
Introduction

Heavy metal contamination in soil has become a 
severe issue around the world in recent years as a result 
of anthropogenic activities [1, 2]. Cd is recognized 
as one of the most toxic and carcinogenic metals in 
soil, which may transfer from plants to human body 
by dietary intake exposure [3-5]. Various techniques 

were available to remediate the heavy metal-polluted 
soil. However, the engineering-based technique is 
expensive, environmental-unfriendly and even generate 
secondary contaminates to soil [6, 7]. Phytoextraction, 
removal of the pollutants by cropping and harvesting 
the bioaccumulating plants, has been a favourite choice 
for remediation. Process of the phytoextraction largely 
depends on the bioavailability of metals and the ability 
of accumulation by plants [8].   

Rhizosphere is a non-equilibrium millimeter micro-
space environment, composed of plant roots, minerals, 
water, oxygen, organic matter and microorganisms [9]. 
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The speciation of heavy metals in soil is a better indicator for assessing the bioavailability than 
the total concentration. Soil pH is a vital factor influencing the particulate-bound metal speciation 
and the metal dynamics at rhizosphere soil-root interface. In this study, greenhouse pot experiment 
was conducted to reveal the influence of pH on the speciation of cadmium (Cd) in solid phase 
of soil and the amount of Cd uptake by different ecotype plants. The results illustrated that the 
exchangeable Cd decreased obviously with the increase of soil pH, while the residual Cd displayed 
the reverse. The amount of Cd uptake by plants increased with pH decreased, and pH 5.5 exhibited the 
optimum for plants growth and metal uptake. Furthermore, the biomass and uptake capability of the 
hyperaccumulator plants (Sedum alfredii and Beta vulgaris var. cicla L with red leaves) were higher than 
the corresponding non-hyperaccumulator plants. Results indicated that the pH decrease and rhizosphere 
effects of hyperaccumulator could facilitate the activation of Cd and enhance the phytoremediation 
efficiency significantly.  

    
Keywords: Cd, pH, rhizosphere, speciation, phytoremediation 

*e-mail: zengxf@iae.ac.cn 

DOI: 10.15244/pjoes/152224 ONLINE PUBLICATION DATE: 2022-11-17



Lian M., et al.5512

Due to the secretion of plant roots, the rhizosphere 
environment is always in dynamic changes of pH 
value, redox potential, microbial characteristics and soil 
enzyme activity, which will further affect the mobility 
and bioavailability of heavy metals [10, 11]. The specific 
micro-space is therefore identified as a key process for 
phytoextraction. Evaluating the speciation of heavy 
metals and their transformation in rhizosphere plays 
an important role in studying the fate of heavy metals. 
However, the processes of how various speciations 
were modified in rhizosphere and then uptake by 
accumulating plants still have not been illustrated 
thoroughly. 

   Trace metals are absorbed and retained in soil 
associated with soil properties, such as pH, the cation 
exchange capacity, the content of organic matter and 
clay minerals [11]. Contrast with other factors, pH 
was emphasized as one of the most important factors 
to regulate the speciation and bioavailability of metals 
in the solid-liquid phase of soil [12]. A broad range 
of pH existed in the natural environment, such as the 
acidic soil of 4.0-5.5 in East China, and the alkaline 
soil between 8.0-8.5 in Tianjin and other regions in 
North China [13]. Wang et al. [14] investigated that 
soil available Cd was negatively correlated with the 
pH value with additives application in acidic soil. Shen 
et al. [12] pointed out pH is the most important factor 
affecting the speciation of heavy metals in rhizosphere 
soil, and also regulating their migration in soil-plant 
system. Plant uptake and the speciation of heavy 
metals were pH-dependent and the effect of pH on the 
latter was significant [15]. It should be noted that both 
surface-charge characteristics and the concentration of 
other main ions are important factors regulating the 
sorption process at lower pH [16]. In this study, more 
data were provided on optimizing the remediation 
efficiency of bioaccumulators by changing soil pH. Pot 
experiments were conducted to compare the effects 
of different soil pH on the biomass, accumulation and 
removal of Cd by two different species of Sedum and 
Beta vulgaris L. Two ecotypes were included in each 
species, which were the hyperaccumulator plants Sedum 
alfredii (S. alfredii) and Beta vulgaris var. cicla L with 
red leaves (R. Beta vulgaris), and the corresponding 
non-hyperaccumulator plants Sedum sarmentosum 
(S. sarmentosum) and Beta vulgaris var. cicla L with 
golden leaves (G. Beta vulgaris). Results can provide 
scientific basis for improving the phytorextracion 
efficiency, and further the remediation of heavy metal 
contaminated soil.

