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Abstract

This study compares the removal performances of sonocatalysis (SC) coupled with commercially 
available titanium dioxide (TiO2, P25) and combined sonophotocatalysis (SPC) with H2O2 of 
2,4-dichlorophenoxyacetic acid (2,4-D) herbicide in aqueous media in batch experiments. A SC process 
(US/TiO2) with 75 mg/L 2,4-D obtained 65.58 ±0.42% degradation, 7.84 ±1.3% mineralization, and 
15.86 ±0.39% oxidation at a pH of 2, and a temperature of 35±1ºC under optimum conditions after  
360 minutes, whereas 82.24±2.91% degradation, 44.50 ±0.11% mineralization, and 55.11±0.35% 
oxidation were obtained after 360 minutes with SPC (US/UVA/TiO2-H2O2), with the addition of an 
optimum 250 mg/L of H2O2. The synergistic index was calculated as 1.77 that indicated the positive 
effect of the combined system on degradation efficiency when compared with the individual processes. 
Total costs were obtained as 5072 USD/kg for SC and 4135 USD/kg for SPC, showing the cost efficiency 
of the hybrid SPC process in comparison to the SC process. The obtained results confirmed that the 
hybrid SPC process was more effective than the SC process in degrading and mineralizing 2,4-D for 
removal. Operation time was shorter, energy consumption was lower, and operation cost was lower 
when compared to the SC process.
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Introduction

Pollution of surface and groundwater by pesticides 
and herbicides is considered to be one of the most 
serious water pollution problems caused by agricultural 
activities [1]. Currently, global pesticide usage to 
control pests is approximately 2 million tons to improve 
productivity and losses of agricultural products [2].  
The presence of various pesticide residues in the aquatic 
environment, can cause detrimental effects on aquatic 
organisms and eventually human beings [3]. Among 
several pesticide compounds, 2,4-dichlorophenoxyacetic 
acid (2,4-D) is one of the world’s most frequently used 
herbicides from the chlorinated phenoxy acids family 
due to its low cost, selectivity, effectiveness, and range 
of weed control [4, 5]. However, it has been reported 
that 2,4-D is a neurotoxic herbicide, meaning that it can 
be absorbed through the skin or can be inhaled, which 
could cause damage to liver, kidneys, muscles, and 
brain tissue [6, 7]. Besides, 2,4-D has been considered 
as a hormonal agent of toxicity II by the WHO and the 
US-EPA organizations [8]. In addition, the large volume 
of wastewater that is polluted with various chlorinated 
herbicides not only causes adverse effects on human 
health but also reduces the freshwater resources that 
are released back to the environment. Hence, the bio-
refractory nature of 2,4-D requires development of 
novel treatment technologies to reduce its hazard to 
human health and the environment [9, 10].

Recently, several techniques have been used 
to eliminate 2,4-D from aqueous solution such 
as adsorption [11], biological degradation [12], 
electrochemical oxidation [13], photolysis and 
electrolysis [14], plasma-ozonation [15], heterogeneous 
photocatalysis [16], electro-Fenton [17], ozonation 
and thermal plasma [18]. In recent years, based on 
free oxidant radicals, advanced oxidation processes 
(AOPs) are the recommended treatment methods for 
high-chemical-stability and/or low-biodegradability 
wastewater organic and inorganic components that are 
resistant to conventional treatment methods [19-21]. 
Among various AOPs, the photodegradation process 
is a successful technique based on a catalyst such 
as titanium dioxide (TiO2), zinc oxide, or others [22]. 
Further, ultrasonic degradation is another efficient 
technique used to treat aqueous solutions by causing 
rapid formation, growth, and strong collapse of 
cavitation bubbles, resulting in sonochemical impact 
occurring either due to pyrolytic decomposition within 
the bubbles or by the reduction and oxidation due to the 
generation of •H and •OH radicals [23, 24]. However, 
the individual advanced oxidation methods have many 
drawbacks including, insufficient transmission of light 
in water and limited reactive oxygen species (ROS) 
generation that prevents several applications [25, 26]. 
Currently, hybrid processes such as the combination 
of photocatalysis (PC) and sonolysis (S), called 
‘sonophotocatalysis’ (SPC), have gained attention as  
a way to combine the advantages of the two processes 

to degrade all kinds of compounds from water owing to 
easy operational, cheapness, and environmental friendly 
[27-30]. In the hybrid SPC process, uniform distribution 
of photocatalyst in water, enhancement of the catalyst 
surface area and catalytic activities, mass transfer 
increment, regeneration of active sites are the widely 
benefits of cavitation phenomenon that clearly explains 
the reason why SPC process is preferred [31-33]. 

