
Introduction

Climate change has increasingly evolved into  
a global concern confronting all nations, garnering 
widespread attention from the international community 
as a result of continual industrialisation advancements. 
The question of how to establish a low-carbon economy 
and reduce CO2 emissions has also become a prominent 
topic of discussion in academic study. Numerous 

studies have established that science and technology are 
key determinants of CO2 emissions [1-3]. For starters, 
technical innovation may spur economic growth, 
boosting energy consumption and CO2 emissions in the 
process. Additionally, technological innovation has the 
potential to dramatically increase labor productivity, 
reduce economic development’s reliance on natural 
resources, increase the total energy usage rate, and 
alleviate the burden of mandatory emission reductions 
on businesses [4]. Simultaneously, the development 
of green technology, such as clean energy, renewable 
energy, and energy-efficient equipment, is critical for 
lowering CO2 emissions [5].
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Since the late 1970s, China has been undergoing fast 
growth, resulting in an increase in energy consumption. 
However, owing to China’s economic development 
limitations and technical constraints, inexpensive fossil 
fuels have become the most extensively used energy 
source, causing China’s CO2 emissions to expand 
fast. As part of its efforts to attain the low-carbon 
development goal, the Chinese government proposes 
to work toward reaching a peak in carbon emissions 
by 2030 and carbon neutrality by 2060 [6, 7]. It is vital 
to understand the direct influence and spatial spillover 
effect of technological innovation on carbon dioxide 
emissions in order to ease the burden on the ecological 
environment.

At present, academic research on technology 
innovation and carbon emission intensity mainly 
focuses on the impact effect. For example, Kang et 
al. constructed dynamic panel data to analyse the 
technological progress paths of low-carbon development 
in three major urban agglomerations in China, and 
the findings suggest that the main source of power for 
low-carbon development is independent innovation in 
science and technology [8]. Based on the perspective 
of carbon emission spillover effects, Zhang uses a 
three-region input-output model to analyze the carbon 
emission spillover feedback effect of China’s economic 
regions [9]. Ding et al. further considered the spatial 
distribution characteristics of carbon emissions, 
studied the spillover effect of carbon emissions in the 
Yangtze River Economic Belt and the driving path of 
technological innovation and found that cross-regional 
technological innovation in energy conservation and 
emission reduction can reduce carbon dioxide emissions 
and promote regional green development transformation 
[10]. Zhang et al. used a linear regression model and 
mediating effects to verify the emission reduction 
effect of technological innovation and found 
that technological innovation effectively reduced 
carbon emissions in Chinese provinces, but energy 
consumption affected the emission reduction effect of 
technological innovation to some extent [11]. Cheng et 
al. further considered the heterogeneity between regions 
in China and used quantile regression to synthesize 
the potential heterogeneous effects between energy 
technology innovation and carbon emission intensity in 
different regions of China [12]. Cheng et al. analyzed 
the mediating effect of green technology innovation 
on the relationship between environmental regulatory 
policies and carbon emissions [13]. Lin and Ma studied 
the impact of different technological progress paths, 
such as domestic innovation, foreign technology 
introduction, and regional technology transfer, on CO2 
emissions [14]. Existing literature mainly examines 
the direct impact of technological innovation on 
carbon emission intensity or only considers the spatial 
spillover effect of technological innovation on carbon 
emission intensity. Few scholars incorporate both the 
direct impact effect and the spatial spillover effect into  
the research framework. Therefore, this article will use 

the Spatial Durbin Model (SDM) to examine the impact 
of technological innovation on carbon dioxide emission 
intensity from the dual perspectives of direct impact 
and spatial spillover.

Material and Methods 

Measurement Model

According to prior study, control variables have 
included the advanced degree of industrial structure, 
the intensity of environmental regulation, and the 
energy structure [15, 16]. The impact  of environmental 
regulation on carbon emissions is mainly divided into 
two viewpoints, one is the “Environmental Porter 
Hypothesis”, that is, appropriate environmental 
regulation can reduce carbon emissions [17]. The other 
is the “green paradox”, that is, the purpose of reducing 
emissions Environmental regulation may instead 
lead to an increase in carbon emissions [18]. In order 
to examine whether the intensity of environmental 
regulation has a nonlinear effect on the intensity of 
regional carbon emissions, this article proposes to add 
the quadratic term of environmental regulation into the 
measurement model, thereby fulfilling model (1):

(1)

In the formula, i and t denote the region and time, 
CEI indicates the intensity of CO2 emissions, Inno 
symbolizes technological innovation, IS signifies 
the degree of advanced industrial structure, and FDI 
represents the level of foreign investment; ER and ER2 
denote the intensity of environmental regulations and 
their quadratic terms, respectively; μ represents the 
regional fixed effect; and ε represents the random error 
term. 

