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Abstract

Methylmercury is one of the most toxic chemical compounds, which raises concern for assessing 
its effects at local and global levels. The Minamata Convention is a worldwide action established in 
2013 to redouble efforts against mercury pollution and its adverse effects on human health. During the 
last decade, there was an exponential increase in investigating the impacts of methylmercury on food 
toxicology, human health, economy, among others, although there is a lack of studies that link them. 
The present study proposes an integrated approach among food toxicology, public health, and economy, 
to reduce the amount of methylmercury in food. The information generated may allow local regulatory 
agencies and international organizations to identify which food groups should be focused, thus reducing 
dietary methylmercury exposure, and developing effective action plans against foodstuffs most harmful 
to human health.
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Introduction

Methylmercury (MeHg) is the most toxic compound 
formed from mercury (Hg), and it is distributed 
throughout all terrestrial and aquatic ecosystems 
around the world, even in food. This chemical 
compound makes up a problem of global concern 
because of its high toxicity, long persistence in the 
environment, its ability to biomagnify through food 
chains, and its significant adverse effects on health and 
environmental compartments, even at low exposure 
levels. As a consequence, it established the Minamata 
Convention in 2013 in order to promote global actions 
to protect human and environmental health from Hg 
and its compounds by encouraging plans that reduce 
environmental Hg and human exposure; the article 19 
of this Convention encourages to assess the effects of 
MeHg on human health, the environment, society, and 
the economy [1].

MeHg can be transported over long distances, 
and its ubiquity in aquatic ecosystems makes global 
population can be potentially exposed [2]. Most people 
without occupational Hg exposure, is generally exposed 
to MeHg mainly through food intake, especially fish 
and seafood, which stands out as the most important 
sources of MeHg [3]. People feeding mainly on fish 
may exceed up to six times the tolerable weekly intake 
(TWI) of MeHg (1.3 μg/kg body weight, [4]). There 
is an increasing amount of research describing rice 
consumption as another important source of MeHg 
among people from China and other Asian countries 
[5-7], as further research is needed on dietary exposure 
through rice from other geographic regions [8].

There are foods that have an antagonistic effect 
on MeHg toxicity, such as those with high content of 
n-3 polyunsaturated fatty acids (PUFA), selenium, 
iodine, lycopene pro-anthocyanidins, antioxidants, and 
polyphenols, which can be found in vegetables (e.g., 
tomatoes) and crops (e.g. tea) [9, 10]. The mechanisms 
that act as potential protective effects of food on MeHg 
exposure and toxicity are not yet completely understood, 
but are a topic of growing interest among researchers 
[11-14]. For food toxicology, the majority of the studies 
have reported total mercury (THg) levels in different 
food products, and their human exposure through diet 
[15-17]. National dietary surveys of Hg concentrations 
in the general population have been conducted in France 
[15] and Korea [18]. In addition, some specific regions 
from developing countries such as Nepal [17], Peru [19], 
Ghana [20], and Suriname [21], are been considered.

 Assessing the exposure and bioaccumulation in 
human populations is not a straightforward task, even 
though several biological samples (e.g., blood) can be 
collected to evaluate these factors. Among them, hair 
is a non-invasive matrix, easily sampled under regular 
procedures, and usually used to assess Hg exposure as 
there is a direct correlation between Hg daily intake and 
its concentrations in human hair [22]. Hair Hg burden 
is a standard tool for monitoring Hg among human 

population, as hair is a reliable indicator of internal 
dose [23] and Hg dietary intake [22]. Mercury is 
incorporated into the hair follicle during its formation, 
having a direct correlation with Hg levels in blood [24, 
25]. Analytically, over 90% of the THg in human hair 
corresponds to MeHg [26, 27]. Besides, hair samples 
can be transported and stored at ambient temperature, 
thus facilitating any logistic tasks during fieldwork. 
During storage, Hg in hair remains unaltered over many 
years when samples are stored under dry and dark 
conditions [28]. The adverse effects of MeHg exposure 
on human health have a strong scientific basis [8, 16]. 
The evidence shows that prenatal MeHg exposure 
produces extreme fetal abnormalities and significant 
decreases of neurological and cognitive functions [29-
31]. Available data suggest that moderated exposure to 
Hg can be associated with memory loss, less attention, 
lower language development, and reduction of visual-
motor skills [32]. MeHg in pregnant women’s hair has 
been directly correlated with infant intelligence quotient 
(IQ) loss, with 0.7 decrease of IQ per each part per 
million (ppm) increase of Hg levels in mother’s hair 
[33].