Although the degradation and mineralization of 2,4-
D using the combined ultrasound and photocatalysis 
processes has been studied in the literature [34-36], 
no one has attempted to understand the extensive 
mineralization, cost, and energy analyses of these 
hybrid SC and SPC processes on formulation-grade 
2,4-D herbicide. This study presents great originality 
and novelty for certain reasons: (i) the detailed 
degradation and mineralization studies were presented 
by different analyses and methods, such as chemical 
oxygen demand (COD), total organic carbon (TOC), 
adsorbable organic halogen (AOX), high performance 
liquid chromatography (HPLC), and Fourier-transform 
infrared spectroscopy (FTIR) to demonstrate the 
feasibility of combined SPC as a more effective method 
than SC for the mineralization of commercial-grade  
2,4-D herbicide under different operating conditions, 
(ii) the synergistic effect of combining energy-based 
AOPs was also evaluated to show the advantage of 
hybrid systems as compared with individual techniques, 
(iii) economic analyses and energy consumption 
were calculated for such hybrid processes in terms of 
engineering applications.

Materials and Methods

Chemicals

In the experiments, TiO2 (Sigma-Aldrich Inc., St. 
Louis, MO; Art. No. 14021) was used as the catalyst. 
Commercial Amin EXT 500 SL 2,4-D amine salt 
C10H13Cl2N03, MW 266.12 g/mol (equivalent to 500 g/L 
2,4-D), which is the herbicide being removed by the 
treatment, was obtained from the Agrofarm® Company. 
Other chemicals such as NaOH (97%) and H2SO4 (97%), 
which were used to adjust the pH, were obtained from 
Merck (Darmstadt, Germany). All chemicals were used 
as received, without additional treatment. Purified water 
was used in all solutions and reaction mixtures (specific 
resistance 18.2 MΩ/cm; Merck Millipore, Burlington, 
MA).

Experimental procedures

An immersion-well photochemical reactor was 
used to study the SPC method (Fig. 1). The detailed 
information about hybrid reactor system was presented 
in our previous study Dikmen et al. [37]. Air was 
supplied into the system using a diffuser at a rate of 
3.5 L/min. During the experiment, the reactor was run 
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in batch mode, and the reactor temperature was kept 
constant at 35±1ºC with a continuous water bath and a 
cold water pump. All S, PC, and SPC experiments were 
conducted using the same immersion-well reactor.

For the experiments, the desirable concentrations 
of 2,4-D solution were prepared daily in amber-glass 
volumetric flasks from a 1000 mg/L stock solution. 
The samples were centrifuged at 5000 rpm for fifteen 
minutes to remove TiO2 from the solution and then 
filtered through a 0.45-µm syringe filter. Optimization 
of the conditions for SC and SPC was obtained by 
measuring the optical density (OD) of the samples 
at 283 nm, the maximum wavelength of 2,4-D, by 
means of a spectrophotometer (PharmaSpec UV-1700, 
Shimadzu, Japan). The percentage degradation of 2,4-D 
was calculated by using Eq. 1:

               (1)

where R is the percent 2,4-D removal, Ci and Cf are the 
initial and final 2,4-D concentration, respectively. 

Analytical methods

The absorbance spectrum of 2,4-D was analyzed 
by UV–Vis spectrophotometry (PharmaSpec UV-1700, 
Shimadzu, Japan). The TOC analysis was carried out 
using a TOC Combustion Analyzer (Lotix, USA).  
A Prominence LC- 20A system (Shimadzu, Japan) was 
used to measure HPLC results. The FTIR analysis was 
performed using an IR-Affinity Prestige-21 (Shimadzu, 
Japan) to observe the changes in the functional 

