 0.511 (p<0.05), implying that there 
was a significant relationship between NPP and 
maximum temperature. Furthermore, there was a great 
upward trend in 2016, which reflected that the highest 
temperature had a positive effect on NPP (Fig. 7c). The 
second mode of SVD illustrated 10.3% of the squared 
variance, and the highest temperature field showed 
positive value over most of the area except the western 
regions (Fig. 7e). The NPP field was positive in the 
west and northwest, while the rest of the area in the 
basin was negative (Fig. 7d). The correlation between  
the two PC time series was 0.673 (p<0.01) (Fig. 7f),  

Mode
Variance contribution

EOFNPP EOFPRE EOFMTEM EOFWIND SVDPRE SVDMTEM SVDWIND

1 30.6 % 27.2% 87.34% 63.27% 30.7% 65.04% 60.66%

2 23.4 % 23.3% 7.75% 21.76% 12.42% 10.3% 14.67%

Cumulative variance 54 % 50.5% 95.09% 85.05% 43.12% 75.34% 75.33%

Table 3. The variance contribution by the first two leading modes of EOF and SVD.
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and the oscillation frequency of the time series was 
great, which indicated a strong interannual variation. 

The first paired mode of NPP and wind speed 
explained 60.66% of the squared variance. The NPP 
pattern was negative across the whole basin, which 

indicated that the whole basin with consistent increase 
or decrease, and the maximum value was located in 
the central regions (Fig. 8a). The wind speed pattern 
was negative in most of the areas, while the maximum 
positive value appeared in the northwest (Fig. 8b).  

Fig. 6. The spatial patterns and time series of SVD modes between NPP and precipitation. a) SVD1NPP; b) SVD1Pre c) PC1; d) SVD2NPP; 
e) SVD2 Pre f) PC2.

Fig. 7. The spatial patterns and time series of SVD modes between NPP and maximum temperature. a) SVD1NPP; b) SVD1Mtem; c) PC1; 
d) SVD2NPP; e) SVD2Mtem; f) PC2.

(f)
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The correlation coefficient of the paired mode was 
0.819 (p<0.01). Combining with the temporal series, as 
the wind speed increased in most areas and decreased 
in the northwest, NPP was getting increased in the 
whole basin (Fig. 8c). The second SVD mode illustrated 
14.67% of the squared variance, and the correlation 
between the two PC time series was 0.681. The 
SVD2NPP was positive in the central regions, while the 
maximum value of SVD2wind appeared in the southwest 
and the minimum value was located in the northwest 
(Fig. 8d and e). NPP decreased in the northwest with 
the increment of wind 390 (Fig. 8f).

According to the coupled modes of NPP and climate 
variables, it was noted that the sensitivities of NPP 
response to climatic changes had clear spatial and 
temporal differences. The increment of precipitation 
contributed the most to NPP in the northwest and 
central-northern regions, which effectively compensated 
for the lack of soil moisture in arid and semi-arid 
regions, increasing the photosynthetic efficiency and 
the accumulation of organic dry matter. In addition, 
with the increment of altitude and precipitation, 
the photosynthesis of vegetation in western regions 
was mainly limited by temperature. The maximum 
temperature had an inhibiting effect on northwestern 
regions because it might contribute to stronger 
evaporation resulted in dry stress, limiting plant 
photosynthesis and growth rates. Both of precipitation 
and maximum temperature exhibited an increasing 
trend, and the wet-warm condition was beneficial to 
growth and restoration of vegetation [41]. Furthermore, 
there were differences in sensitive areas and temporal 
variability of NPP and climatic factors, indicating that 

the response of NPP to climatic changes had a time 
lag effect [4, 42]. It is worth noting that wind speed 
had an essential effect on NPP, especially in farmland 
in southeastern, which promoted evaporation and 
transpiration, and alleviated high temperature and high 
humidity in crop layer, increasing photosynthesis and 
growth of crops. In the whole, the grassland was more 
sensitive to changes in climatic changes than forest land 
and farmland, which might be related to ecosystem 
function, location environment, and human activities 
intensity. The contribution of climatic drivers to NPP 
was not obvious in the central and eastern of the YRB, 
where the impact of human activities on vegetation 
growth was greater than climatic changes [11, 34]. 