Losing IQ due to Hg burden has been used to 
estimate the economic impact of human Hg exposure. 
This analysis is a key factor in promoting management 
plans and public policies for environment protection 
[34]. However, many developing countries and those 
with transition economies have limited data about 
Hg exposures and less any economic impacts of 
Hg contamination [35]. Some estimations about the 
economic effects caused by Hg exposure in developed 
countries have evidenced substantial economic costs, 
especially in terms of a lesser economic productivity. 
For instance, an estimated of US$5.1 billion loss was 
reported in USA during 2008 [36] from Hg exposure, 
whereas in the European Union the losses were as high 
as US$9 billion [37]. Trasande et al. (2016) reported 
US$77.4 million in lost economic productivity in  
15 developing countries. Some studies also have showed 
a significant economic benefits when some measures 
were applied for preventing Hg contamination in USA 
and other regions [38, 39]. However, those studies are 
based on THg instead of MeHg, which can be more 
accurate.

Currently, there is no integrated approach that 
bridges the gap between human MeHg exposure 
through diet and the economic benefits derived from 
implementing reduction plans. Most approaches have 
only been addressed separately, such as human dietary 
exposure to Hg [15], or the relationship of Hg food levels 
with hair [22], or economic impacts due to prevention 
human Hg exposure [35]. Quantifying the costs of 
MeHg food contamination, i.e. the economic benefits 
derived from preventing MeHg food contamination 
may contribute to improve the Minamata Convention. 
This novel approach can be useful for local regulatory 
agencies and international organizations to assess the 
economic benefits of reducing MeHg concentrations  
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in food, as well as knowing which foods should be 
focused on MeHg reduction.

Data collection for estimating the economic 
benefits of reducing Hg in food

 
Consumption data and food sampling

Data collection must follow strict protocols with 
clear available information about the scope of the 
study, and data usage of survey subjects having formal 
consent. The surveys must observe some requirements:  
i) a daily dietary count survey with a representative 
sample from the adult population (18-65 years, working 
age) is quite required; ii) it is recommended that 
selected individuals be visited at homes by trained 
interviewers; iii) the subjects must fill a record for 
seven consecutive days (one week) to describe their 
feeding habits as precisely as possible (participants 
must be instructed they may refuse to answer it);  
iv) food portions to be tested are suggested to be taken 
from photographs compiled from an accredited manual 
[40]; v) interviewers must know whether food stuff was 
consumed at home or elsewhere; vi) weight of each 
interviewed must be registered to calculate his daily 
MeHg consumption.

After the survey, the most consumed items must 
be selected, based on the food ingested. Staple foods 
should cover about 90% of the entire diet and then 
divided into 17 food groups, as suggested by some 
researchers [42]. Foods must be purchased in triplicate 
from local markets in the area to be studied.

Hair sampling

From each interviewee (voluntarily agreed and 
accepted), a bundle of hair must be cut from the 
occipital portion of the head, near the scalp, placed in 
an identified plastic bag, and then stapled to prevent 
hair displacement. Hair samples must be stored at 
room temperature until analysis. Individual information 
about the purpose of the study must be provided, and 
participants must be instructed they might refuse to 
take part in their will. Everyone must be told that data 
got from the survey will be confidential. Any testing 
must be approved by the Bioethics Committee of the 
sponsoring institution. 

Laboratory analysis

Preparation of food samples

Any inedible parts of foodstuff must be removed, 
and then prepared according to the most typical forms 
of consumption. It is recommended that cooking 
methods be roasting, steaming, baking, and boiling 
with deionized water. Do not add more ingredients 
during cooking. Canned foods must be drained 
immediately after opening. Fresh foods (vegetables 

and fruits) must be washed with distilled water.  
All samples must be homogenized using a domestic 
food processor. It is recommended that each food item 
be processed by triplicate (using different brands), and 
each item analyzed by triplicate or at less by duplicate. 
After homogenization, all foodstuffs must be weighed 
according to the percentage defined within their own 
category. The samples must be stored in a cool and dry 
place until further analysis [41, 42].

Quantification of MeHg in food and hair

MeHg extraction procedure and subsequent analysis 
can be performed by Direct Mercury Analyzer (DMA) 
[43] or by new methods as based on Square Wave 
Anodic Stripping Voltammetry (SW-ASV) with a Solid 
Gold Electrode (SGE), which allows analyzing THg 
and MeHg in situ [44]. These lab techniques are cheap 
and rapid procedures very appropriate for massive Hg 
evaluations and monitoring, and they are proven to be 
high-quality techniques.