structure of the 2,4-D herbicide before and after the 
photocatalytic treatment. The COD was measured 
with commercial test kits (COD Merck 1.14541,  
25-1500 mg/L Spectroquant test kit) using a Pharo100 
visible spectrophotometer (Merck, Germany). A 3-mL 
sample was measured over 120 minutes at 150ºC under 
thermoreactor Spectroquant TR 320 (Merck, Germany) 
treatment. When the sample contained hydrogen 
peroxide (H2O2), interference in COD determination 
was reduced by increasing the pH to above 10 to 
decompose the hydrogen peroxide to oxygen and water 
[38]. The AOX concentration analysis was carried out 
using a CL 10 (Behr, Germany) device. The pH and 
temperature measurements of all samples from the 
photocatalytic reactor were carried out using a pH 
meter (Orion Star A329 Thermo Scientific, USA) and 
a pH probe (8107UWMMD ROSS pH/temperature 
electrode).

Results and Discussion

Preliminary Degradation Studies

The available mechanisms for the removal of 
commercial 2,4-D herbicide are P, S, sonophotolysis 
(SP), SC, SPC with TiO2, US, and UV irradiation. 
Treatment under UV irradiation, that is, P of the 
effluent, yielded only a 35% reduction in 2,4-D content 
after six hours of irradiation. Besides, degradation of 
the optimum loading of 50 mg/L 2,4-D subjected to 
US realized 39.6% efficiency in 360 minutes. Also, 
51.2% decomposition of 2,4-D was obtained for an 

Fig. 1.  Schematic diagram of the SPC reactor.
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optimum loading of 50 mg/L 2,4-D in the SP process 
at the end of 360 minutes. The experiments revealed 
the importance of using UV and US together for  
2,4-D degradation. As indicated in our previous 
study [39], 14.81% of the 2,4-D herbicide was initially 
removed (at time zero), and 37.14% 2,4-D herbicide 
adsorption had been achieved after 15 minutes with 
the TiO2 catalyst. In addition, for the PC method, 
we achieved 81% of 2,4-D removal (10 mg/L) at  
1.5 g/L P25 TiO2 catalyst concentration and pH 5 in 
the presence of UV-A. Moreover, in our another study 
[40], 100% of the 2,4-D herbicide was removed at pH 2, 
0.5 g/L TiO2, and 75 mg/L initial 2,4-D concentration 
after 60 minutes using spectrophotometric analyses 
of the SC method. Hence, the results revealed the 
importance of using a catalyst combined with US in the 
process. H2O2 is a strong oxidizing agent that promotes 
oxidation through the formation of additional reactive 
species (hydroxyl radicals) from H2O2 decomposition 
[41]. In present study, the higher 2,4-D degradation 
rate by SPC process could be explained by Kaur et al. 
[42] who stated in their study that 48.30% of a kind of 
pesticide cypermethrin was degraded in an aqueous 
solution using TiO2/H2O2 mediated UV photocatalysis 
with 0.65 gL-1 TiO2 and 179 mgL-1 of H2O2 in 3 h. 
Because H2O2 enabled to reduce the COD of the reaction 
mixture by oxidizing cypermethrin into free radical 
molecules which react with oxygen molecules resulted 
with the generation of peroxyl radicals. Moreover, Ayare 
and Gogate [43] explained that the combination of H2O2 
with US/UV could increase the oxidation rates due to 
enhanced concentration of ●OH radicals caused by the 
increased charge separation due to higher acceptance 
of the photogenerated electrons. Our previous study 
[39] has also shown by spectrophotometric analyses 
that 100% of the 2,4-D herbicide was removed at pH 3,  
1 g/L TiO2, 50 mg/L initial 2,4-D concentration, and 
250 mg/L H2O2 concentration after 60 minutes.

2,4-D Degradation and mineralization in aqueous 
solution

In the first step of this study, degradation of 2,4-D 
was investigated with SC and SPC processes to get 
information on the degradation kinetics of the parent 
pollutant (Fig. 2). In our previous studies [37, 40] a 
Taguchi statistical method was applied to optimize the 
effective parameters such as TiO2 dosage (0-2 g/L), 
the initial pH (2-10), time (60-210 min), initial 2,4-D 
concentration (10- 100 mg/L) for SC process whereas 
TiO2 dosage (0-1.5 g/L), the initial pH (3-9), time 
(60-180 min), initial 2,4-D concentration (25-100 mg/L) 
and H2O2 concentration (0-1000 mg/L) were used to 
optimize SPC process, respectively. In order to find 
the optimum conditions, 25 parameters (a total of  
50 with the control set) for SC process and 16 parameters 
(a total of 32 with the control set) were tested for SPC 
process, respectively. The process parameters and their 
levels were selected according to previous studies in the 