Due to the fluidity of carbon dioxide emissions 
and the spread of technological innovations, a region’s 
carbon emission intensity is influenced not only by its 
own economic activity but also by neighboring regions, 
showing a geographical spillover effect. Therefore, this 
study established a Spatial Durbin Model, as shown in 
(2), which has the advantage of incorporating spatial 
factors into the econometric analysis framework, while 
taking into account the spatial correlation between 
the explained variable and explanatory variable, and 
can significantly reduce the estimation error due to 
geographical interaction effects. In addition, a more 
significant advantage of the Spatial Durbin Model is 
that it can deal with spatial effects between variables, 
which include direct effects and spillover effects. Spatial 
effects are able to visualise the spatial interplay and 
spatial structure of observations in the Spatial Durbin 
Model. In this study, the  direct effect can reflect the 
impact of changes in technological innovation on the 
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region’s carbon emission intensity, and the spillover 
effects can reflect the changes in carbon emission 
intensity in neighbouring geographic areas caused by 
changes in technological innovation in the region.

       
(2)

As shown in formula (2), W is the spatial weight 
matrix, which quantifies the degree of spatial 
individuals’ mutual dependency and correlation. The 
remaining variables have the same meaning as those 
in the formula (1). This article makes use of the Rook 
adjacent space weighting matrix W, which means that if 
two regions share a border, Wij = 1, otherwise Wij = 0.

Variable Description

Table 1 summarizes the explained variables, 
explanatory variables, and control variables employed 
in the empirical model. Because China does not 
publicize its CO2 emissions directly, and CO2 emissions 
are mostly caused by the combustion of fossil fuels. 
As a result, this article employs the approach outlined 
in the 2006 IPCC Guidelines for National Greenhouse 
Gas Inventories to determine the total CO2 emissions 
in various areas. Formula (3) illustrates the calculation 
method:  

   (3)

CE denotes a region’s total CO2 emissions, whereas 
i represents different forms of energy consumption, 
including coal, coke, crude oil, gasoline, kerosene, 
diesel, fuel oil, and natural gas. E denotes the amount 
of energy expended. The abbreviations NVC, CEF, and 

COF represent the calorific value, carbon content, and 
oxidation factor of energy, respectively. The specific 
values are obtained from the 2006 IPCC Guidelines 
for National Greenhouse Gas Inventory and the China 
Greenhouse Gas Inventory Research.

Data Sources and Variable Processing

To assure the accuracy and availability of empirical 
data, this article conducts empirical analysis on panel 
data from 2003 to 2018 for 30 provinces in China 
(excluding Macau, Hong Kong, Taiwan, and Tibet). The 
sample data originates through the National Bureau of 
Statistics of China and the Wind database. Interpolation 
and average growth rate approaches are used to fill in 
certain missing variables. Simultaneously, using 2003 
as the base year, each region’s yearly nominal GDP will 
be deflated. To account for heteroscedasticity, the CO2 
emission intensity is processed in logarithm. Table 2 
summarizes the descriptive statistics for the explanatory 
variables, explained variables, and control variables 
employed in the econometric model.

Results and Discussion

Spatial Correlation Test

Moran’s I index was calculated to determine 
whether there is spatial autocorrelation in CO2 emission 
strength. The following is the calculating formula:

               (4)

In the formula (4), , , 

Xi represents the observed value of the region, and wij 
represents the numeric elements in the space matrix. 

Index Measure

CO2 Emission Intensity(CEI) Total carbon emission
Actual GDP

Technological Innovation (Inno) Internal expenditure of R&D per capita

High-level Industrial structure (IS) The tertiary industry output value
GDP

Environmental regulation (ER) Industrial pollution control investment completed
Industrial output value

Foreign direct investment (FDI) Actual utilization of foreign direct investment
GDP

Energy structure (ES) Coal consumption
Total energy consumption

Table 1. Variable and indicator description.
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Moran’s I indexes from 2003 to 2018 are demonstrated 
in Table 3.