Material and Methods

Soil Samples and Pot Experiment

Soil used in this study was collected from Dapan 
(123.13 E, 41.67 N) near the Xi River in Shenyang, where 
is a region of heavy metals contaminated site for several 

decades [3]. The basic physicochemical properties of the 
soil were analyzed, i.e., pH 6.84, CEC 17.08 cmol·kg-1, 
total Cd with 7.8 mg·kg-1, and the total organic matter 
25.70 g·kg-1. Four pH levels were designed for different 
treatments, denoting as pH 4.0, pH 5.5, pH 6.8 and pH 
8.5, respectively. As the original soil pH was 6.84, it was 
approximately regarded as pH 6.8 and the other three 
treatments were further adjusted by H2SO4 and CaO. 
The pH buffer capacity was determined according to 
the acid-base titration curve, and the amount of H2SO4 
and CaO applied was calculated by using acid-base and 
alkali buffer capacity [6]. 

The base fertilizers, including (NH4)2SO4, KH2PO4 
and K2SO4 were applied to soil for the nutrition of N, 
P and K. Before pot experiment, branches of S. alfredii 
and S. sarmentosum were selected for the same size 
and pre-cultured in pollution-free soil. Plants were 
transplanted into pots for successive experiment until 
the exuberant adventitious roots (5-7 cm) grew from the 
stem base. Seeds of Beta vulgaris L. were soaked in 10% 
hydrogen peroxide for 5 min and evenly scattered in a 
soil tank with suitable nutrients. The temperature was 
controlled at 28ºC and the humidity was 60%. When the 
seedlings reached 3-4 cm, the buds were transplanted 
for pot experiments. After transplanting plants, the soil 
water content was kept at 60%-70% of the maximum 
water holding capacity, and the temperature in the 
greenhouse was kept at 20-25ºC. Each pot was filled 
with 1 kg soil and each treatment was repeated 4 times, 
accompanying with the blank pots. After 70 days of 
growth, plants were harvested and separated into root 
and shoot. Soil which was tightly adhering to the roots, 
was collected as the rhizosphere, while the soil in blank 
pot were regarded as bulk soil.

Sequential Extraction Scheme for Particulate-Bound 
Cd Fraction

The sequential extraction method recommended by 
Krishnamurti and Naidu was chosen to investigate the 
particulate-bound Cd fraction in soil [17]. Generally, 
the particulate-bound Cd fraction in solid phase was 
operationally divided into “exchangeable”, “Specifically-
adsorbed”, “organic complex-bound (fulvic acid-bound 
and humic acid-bound)”, “easily reducible oxide-
bound”, “organic-bound”, “amorphous mineral colloid-
bound”, “crystalline iron oxide-bound” and “Al-Si 
minerals-bound”, denoted as exchangeable, adsorbed, 
fulvic complex, humic complex, reducible, organic, 
amorphous, crystalline, and residual, respectively. 
The sequential extraction was carried out in duplicate 
and 0.5 g of each soil sample was taken in 50 mL 
centrifuge tubes. The supernatant was removed after 
centrifugation with a high-speed centrifuge (10000 g) 
for 10 min, and the residue was cleaned twice with  
5 mL ultra-pure water for each step of extraction. After 
each cleaning, the supernatant was centrifuged with  
a high-speed centrifuge (12000 g) for 10 min, and mixed 
at a constant volume before the next extraction was 
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carried out. For the last step of continuous extraction, 
the residue fraction was digested with HNO3-HClO4-HF.
The concentration of Cd in the supernatant after each 
step of extraction was determined by graphite furnace 
atomic absorption spectrometry (contr AA 700).