literature. In the present study, the degradation of 2,4-D 
versus operation time was investigated by fixing the pH 
at 2 and 3, using 75 and 50 mg/L 2,4-D concentration, 
and 0.5 and 1 g/L TiO2 concentration for the SC and 
SPC processes, respectively depending on findings 
in our previous studies [37, 40]. The HPLC analyses 
showed that the degradation efficiency of 2,4-D at 
360 minutes was 65.6±0.42% for SC and 82.3±2.91% 
for SPC (Fig. 2). As shown in Fig. 2, no significant 
difference was observed in the degradation efficiency 
of 2,4-D between the SC and SPC processes until the 
200th minute. It is thought that faster degradation of 
the 2,4-D herbicide can be connected to the chlorine 
atoms in its structure, which is discussed in the FTIR 
spectra section of this study. It has been observed that 
there is tension in the chlorine bond for both processes 
that can be thought to cause rapid degradation [44]. 

Moreover, there was a 17% difference between the 
200th and 360th minutes when the SC and SPC processes 
were compared (Fig. 2). Amalraj and Pius [45] stated 
that the presence of UV with catalyst enables an 
increase in the oxidative power of the •OH radicals 
that is known to be strong enough to oxidize 2,4-D 
into CO2, H2O, and other mineral compounds. AOX is 
a general parameter that indicates the total amount of 
halogenated organics  and recent studies have focused 
on the generation of AOX from wastewater treatment of 
AOPs [46]. Some studies informed that AOX formation 
was related to the free chlorine (e.g., Cl2, HClO or ClO-) 
chlorination of organics during AOPs [47, 48]. Because 
toxic, chlorinated 2,4-D herbicide was chosen to be 
degraded in this study, it was necessary to examine  
the AOX changes of that target pollutant. As seen in 
Fig. 3, AOX removals were 57.1% for SC and 72% for 
SPC. Pinto et al. [49] studied atrazine pesticide, and 
they stated that the residual toxicity was probably due to 
the presence of toxic, chlorinated degradation products. 
Okcu et al. [39] reported that the removal of AOX in 
the first mineralization experiment, without hydrogen 
peroxide, was 77.67%, while, in the experiments with 
H2O2, it reached a maximum of 79.14% after 24 hours. 

Fig. 2. 2,4-D degradation percentage (%) of sonocatalytic 
(SC) and sonophotocatalytic (SPC) processes (for SC: pH 2,  
C2,4-D = 75 mg/L, CTiO2 = 0.5 g/L; for SPC: pH 3, C2,4-D = 50 mg/L, 
CTiO2 = 1g/L).
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was treated with both the SC and SPC methods. As the 
result of the experiments at 50 mg/L, they observed 
25.4% reduction of COD in SC and 55.5% of COD in 
SPC in 180 minutes. The summary of the comparison 
of SPC process with other methods for the removal of 
2,4-D is presented in Table 1.

 
FTIR spectra

FTIR analysis produces a spectral range of 650 to 
4000 cm−1, which gives information about the changes 
in the functional structure of the 2,4-D herbicide 
occurring after six hours of SC and SPC processes.  
In Figs S1-S3, there are important peaks in the 2,4-D 
herbicide within the 650 to 4000 cm−1 range. Fig. S2
shows the changes in the FTIR spectrum of the  
2,4-D herbicide after 30, 120, and 360 minutes of the 
SC process. Also, the FTIR spectra of 2,4-D herbicide 
after 30, 120, and 360 minutes of the SPC process are 
given in Fig. S3. Differences in the FTIR spectra of the 
treated and untreated pesticide solutions indicate the 
degradation of the organic bonds of the pesticides [60]. 
The peaks in the FTIR spectrum that were obtained 
after the SC and SPC processes in this study are 
compared in Table 2 with studies in the literature that 
have similar peaks to define the degradation of 2,4-D 
herbicide. In the literature, degradation of the C-O bond 
in the aromatic chain is defined to be the most important 
oxidation indicator for phenoxy herbicides [66]. In this 
study, the FTIR results showed that C-O bonds were 
observed at 1234 cm-1 and 1119 cm-1 in the SC and 
SPC processes, respectively, which is considered to be 
evidence of oxidation of the parent 2,4-D compound. 