Table 3 demonstrates that the Moran index of 
carbon dioxide emission intensity is larger than zero 
0 in each location. It is significant at the 5% level in 
2003 and 2005, and at the 1% level in the subsequent 
years. This shows that the intensity of a region’s CO2 
emissions will be positively impacted by the intensity 
of nearby regions’ CO2 emissions. Due to the natural 
flow of CO2, frequent trade exchanges, similar resource 
reserves, and proximity of industrial transfer, places 
with similar geographical locations exhibit a positive 
spatial correlation [19]. As a result, spatial correlations 
between neighboring regions should be taken into 
account during the empirical analysis; otherwise, model 
estimates may be biased.

Regression Results

The estimation results for models (1) and (2) are 
shown in Table 4. The direct, indirect, and total impacts 
of each explanatory variable are listed in Table 5. 
According to Table 4, after accounting for geographical 
variables, the model’s goodness of fit rose from 72% to 
79%. The spatial regression coefficient ρ is statistically 
significant at the 1% level, demonstrating that CEI 
between provinces exhibits a strong spatial correlation, 
confirming the need of reintroducing the spatial model. 
The SDM regression findings indicate that Inno, HS, 
and FDI all have the ability to diminish CEI, whereas 
RE has an inverted “U”-shaped nonlinear influence on 
CEI.

The entire effect of Inno on CEI is then split into 
direct and indirect effects. The direct effect of Inno 
on CEI is -0.000125, and the significance test at the 

5% level reveals that technological innovation has a 
strong direct promotion effect on reducing the region’s 
CO2 emission intensity [20]. Technological innovation 
can reduce regional carbon dioxide emissions by 

Table 2. Statistical description of variables.

Table 3. Moran’s I test of CO2 emission intensity.

Variable Sample size Min Max Average Standard deviation

lnCEI 480 -0.926 2.847 1.173 0.664

Inno 480 14.961 8685.098 703.358 1094.835

IS 480 0.529 4.348 1.022 0.549

RE 480 0.036 2.855 0.411 0.340

FDI 480 0.0103 10.496 2.443 1.962

ES 480 0.029 0.903 0.587 0.174

Year 2003 2004 2005 2006 2007 2008 2009 2010

Moran I 0.181**

(2.115)
0.250***

(2.727)
0.270**

(2.882)
0.269***

(2.872)
0.308***

(3.236)
0.336***

(3.488)
0.306***

(3.210)
0.318***

(3.370)

Year 2011 2012 2013 2014 2015 2016 2017 2018

Moran I 0.305***

(3.397)
0.299***

(3.322)
0.281***

(3.158)
0.284***

(3.183)
0.266***

(3.023)
0.265***

(2.963)
0.234***

(2.773)
0.237***

(2.816)

(1) (2)

ρ 0.508***
(4.77)

Inno -0.000151***
(-7.94)

-0.000117**
(-2.19)

IS -0.229***
(-5.60)

-0.114**
(-2.08)

RE 0.430***
(7.43)

0.265***
(5.19)

RE2 -0.125***
(-4.74)

-0.0806***
(-5.72)

FDI -0.0174*
(-2.40)

-0.0244**
(-2.09)

ES 1.364***
(12.41)

0.630
(1.62)

Wx Inno 0.00000513
(0.11)

Cons 0.613***
(7.19)

R2 0.72 0.79

Log-pseudolikelihood 298.45

Sample size 480 480

Note: The Z value is in parentheses, *, **, *** indicate that it 
has passed the significance tests at the 10%, 5%, and 1% level 
respectively.