Statistical Analysis

All data displayed as standard deviations in this 
study, calculated from the replicate values of each 
treatment. The Tukey test was used to identify the 
significant differences (P<0.05) in means of the 
treatments, denoted by different letters. All figures were 
made using Origin 9.

Results and Discussion

Distribution of Particulate-Bound Cd

 The speciation distribution of Cd in bulk and 
rhizosphere soil at different pH were shown in Fig. 1. 
Results denoted that the particulate-bound Cd vary 
greatly with different treatments. The distribution of 
Cd in bulk soil was as follows: exchangeable>residual 
>fulvic complex>organic>humic complex>amorphous 
>reducible>absorbed>crystalline at pH 4.0. The 
concentration of residual Cd increased with soil pH, 
while the amount of exchangeable Cd displayed the 
reverse. Speciation of Cd in rhizosphere soil were 
mainly exchangeable and residual as well, followed by 
fulvic complex, absorbed, humic complex and organic 
at different pH. Compared with bulk soil, the proportion 
of exchangeable Cd in rhizosphere soil of S. alfredii 
decreased by 21.2% (pH 4.0), 16.5% (pH 5.5), 8.1%  
(pH 7.0) and 7.9% (pH 8.5), respectively, while the 
residual Cd decreased by 2.9% (pH 4.0), 28.6%  
(pH 5.5), 15.1% (pH 7.0) and 4.6% (pH 8.5), respectively. 
A similar trend was observed in the rhizosphere soil 
of R. Beta vulgaris for exchangeable and residual Cd. 
Furthermore, the concentration of fulvic and humic 
complex Cd in the rhizosphere of the two accumulators 
were higher in comparison with bulk soil at the same 
pH. However, unconspicuous change was observed 
for other Cd speciation. The results speculated that 
the rhizosphere effects from hyperaccumulators may 
have effects on the distribution of Cd speciation in 
rhizosphere soil compared with the corresponding non-
accumulators. 

As an important factor affecting the speciation and 
bioavailability of heavy metals in soil, pH can change 
the adsorption site, adsorption surface and coordination 
performance of heavy metals [18-19]. The transformation 
of particulate-bound Cd in solid phase of soil is closely 
related to pH and the available Cd in contaminated soils 
significantly increases with the pH decrease [11-12]. 
Dai et al. [15] conducted an experiment and determined 
the effects of different soil pH (from 4.83 to 7.84)  
on B. pilosa phytoextracting Cd in soil. The results 

demonstrated that the extractable Cd concentration in 
soil was significantly decreased with the increase of pH. 
Li et al. [20] denoted that lower pH values favored the 
transformation of crystalline Fe oxides into a poorly-
crystallized and organically-complexed phase, which 
facilitates Cd accumulation in coarser aggregates 
and enhances Cd mobility in paddy soils. The results 
aforementioned were consist with this study. At lower 
pH, the negative charges on the surface of clay minerals, 
hydrated oxygen and organic matter decreased, then the 
soil specific adsorption of Cd reduced. This explains 
why the concentration of exchangeable Cd and organic 
complex Cd increased at pH 4.0 and 5.5, while the 
particulate bound-Cd with soil clay minerals, oxides 
and residue were the main fractions in neutral and 
alkaline soil. Compared with amorphous, crystalline 
and the organic complex-bound Cd in soil is not stable 
and might dissociate and release Cd2+ once the soil pH 
decreased [16]. Otherwise, the increased concentration 
of H+ in lower pH was apt to have competition for Cd2+, 
so the concentration of exchangeable Cd increased 
and the residue Cd significantly reduced. Overall, 
soil acidification facilitated the transformation of 
relatively stable particulate-bound Cd to unstable and 
exchangeable Cd fractions.