Synergistic Effect Study

The interaction of the combined advanced oxidation 
process (S and PC) was quantified by synergy index 
(SI) that was calculated based on the pseudo-first-order 

In the current experiment, higher AOX removal with 
the SPC process is thought to be due to the presence 
of UV irradiation together with H2O2. As shown 
in Fig. 3, percentage removal of AOX continued to 
increase against decreased 2,4-D concentration in the 
SC and SPC processes. Both SC and SPC processes 
were completed at the end of 360 minutes, due to an 
overheating problem with the reactor systems. 

The COD and TOC parameters were measured to 
investigate the mineralization of 2,4-D. A decrease in 
the COD indicates the mineralization or degradation 
degree of an organic species in aqueous solution, 
and it defines the total oxygen quantity required to 
oxidize organic matter to CO2 and H2O [50, 51]. The 
chemical structure of the target pollutant is expected 
to be modified at the end of the oxidation that 
results in a decrease in the COD of the compound in 
aqueous solution [39]. With the six-hour SC and SPC 
processes, removal of 7.84±1.3% and 44.5±0.11% TOC 
were achieved, respectively. In SC, the maximum 
COD concentration was 15.9 ±0.4% in 300 minutes, 
corresponding to a TOC concentration of 7.25±0.59% 
(Fig. 4). Likewise, in 300 minutes, the maximum COD 
concentration was 55.1 ±0.35%, which corresponds to a 
TOC concentration of 37.8 ±0.78% with SCP. The COD 
decreased 40% with SC after 300 minutes and 23% with 
the SPC process in 60 minutes. This issue, as stated 
by Okcu et al. [39], could be due to toxic by-product 
accumulation after 300 minutes, which is the key point 
wherein the COD value reached the maximum removal 
for both SC and SPC processes, and after which COD 
removal efficiency dropped sharply. When the COD 
removal efficiencies were compared between the SC 
and SPC processes, SPC achieved higher removal 
efficiency due to its hybrid property with UV and 
H2O2. Sathishkumar et al. [52] reported that norflurazon 
was treated for 300 minutes, and they obtained 58% 
removal efficiency for SPC and 17% for SC processes, 
respectively. Shokri [53], stated that acid red 14 dye 

Fig. 3. 2,4-D concentration profile during the SC () and SPC () processes, AOX removal (%) profile for SC (♦) and SPC (▲) 
processes (for SC: pH 2, C2,4-D = 75 mg/L, CTiO2 = 0.5 g/L; for SPC: pH 3, C2,4-D = 50 mg/L, CTiO2 = 1g/L).
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rate constant and second-order kinetics constant of 
hybrid AOPs [67]. The synergy index, which is the ratio 
of the SPC rate constant to the sum of the rate constants 
of the individual processes (Eq. 3) [67, 68]:

           (3)

where kSPC, kS, and kPC are the apparent rate constant of 
SPC, S, and PC processes, respectively.

Synergistic effect values greater than 1.0 show 
a positive effect [69]. As shown in Table 3, the 
synergistic index was calculated as 1.77, and results for 
the degradation of 2,4-D indicated that the combined 
system has a positive effect on degradation efficiency 
when compared with the individual processes. 
Samantha et al. [68] obtained the synergistic index as 
1.61, and [70] reported lower synergy level (0.99) for 
the treatment of vinasse with US-UV/TiO2 for COD 
removal. It is clear that the reaction rate constant of the 
SPC process is greater than that of the sum of the rate 
constants of the individual processes; kSPC>kS + kPC.
The reason for the efficient treatment performance 

of hybrid SPC was thought to be the prevention of 
suspended catalyst nanosized agglomerations due to 
the propagation capability of ultrasound throughout 
the method. Hence, the surface area of catalysts was 
increased, which resulted in increased generation of 
additional free ●OH radicals due to this effect in the 
reaction mixture [71]. Besides, the catalyst surface 
could be cleaned continuously by the ultrasonic waves, 
preventing pollutant accumulation and that of their 
intermediates produced during degradation [72].