Table 4. Model estimation results.
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improving the utilization efficiency of traditional fossil 
energy, accelerating the production of renewable and 
clean energy, optimizing the industrial structure, and 
upgrading carbon capture and storage technologies. 
This is consistent with the research of Luo et al., 
endogenous innovation is of great significance for 
reducing China’s carbon dioxide emissions [21]. 
Enhancing technological innovation capability may 
help accelerate the growth of industrial informatization, 
modernization, and intelligence, as well as significantly 
enhance the efficiency of energy resource consumption 
[22]. Simultaneously, increased innovation capacity 
encourages the flow of production factors to low- or even 
zero-carbon industries such as artificial intelligence, the 
Internet, and smart transportation, reduces economic 
development's reliance on natural resources, and thus 
lessens the intensity of CO2 emissions [23]. Meanwhile, 
the indirect effect of innovation on CEI is -0.000107, 
and the significance test at the 5% level indicates that 
independent innovation in neighboring regions reduces 
the region's CO2 emission intensity, whilst technological 
innovation has a significant negative spatial spillover 
effect on CO2 emission intensity. This is in line with 
the views of Long et al., who believe that strengthening 
the technology innovation capability and expanding 
the knowledge spillover of innovation technology in 
various regions of China can effectively reduce carbon 
dioxide emissions [24]. According to Paul Romer’s 
endogenous growth theory, knowledge, like labour 
and capital, is an important factor of production, and 
knowledge has spillover effects, and technological 
innovation driven by knowledge accumulation plays an 
important role in driving economic growth. With rapid 
socio-economic development, trade exchanges, labour 
flows, knowledge sharing and technology exchanges 
between regions have become more frequent, and 
contemporary industries and services are showing a 
trend of agglomeration. Consistent with Long et al.’s 

view that intra-regional industrial cooperation can 
enhance knowledge spillovers in different regions of 
China [25]. The region's scientific and technological 
achievements, such as the development of advanced 
manufacturing technology and clean energy, can 
overflow to neighboring regions via the industrial 
chain's upstream and downstream linkage and diffusion 
effects, increasing the CO2 emission efficiency of 
adjacent areas while decreasing the CO2 emission 
intensity of surrounding areas [26]. Specifically, when 
the region achieves the effect of energy conservation 
and emission reduction through technological 
innovation, the exchange and cooperation between 
the surrounding regions and the region in advanced 
technology, professional knowledge and management 
experience will continue to be strengthened, and the 
awareness of innovation and low-carbon awareness 
will also continue to increase. In order to achieve 
the organic unity of economic and environmental 
benefits, the surrounding areas will learn and introduce 
advanced low-carbon production technologies in the 
region, and make innovations on this basis, thereby 
reducing the intensity of carbon emissions. As pointed 
out by Chen et al., technological innovation promotes 
green and low-carbon development through knowledge 
spillovers such as R&D sharing, human capital training, 
and industrial chain collaboration [27]. Technological 
innovation has both direct and indirect negative impacts 
on the intensity of CO2 emissions. Thus, the cumulative 
effect of technological innovation on CO2 emissions is 
-0.000232, which exceeds the 1% significance threshold. 
Thus, technological innovation has the potential to 
significantly reduce the intensity of CO2 emissions.

When control variables are taken into account, 
the overall effect of industrial structure upgrading on 
CO2 emission intensity is negative, with both direct 
and indirect effects. On the one hand, an advanced 
industrial structure enables the development of high-
tech industries and contemporary service industries, as 
well as the reduction of CO2 emissions intensity through 
the elimination of high-emission businesses [28, 29]. On 
the other hand, through the impact of industrial linkage 
and agglomeration, an advanced industrial structure can 
help mitigate the CO2 emission intensity of surrounding 
areas [30]. Environmental regulation has a cumulative 
influence on CO2 emission intensity in the form of an 
inverted “U” shape that climbs and then drops [31-33]. 
The inflection point is preceded by a “green paradox” 
effect, in which fossil energy companies predict stricter 
environmental regulations in the future and increase 
their near-term energy production, leading to an increase 
in CO2 emissions. After the inflection point, there is a 
“ emission reduction” effect, which is consistent with 
the view of “Environmental Porter hypothesis” that 
appropriate environmental regulation can reduce carbon 
emission intensity. Environmental regulation to the 
enterprise signal potential green technology improved, 
if the enterprise existing green technology is not accord 
with the requirement of environmental regulation, 

Table 5. The direct, indirect and total effects of SDM.