The Comparison of EOF, SVD, and TCA

There were differences in the response of NPP 
to climatic changes in the northeastern regions 
based on EOF, SVD, and TCA. The topography 
and geomorphology of these areas were complex, 
which might cause changes in regional hydrothermal 
conditions and soil environment, having a direct or 
indirect impact on NPP. TCA focused on analyzing 
the relationships between NPP and climatic factors of 
long-term series from the global scale, which might 
ignore and average the variation signals in regional 
regions. However, EOF and SVD decomposed the 
spatiotemporal variability of NPP and climatic factors 
at different scales, which could identify the variation 
caused by regional environmental changes. In 
addition, forest land and farmland were more affected 
by ecological engineering and human management,  

Fig. 8. The spatial patterns and time series of SVD modes between NPP and wind speed. a) SVD1NPP; b) SVD1Wind; c) PC1; d) SVD2NPP; 
e) SVD2Wind; f) PC2.



Wang B., et al.4310

and EOF and SVD could better characterize this 
variability at different time points. Notably, the 
decomposition of variability in farmland and forest 
land by EOF was better than SVD. Because EOF was 
mainly focused on single variable, and SVD could 
simultaneously identify variations of NPP and climatic 
factors, ignoring the irrelevant variation signals. 
Furthermore, due to the inconsistency of EOF and 
SVD on decomposition objects, the difference between 
their spatial and temporal patterns were resulted in. 
For example, the spatial modes of precipitation in EOF 
had relatively weak variability in western regions, and 
the correlation coefficient of the first temporal series of 
SVD was generally larger than EOF. 

Overall, The EOF could effectively explore the 
spatiotemporal variability of NPP or climatic variables, 
and initially detect their interaction and driving effects 
at different scales, which was sensitive to regional 
variations. The SVD could identify variations between 
NPP and climatic factors at the same time, and the 
decomposed spatial and temporal patterns contained 
coupling relationship between variables. Compared with 
the EOF, the SVD analysis was a better way to reveal 
the response of NPP to climatic changes. Meanwhile, 
the TCA could directly identify the relationship between 
NPP and climatic factors by spatial distribution of 
correlation coefficients, which was simpler and more 
intuitive than EOF and SVD. However, TCA was 
sensitive to outlier points and might be limited by 
the number of spatial samples, and might mask some 
regional variations. 

Conclusions

 In the study, the trend analysis, TCA, EOF and 
SVD were used to detect the spatiotemporal variation of 
NPP, identify the relationship between NPP and climate 
factors, and the results of EOF, SVD, and TCA were 
compared.

(1) The annually averaged NPP decreased from 
southeast to northwest, and forest land had the highest 
value of NPP. The NPP exhibited an upward trend with 
fluctuations, and the areas with significantly improved 
vegetation were far greater than the degraded areas in 
the YRB, accounting for 80.41 % and 1.3%, respectively.

(2) The ecological environment of vegetation in the 
YRB had significantly improved since 2012 due to the 
implementation of ecological engineering and warm-
wet climate condition, particularly in 2016. The most 
sensitive area of NPP was located in the central regions, 
where vegetation growth increased. The response of 
NPP to climatic factors had a time lag effect, and 
grassland was more sensitive to climatic changes than 
farmland and forestland.

(3) The contribution of precipitation on NPP was 
stronger than that of the maximum temperature and 
wind speed, and there was an interaction between 
climatic factors. Precipitation was a primary factor 

controlling the variations in NPP over water-limited 
regions, and the rainfall requirements for vegetation 
growth were related to geographic location, vegetation 
type, and human management practices. The maximum 
temperature had a positive impact on NPP in high 
altitude areas. Wind speed had a positive impact on 
NPP in most parts of basin, and a negative effect  
in the wind erosion region.

(4) The EOF and SVD could better identify 
the regional variations of NPP caused by complex 
topography and human activity than TCA. The 
characterization of variability in farmland and forest 
land by EOF was better than SVD. EOF mainly focused 
on the explanation of single variable, while SVD was 
better at exploring the relationship between variables. 
The combined method of EOF and SVD would be a 
good choice for the detection of vegetation variations 
and the relationship between vegetation growth and 
climatic changes.
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