Energy Consumption and Cost Analysis of the SC 
and SPC Processes

The electrical energy consumed by the SC and SPC 
processes constitutes a significant part of the operating 
cost. EEO is a figure of merit defined by [73] as the 
amount of energy (kWh m-3) required to degrade 90% 
of a target pollutant in 1 m3 of water.

For a batch reaction, EEO (kW energy amount 
consumed per process) is calculated by using the 
following Eq. (4) [49]:

Fig. 4. a) COD removal (%) in SC () and TOC removal (%) in SC (), b) COD removal (%) in SPC () and TOC removal (%) in SPC 
() (for SC: pH 2, C2,4-D = 75 mg/L, CTiO2 = 0.5 g/L; for SPC: pH 3, C2,4-D = 50 mg/L, CTiO2 = 1g/L)
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                 (4)

The above equation is related to the L-H model first-
order kinetic:
		

                      (5)

With the combination of Eq. (4) and the L-H model 
first-order kinetic, Eq. (5), EEO, can be expressed as:

                        (6)

Eq. (6) (EEO) is used to determine the electrical 
energy model of each ideal batch reactor for SC 
and SPC. Total consumed energy of the SC process  
(US-TiO2) and the SPC process (US/UV-TiO2) with 
H2O2 is presented in Table 4. 

Advanced oxidation processes largely depend on 
electrical energy, which tends to be one of the major 
contributors to the operating cost a significant factor 
in the selection of the most economical wastewater 
treatment process [74, 75].

Eq. (7) and Eq. (8) were used to measure the overall 
operating costs of SC and SPC degradation of 2,4-D 
herbicide under optimum conditions. The operating 

Table 1. Comparison of 2,4-D removal degradation and mineralization efficiencies between SPC and other AOPs in the literature.

Table 2. FTIR spectra of the degradation of 2,4-D in SC and SPC processes.

Table 3. Synergy index for hybrid systems and individual 
processes.

Process 2,4-D concentration Time Removal efficiency References

US/UV/TiO2/H2O2 50 mg/L 360 min 84% 2,4-D, 55% COD, and 45% TOC Present study

US/Ag3PO4/TiO2 10 mg/L 60 min 98.4% 2,4-D [54]

US-EP/nZVI 50 mg/L 140 min 91% 2,4-D, 92% COD, and 88% TOC [55]

UV/TiO2/NCP (natural zeolite) 6 mg/L 95 min 58% 2,4-D by UV, and 31% 2,4-D by 
visible light [56]

WO3/NaNbO3-coupled 
photocatalysts 10 mg/L 180 min 18% TOC [57]

Anodic oxidation (AO) and 
electro-Fenton (EF) using a boron-

doped diamond (BDD) 
anode.

20 mg/L 120 min 92% 2,4-D and 69% TOC [17]

Electrooxidation (EO) and Oxone 40 mg/L 180 min 100% 2,4-D and 69% TOC [58]

UVA/P25 TiO2/H2O2 25 mg/L 180 min 100% 2,4-D, 82% COD, and 56% TOC [16]

Three-dimensional electrode (2D 
and 3D) reactors with graphite 

(G)/b-PbO2 anode.
100 mg/L 100 min

88% 2,4-D and 92% COD using 2D 
and 70% 2,4-D and 75% COD using 

3D electrode
[59]

Process Type Literature Results
Wavenumber (cm−1)

In this study
Wavenumber (cm−1) Assignment References

SC 770–870 870 Calcium carbonate bands [61]

SC 693 684 C — Cl stretching [62]

SC 1234 1250 O — H coupled with C — O [63]

SPC 1435–1475 1450 C = C vibration of the aromatic ring [61]

SPC 693 710 C — Cl stretching [62]

SPC 770–870 860 Calcium carbonate bands [61]

SPC 2344 2340 C ≡ C stretching [64]

SPC 1119 1130 C –– OH stretching [65]

k (1/min)

S
Synergy index PC SPC

 0.00017             
1.77 0.00133 0.00266
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costs per kilogram (kg) of COD elimination from the 
2,4-D herbicide in wastewater were calculated in terms 
of US dollars (USD), using the experimental results [30, 
76]. In the both equations, energy consumption is the 
sum of the energy requirements of the peristaltic pump 
(40 W), the US reactor (120 W), the air pump (3 W) and 
the UV-A lamp (36 W only for the SPC reactor).