Hair samples must be cut into short segments 
(approximately 5 mm) and then washed with acetone 
and Milli-Q water, and dried overnight (oven, 
60ºC). Exposure to MeHg can be assessed through 
THg concentration in hair, since over 90% of THg 
corresponds to MeHg [26, 27]. Thus, MeHg should 
be analyzed in 10% of the samples to corroborate this 
relationship. THg analysis can be analyzed through 
DMA-80 analyzer (Milestone, USA), following the US 
EPA method 7473 [45].

Analysis of the economic benefits of reducing 
MeHg in foods

The estimation of the economic benefits of MeHg 
reduction in foodstuff is through analysis of the MeHg 
ingested, which has been shown to have a direct 
correlation to MeHg in hair. Losing IQ has been used 
to estimate economic losses in productive populations. 
We propose that using data of IQ index in humans 
could help us estimate which foodstuff(s) have the 
greatest influence on the economic loss derived from 
MeHg burden. With these results, action plans can be 
developed according to which foods are more harmful 
to human health, and consequently to the economy.  
The data analysis needed is described as follows:

Estimate Daily Intake (EDI)

                     (1)

where, Fi is the consumption of a particular food 
group (g/day), Cmi is the concentration of MeHg  
in the composite food sample (mg/g), W is the body 
weight (Kg), and n is the total of food groups consumed 
[41]. 
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Estimation of MeHg intake by food group 

Based on the fact that the highest Hg exposure is 
due to diet, the total MeHg hair levels are due to the 
total food consumption. The contribution of each 
food group to the total MeHg concentration in hair  
(MeHg fg) can be calculated as follows:

           (2)

where MeHg h is the concentration of MeHg in hair, Cfi 
is the concentration of MeHg from a food group, IRfi 
is the radius of intake from a food group, and W is the 
body weight.

Any food group showing the highest MeHg levels 
must be deeper screened to identify which food into the 
group exhibited the highest MeHg levels. In the case, 
MeHg in food exhibited negative relationships with 
MeHg in hair; it would mean that those food items have 
an antagonistic effect on MeHg (i.e. a protective action 
against MeHg contamination).

Intelligence quotient loss

The MeHg levels obtained with Equation (2) can be 
used to estimate fetal exposure and subsequent infant 
IQ loss [33]. Coefficient of IQ loss due to prenatal Hg 
burden has been used for several studies estimating 
the benefits of reducing Hg exposure [35, 37, 46]. 
Subsequently these results can be classified into specific 
ranges (<0.5, 0.5-1, 1-2, 2-4, 4-8, 8-16 and >16), 
according to Trasande et al. [35]. 

Economic analysis 

The main impact on social costs incurred by IQ 
reduction is lesser productivity and therefore a loss 
of earning capacity [47]. Following the approaches 
of previous authors [36, 37, 48], each IQ point is 
valued in U.S. dollars by updating Trasande’s estimate 
of US$19,269 of 2010 [35], using the U.S. general 
consumer price index [49]. The cost value must be 
multiplied by the relationship between the Gross 
Domestic Product (GDP) per capita, and the value can 
be adjusted by differences in purchasing power. The 
exchange rate conversion and GDP can be adjusted 
for price differences, purchasing power parity (PPP), 
and conversion rates based on a common set of 
international prices. It is also recommended to carry 
out all calculations after adjustment for productivity as  
the ratio of PPP-adjusted real GDP in each region to 
that of the United States as a benchmark. Finally, the 
region-specific value must be multiplied by the lost IQ 
points to estimate the impact of labor and productivity 
costs.

Modeling and Proposals for Action Plans

Regions to be studied must be classified according 
to their potential for presenting the greatest economic 
benefit of reducing MeHg in food, and then to determine 
which foods are influencing the dietary MeHg exposure. 
It is recommended to analyze different scenarios for 
reducing MeHg levels (100%, 50%, 25%, 10% and 
5%), taking groups and foods, which exhibited greater 
economic losses. Once data is obtained, a proposal 
based on which foodstuff must be prioritized for MeHg 
reduction must be developed. Monitoring for assessing 
an effective MeHg reduction must be implemented 
on concordance with action plans (estimated time for 
expected MeHg reduction in foods influencing the most 
a lesser economy). 