Direct effect Indirect effect Total effect

Inno -0.000125**
(-2.32)

-0.000107**
(-2.13)

-0.000232***
(-3.18)

IS -0.128**
(-2.50)

-0.112*
(-1.82)

-0.240**
(-2.36)

ER 0.290***
(5.05)

0.265**
(2.15)

0.555***
(3.59)

ER2 -0.0880***
(-5.34)

-0.0818**
(-1.99)

-0.170***
(-3.28)

FDI -0.0291**
(-2.00)

-0.0284
(-1.32)

-0.0575*
(-1.66)

ES 0.674
(1.64)

0.531
(1.57)

1.205*
(1.73)

Note: The t value is in parentheses, *, **, *** indicate that 
it has passed the significance tests at the 10%, 5%, and 1% 
level respectively.
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enterprise through innovation to promote production 
technology progress and environmental emissions 
technology upgrading, improve the ability of pollution 
control, so as to offset the rising cost of environmental 
regulation brings to enterprises, at the same time of 
improve enterprise productivity and competitiveness, 
Reduce carbon dioxide emissions [17]. Foreign direct 
investment has a large negative influence on CO2 
emission intensity both directly and indirectly, while 
the indirect effects are insignificant. Foreign direct 
investment has increased the flow of regional capital, 
talent, technology, and other elements, hence increasing 
labor productivity and CO2 emission efficiency [34]. As 
was pointed by Twum et al., FDI plays an important role 
in improving environmental efficiency [35]. All three 
effects of a coal-based energy consumption structure on 
CO2 emission intensity are positive, but the direct and 
indirect effects were not significant. At the moment, 
coal consumption continues to account for a significant 
share of China's energy consumption structure, while 
clean, diverse, and efficient transformation of the energy 
consumption structure has not yet occurred. As pointed 
out by Dauda et al., renewable energy consumption 
has a positive effect on reducing CO2 emissions [36]. It 
is vital to strengthen the function of energy structure 
optimization in boosting China's low-carbon economy's 
sustainable growth.Conclusions

The SDM is used to reach the following conclusions: 
regional spatial CO2 emissions have a positive spatial 
spillover effect; technological innovation can not only 
significantly reduce regional carbon emissions, but 
also has a negative spillover effect on neighboring 
regions’ carbon emission intensity, thereby dramatically 
reducing the CO2 emissions of neighboring provinces. 
Additionally, advanced industrial structure and foreign 
direct investment can substantially decrease total CO2 
emission intensity; environmental regulations have 
an inverted “U” shape effect on total CO2 emission 
intensity; and coal-based energy consumption structure 
has a positive effect on total CO2 emission intensity.

This article makes five policy recommendations 
based on the empirical findings. To begin, emphasizing 
the role of technological innovation in the process  
of CO2 emission reduction [37]. All regions should 
continue to invest in technological innovation in order 
to create a virtuous cycle of technological advancement 
and green growth. Meanwhile, it is essential to fully 
exploit the geographical spillover impact of technological 
innovation on carbon emissions and to widen the scope 
of multi-regional collaboration between governments 
and businesses [10]. In eligible cities, low-carbon pilot 
initiatives will be built, and the pilot cities’ leadership 
and demonstration impacts on surrounding areas will be 
leveraged. The objective of lowering carbon emissions 
will be accomplished through a combination of direct 
and spatial spillover effects. Second, concentrating 
on industrial structure optimization. All regions 
should make reasonable progress toward industrial 
restructuring, expanding emerging strategic sectors and 

high-end service industries, and reducing economic and 
social development’s reliance on fossil fuels [38]. Green 
technology transition should be facilitated for industries 
with high energy consumption and massive emissions, 
and tax and other measures should be implemented 
to compel firms to modify their production processes. 
Third, optimizing the foreign investment structure.  
To lower China’s CO2 emission intensity, various 
regions may need to depend on foreign capital. 
However, they cannot continue to rely on natural 
resources and inexpensive labor to do so. They 
should attract foreign capital to invest in new energy,  
new materials, productive services, and a series  
of high-tech and knowledge-intensive sectors that are 
pollution-free and emit minimal amounts of carbon 
dioxide [39]. Fourth, optimizing the structure of the 
energy. All regions should work to minimize their 
reliance on a single energy structure dominated by  
fossil fuels, accelerate energy pricing reform, and 
aggressively develop renewable energy [40]. Fifth, 
raising the rigor of environmental restrictions as 
necessary. All regions in China should appropriately 
strengthen environmental supervision and give 
enterprises certain compensation for pollution control, 
so as to reduce the innovation cost of enterprises 
and encourage enterprises to innovate and optimize 
production processes [41].
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