      (7)

 (8)

As shown in Table 4, EEO values of 7797 and 
10791 kWhm-3 were obtained for the SPC and SC 
processes, respectively. Rahman et al. [77] stated in their 
study that based on the time required to achieve more 
than 90% of COD from treated palm oil mill effluent, 
the electrical energy calculated for the combination  
of processes (sonolysis and photocatalysis) was 
1342.25 kWh/m3 for a US power of 20 W. According 
to those results, the SPC process was found to be more 
efficient not only reduces the COD concentration to  
the permissible standard discharge limits but also 
reduces the energy consumption, showing the 
advantages of the hybrid system in the energy efficiency 
aspect Rahman et al. [77]. According to Table 5,  
the SPC process with US-UV/TiO2/H2O2 had a potential 

for a higher percentage of rapid organic matter removal 
compared to the treatment process with US-TiO2. 
As shown in Table 5, the hourly energy consumption 
amounts of the SC and SPC processes were 0.810 kW 
0.990 kW, respectively. In the SPC process, H2O2 was 
used in addition to the SC process to obtain higher 
efficiency in the removal of 2,4-D. Total costs were 5072 
USD/kgfor SC and 4135 USD/kg for SPC, showing the 
cost efficiency of the hybrid SPC process in comparison 
to the SC process.

Conclusions

The degradation and mineralization analyses of 2,4-
D herbicide by SC and combined SPC with H2O2 were 
done in this study. A SC process (US-TiO2) with 75 mg/L 
2,4-D obtained 65.58±0.42% degradation, 7.84±1.3% 
mineralization, and 15.86±0.39% oxidation at a pH of 2, 
and a temperature of 35±1ºC under optimum conditions 
after 360 minutes, whereas 82.24±2.91% degradation, 
44.50±0.11% mineralization, and 55.11±0.35%  
oxidation were obtained after 360 minutes with SPC 
(US/UVA/TiO2-H2O2), with the addition of an optimum 
250 mg/L of H2O2. The US/UVA/TiO2-H2O2 process 
was more effective as a batch SPC process in terms 
of cost and efficiency per kg of COD removal from 
wastewater. The obtained results verified that a hybrid 
SPC process can achieve effective degradation and 
mineralization with shorter operation time and lower 
energy consumption, thus with lower operation cost as 
compared to the SC process. Therefore, on the basis of 
these results, it is concluded that the hybrid SPC is more 
appropriate than the SC for 2,4-D herbicide removal.

Table 4. Effect of SC and SPC reactors on the electrical energy per order (EEO).

Experimental Conditions

Process type Initial concentration 
(mg/L)

TiO2 concentration 
(g/L)

Process time 
(min)

H2O2
concentration 

(mg/L)
pH EEO (kWh/m3/ 

order)

SPC 50 1 60 250 3 7797

SC 75 0.5 60 - 2 10791

2,4-D 
herbicide 

concentration            
(mg/L)

Catalyst 
concentration 

(g/L)

TiO2 cost 
(USD/g)

H2O2 
concentration 

(mg/L)

H2O2 cost 
(USD/L) pH

COD 
removal 
(mg/L)

Reaction 
time 
(min)

Total power 
consumed 

per mg 2,4-D 
removal 
(kWh)

Total cost 
(USD/kg)

SC 75 0.5 1.14 - - 2 20 300 0.81 5071.740

SPC 50 1.5 3.42 250 0.209 3 30 300 0.99 4135.229

1. The working volume of both reactors is 1 L. 2. Total energy consumed (P)-198 W (includes energy for electronic magnetic stirrer 
(8.5 W), US bath (120 W), air pump (3 W), peristaltic pump (30 W) and UV lamp (36 W) 3. Unit cost of power 12.52 US cents/kWh 
in 2022 4. TiO2 price is 202 EUR for 100 G (Sigma-Aldrich©) 5. H2O2 (30 %) price is 25.20 EUR for 1 L.

Table 5. Cost analysis for 2,4-D herbicide removal in SC and SPC reactors.
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Fig. S1. FTIR spectrum of the original 2,4-D herbicide.
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Fig. S2. SC FTIR results a)30 min. b)120 min. c)360 min.
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Fig. S3. SPC FTIR results a)30 min. b)120 min. c)360 min