Besides the acidification of soil, root exudate, 
including low-molecular-weight acid, polysaccharide, 
and other rhizosphere substances, can accelerate 
the dissolution of soil minerals and heavy metals in 
rhizosphere soil [9, 20]. One study determined that 
the hyperaccumulator had a certain acidification effect 
on the rhizosphere soil and the pH of rhizosphere was 
basically 0.2 lower than that in bulk soil, accompanied 
by the activation of Cd [15]. Li et al. [11] indicated that 
adjusting pH from alkaline to slightly acidic enhanced 
the rhizosphere effect on solubility of trace metals. 
The concentration of residual Cd in rhizosphere is 
lower than that of bulk soil, and the effect of roots in 
transforming residual speciation to organic-complex 
and other speciation might be attributed to the 
activation of organic acids from roots and microbes 
[22]. As Li et al. [23] pointed, the concentration of 
small molecular organic acids and weak organic 
complex compound, such as fulvic acid and humic acid 
complex Cd increased in the rhizosphere soil. They 
also believed that H2CO3 released from root respiration 
and the organic acids in rhizosphere can promote the 
dissolution of carbonate Cd and reduce the iron and 
manganese oxides and residual fractions.

Dry Biomass of Plants

The dry biomass of upper plants was exhibited in 
Fig. 2. As can be seen from the figure, the aboveground 
biomass of plants was significantly smaller at pH 4.0 
than the other pH values (except S. alfredii, p<0.05). 
Compared with that of the original soil at pH 6.8,  
the biomass decreased by 56.1%, 33.7% and 48.3% for 
S. sarmentosum, R. Beta vulgaris, and G. Beta vulgaris, 
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respectively at pH 4.0. Pot experiment also showed 
that plants had different degrees of withering and 
defoliation, with the roots obviously underdeveloped 
and no fine roots for this treatment, except S. alfredii. 
Compared with other plants, S. alfredii exhibited strong 
vitality characteristic during the entire growth cycle, 
and the dry biomass of it is always the largest at all pH, 
while S. sarmentosum is the converse.

Amount of Cd Uptake by Plants

The concentration of Cd uptake by plants were 
showed in Table 2. Results indicated that there were 
significant differences of Cd concentration in the four 
plants (p<0.05), during which the bioaccumulation 
characteristic of S. alfredii and R. Beta vulgaris were 
found. Concentration of Cd in S. alfredii significantly 

Fig. 1. Amount of Cd fraction in bulk and rhizosphere soil at different soil pH.
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increased at the same pH (p < 0.05) and denoted the 
admirable accumulation ability of Cd. With regard to the 
other non-hyperaccumulating plants, S. sarmentosum 
and G. Beta vulgaris, they could grow under the stress 
environment as well and indicated they had certain 
tolerance to Cd. However, their ability to accumulate 
Cd was obviously weaker than the corresponding 
hyperaccumulators. Furthermore, Cd accumulation in 

the plants was higher in acidic soil than in the alkaline 
or neutral soil. 

Our results were consistent with other studies. Dai et 
al. [15] showed that the Cd concentrations in B. pilosa 
were significantly higher for pH 4.83 treatment than 
those of pH 6.81 and 7.84 ones and the Cd concentration 
of B. pilosa grown in pH 7.84 soil was significantly 
lower than that in pH 6.81 soil. When soil pH increased, 

Fig. 2. Dry biomass of aboveground at different soil pH.
Different lowercase letters of the same plant indicate that the significant variation of biomass at different pH treatments (p<0.05, n = 4) 

Table1. Multi-step selective sequential extraction scheme for particulate-bound Cd fraction.