Discussion 

The present integrated approach, which is based on 
food toxicology, public health and economy, may be 
useful to design plans to quantify the impacts of MeHg 
contaminated food on human health, and their effects 
on economy (Fig. 1). This model, as well as others 
that have quantified the economic impacts of THg, is 
based on the loss of productivity due to a decreased 
IQ index [35-38]. For public health, MeHg exposure 
at sub-lethal doses for a long time period can lead to 
immunosuppression [50]. This physiological problem 
enhances the severity of pathogens such as viruses and 
bacteria, which may include COVID-19 [51]. Negative 
health effects caused by Hg are of global concern [52]. 
Future research should quantify the indirect costs of 
MeHg exposure to health care services. This integrated 
approach incorporates adults between 18-65 years 
(working ages), assessing how much is the economic 
benefit of MeHg reduction over current production. The 
analysis of lesser IQ index in children and adolescents 
due to MeHg food intake can be used to evaluate future 
sceneries with novel feeding habits that warrant the less 
MeHg ingestion.

The lack of research linking food toxicology, 
human health, and economy explains the lack of 
understanding about the benefits than could be obtained 
by reducing MeHg levels in food. Some approaches 
have only reported some relationships based on THg 
[35, 36, 38, 39]. Studies based on MeHg are required 
to make a more precise estimation, because MeHg 
is the chemical stressor responsible for causing the 
major biological alterations (cognitive level, lesser IQ, 
immunosuppression, and other biological problems). 
Traditional MeHg analyzes are complex and not 
rapid (analytically), making massive monitoring and 
evaluation very expensive. However, new techniques are 
under full development, and can make MeHg analyzes 
much easier and affordable [43, 44].   

Global food trade is an important factor affecting 
MeHg food exposure. The export/import of food 
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commodities among countries and geographic regions 
are causing MeHg in food to be less unrelated to 
environmental MeHg of the region. The homogeneity in 
the food supply by large supermarket chains can generate 
similar MeHg levels in foods from different regions 
[53]. The rate of food intake in each region may have the 
greatest influence on the differentiation between regions 
and therefore on the perceived economic benefits of 
reducing MeHg in food. In addition, the type of food 
consumed can vary from supply/demand to purchasing 
power of people, as observed by the National Institutes 
of Statistics of each country. It is necessary that this 
approach take into consideration the above-mentioned 
points to be implemented. Future research should 
address potential differences in MeHg dietary exposure 
according to socioeconomic level. Food quality and 

MeHg concentrations may differ according to price of 
the product. This point, along with income level and 
population, can influence the economic benefits that 
would be perceived from reducing MeHg in food.

This approach will allow to spot areas of major 
MeHg exposure by food ingestion, and to identify 
which foodstuff (or groups) incorporates more MeHg 
to human body through diet. The tolerable Hg dietary 
intake is one of the major actions enforced by health 
organizations from countries that signed the Mercury 
Convention and WHO. It should be kept in mind that 
fish and shellfish may not necessarily be the food with 
the highest MeHg levels. The rate of food intake plays 
a key role in MeHg exposure in humans, therefore 
a population could be more exposed to MeHg from 
foods that have medium or low MeHg levels, but with 

Fig. 1. Conceptual model for monitoring and reducing MeHg in foods to enhance economic and social benefits. 
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a higher rate of intake. This approach can be useful for 
government and regulatory agencies, but it needs to be 
formally addressed as part of health survey assessment 
by governments, and regularly evaluated to focus on 
those areas with MeHg levels are above threshold 
healthy recommendations.

In order to protect air and water quality and prevent 
soil contamination, it is necessary to emphasize the 
need to adopt rigorous control measures to reduce and 
eliminate mercury releases from large-scale mining 
operations [54]. Taking action on suspected mercury 
wastes must be enforced, as some wastes containing 
mercury are more difficult to identify without 
laboratory analysis. There are many industrial processes 
that use mercury or create waste streams commonly 
known to contain mercury, which may be identified 
for further investigation. We are taking about mercury 
contaminated recycled metals, industrial sludge,  
ash, contaminated soil, mining tailings and liquid 
wastes.

Finally, all the countries that signed the Minamata 
Convention on Mercury are required to cooperate more 
effectively with each other and with intergovernmental 
organizations to reduce and eliminate the use of 
mercury in artisanal and small-scale gold mining and 
processing activities. This cooperation must include 
a strong commitment toward education programs 
that encourages people ś capacity and the use of 
effective mechanisms to promote knowledge, including 
best environmental practices and viable alternative 
technologies. 

Conclusions

Mercury represents risks for human beings, thus 
controlling mercury pollution is an issue at global and 
local scales. Our integrated approach proposed here 
may help to assess and monitor MeHg levels in food. 
Also, it brings forward a practical method to generate 
appropriate action plans focused on reducing MeHg by 
addressing the social and economic determinants of 
human health.

Interdisciplinary studies can certainly provide 
a more global approximation to solve Hg in food. 
Governmental and non-governmental entities are 
required to promote and finance research and/or 
monitoring programs that address natural, economic 
and social areas of knowledge.
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