Step Fractions Reagent Shaking time and temperature

1 Exchangeable 5 mL of 1.0 M NH4NO3, pH 7 4 h, 25ºC

2 Specifically-adsorbed 12.5 mL of 1.0 M NaOAc, pH 5 6 h, 25ºC

 3* Fulvic acid- bound 
15 mL of 0.1 M Na4P2O7, pH 10 20 h, 25ºC

Humic acid- bound

4 Easily reducible oxide-bound 10 mLof 0.1 M NH2OH·HCl, pH 5
 (in 0.01 M HNO3)

0.5 h, 25ºC

5 Organic-bound

1) 2.5 mL of 30% H2O2 (pH 2),
1.5 mL 0.02 M HNO3,

2) 1.5 mL of 30% H2O2 (pH 2),
0.5 mL 0.02 M HNO3,

3) cool, 5 mLof 2.0 M NH4NO3, pH 7 
(in 20% HNO3)

2 h, 85ºC
2 h, 85ºC

0.5 h, 25ºC

6 Amorphous mineral colloid-bound 5 mL of 0.2M (NH4)2C2O4/0.2 M H2C2O4, pH 3 4 h, 25ºC (dark)

7 Crystalline iron oxide-bound 12.5 mL 0.2M(NH4)2C2O4/0.2 M H2C2O4, pH 3 
(0.1M ascorbic acid) 0.5h, 95ºC

8 Residual Digestion with HNO3-HF-HClO4

* 15 mL of 0.1 M Na4P2O7 extract was brought to pH 1.0 with the addition of 6 M HCl, then the suspension was left overnight for 
the coagulation of Humic acid. The suspension was centrifuged for 10 min (12000g), and the Fulvic acid-bound Cd was determined 
in the supernatant. 0.1 M Na4P2O7 was added to the residue and the Humic acid -bound Cd was determined in the solution.
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a reduced pool of bioavailable Cd in rhizosphere soil 
coupled with an increased Cd retention by Fe plaque 
and an inhibited Cd transfer was determined, which was 
proposed to be largely responsible for the significant 
reduction of Cd in rice [24-25]. As described above, 
there is an inverse relationship between soil pH and the 
bioavailability of metals. Sun et al. [26] emphasized 
pH was negatively correlated with the exchangeable 
fraction of Cd and the accumulation in the rhizosphere 
soil of Little Hero Orange, Durango Yellow, and 
Konghuang Yellow. However, the acidity and alkalinity 
changing in soil had obvious effects on the growth and 
development of rape root system through simulated 
acidification tests. As withering and defoliation of the 
plants appeared at pH 4.0 in this study, the highest 
value of root activity appeared at about pH 6.1 and root 
system began to show signs of senescence as pH was 
lower than 5.8 [27]. Therefore, it should be alert that 
the restriction of plant growth and availability of heavy 
metals may simultaneously changed with pH and the 
reasonable level should be set with great circumspection. 
Furthermore, the amount of Cd accumulation  
in plants were attributed to the rhizosphere effects 
from different ecotype plants as well. Roots, especially 
for the S. alfredii in this study, can significantly alter 
the chemical concentration and distribution of Cd in 
rhizosphere soil. In comparison with other plants, 
the rhizosphere effects induced by hyperaccumulator 
S. plumbizincicola played an important role on the 
mobilization and the bioavailability of Cd, because of 
the larger root systems and higher acidification ability 
[28]. The exudation of greater amounts of DOC may 
also contribute to the promotion of Cd accumulation in 
hyperaccumulator, as denoted in our previous study and 
other researchers [5, 29].

Conclusions  

Soil pH and rhizosphere effects can change the 
particulate-bound Cd distribution in contaminated 

soil. With the increase of pH, exchangeable Cd 
gradually decreased and the amount of residual Cd 
increased significantly. Compared with the bulk 
soil, the exchangeable Cd in the rhizosphere of the 
bioaccumulator decreased due to the transfer of Cd 
from soil to root, while the humic and fulvic complex-
Cd increased as a result of rhizosphere effects.  
Despite the highest amount of Cd uptake at pH 4.0, 
pH 5.5 exhibited the optimum pH for plants growth 
and Cd accumulation. Furthermore, the biomass 
and uptake amount of Cd by Sedum alfredii and 
R. Beta vulgaris were higher than the corresponding 
non-hyperaccumulator plants Sedum sarmentosum 
and G. Beta vulgaris, and Sedum alfredii displayed 
the best capability. Overall, the decrease of pH and 
rhizosphere effects of hyperaccumulator could facilitate 
the activation of Cd and enhance the uptake efficiency 
significantly. 
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