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Abstract

The rapid expansion of cities has accelerated the impact of human activities on the ecological 
environment. Existing studies conducted quantitative evaluations of ecological environment quality 
through complex remote sensing image screening and processing. Dynamic monitoring and modeling 
based on cloud platform programming are still lacking at present. This paper evaluated the quality of the 
ecological environment in Xi’an in 2000, 2005, 2010, 2015, and 2020 using the remote sensing ecological 
index (RSEI) model. We selected high-quality remote sensing images based on the Google Earth Engine 
platform (GEE). The calculation of four indicators and the Principal Component Analysis (PCA) were 
performed on the platform using JavaScript. The geodetector model was used to detect factors affecting 
the spatial differentiation of RSEI. The results showed that: (1) The ecological environment quality of 
Xi’an city during 2000-2020 showed a temporal trend of decreasing and then increasing, and a spatial 
trend of north-low and south-high. The RSEI value for Xi’an was 0.665 in 2000, 0.653 in 2005, 0.623 in 
2010, 0.644 in 2015, and 0.651 in 2020. (2) The Bad level and Fair level of RSEI were mainly distributed 
in the city’s built-up area, and RSEI values were better in the Qinling Mountains. From 2000 to 2020, we 
found the deterioration areas of RSEI mainly distributed in the Weiyang, Baqiao, Yanliang, Chang’an, 
and Huyi districts. The improvement areas were mainly distributed in the southeastern mountains.  
(3) From the geodetector results, elevation (DEM), slope (SLO), precipitation (PRE), temperature 
(TEM), distance to main roads (ROA), distance to settlements (SET), land use/land cover (LUC), GDP, 
and population (POP) significantly influenced the regional RSEI spatial differentiation. The rankings of 
the explanatory power of the single factors were mainly: PRE>TEM>DEM> ROA>LUC>SLO>GDP> 
SET>POP. PRE has the strongest explanatory power of the nine factors. (4) Positive spatial auto 
correlation existed for the RSEI values in Xi’an. The Moran’s I was 0.513 in 2000, 0.659 in 2005, 0.749 
in 2010, 0.716 in 2015, and 0.631 in 2020, respectively. The Local Moran's I of RSEI values showwd  
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Introduction

Ecological environment quality comprehensively 
represents ecosystem elements, structure, and function 
in a specific time and space [1]. An excellent ecological 
environment background plays a critical role in 
achieving regional sustainable social and economic 
development [2]. With increasing human activities, 
urbanization brings inevitable adverse effects such as 
“urban ecological degradation” [3]. The contradiction 
between population, resources, and environment 
is becoming more and more prominent, and the 
construction of ecological cities has become a hot topic 
of discussion in today’s society [4]. As an emerging 
concept, building an ecological city has gradually 
become a hot topic in the urban planning field [5]. With 
the accelerated urbanization, not only the ecological 
environment quality inside the urban area degraded, 
but also the cropland quality around the urban area 
declined, the productivity of the vegetation reduced, 
and the phenomenon of land salinization even occurred 
[6-8]. Assessing the quality of the urban ecological 
environment, understanding the ecological environment 
condition, and grasping its change law help promote 
the sustainable development of the regional economy 
and have important practical significance and reference 
value for the construction of urban ecological 
civilization [9]. 

There are two commonly used methods for 
monitoring and evaluating ecological environment 
quality, the single indicator method and the multiple 
indicator method. The single indicator method focuses 
on constructing indices responding to one particular 
aspect of the ecosystem. The Normalized Difference 
Vegetation Index (NDVI), the Leaf Area Index (LAI) 
and the Enhanced Vegetation Index (EVI) are used to 
reflect vegetation cover changes in ecological studies 
[10-12]. The land surface temperature (LST) metric 
is used for surface temperature inversion and can 
measure the urban heat island effect [13]. Remote 
sensing technologies can also evaluate water quality, 
atmosphere pollution, etc. [14, 15]. For more complex 
study areas, the impact of multiple indicators needs to be 
considered comprehensively. Scholars should consider 
the comprehensive effects of multiple indicators’ 
impact in complex environments. The Chinese State 
Environmental Protection Administration proposed the 
Ecological Environment Index (EI) that couples the 
biological richness index, environmental index, water 
network density index, vegetation cover index, and land 
degradation index [16]. The statistical data in the multi-
indicator evaluation methods are challenging to obtain, 

and the index weights are disturbed by human factors, 
which has certain limitations [17].

Remote Sensing Ecological Index (RSEI) is a 
regional ecological environment evaluation index 
proposed by Xu et al. based on remote sensing 
technology [17]. The construction of this index 
integrates four remote sensing ecological indexes of 
greenness, humidity, dryness, and heat [18]. The RSEI 
excludes the influence of subjective factors and makes 
up better for the shortcomings of research methods such 
as the EI, fuzzy assessment method, and comprehensive 
index [19]. Researchers widely used the RSEI model to 
evaluate the ecological status of different regions such 
as cities, deserts, wetlands, river and lake basins, nature 
reserves, minings, soil erosion areas, etc. [20-27]. RSEI 
can reveal the ecological environment status between 
regions, which makes up for the previous single-
time section study’s shortage and helps quantify and 
understand the regional ecological environment more 
deeply. Therefore, it provides a more intuitive decision 
basis for guiding the region to improve the ecological 
environment and perform ecological functions [28]. 
The traditional method requires a personal computer to 
preprocess the remote sensing images for atmospheric 
correction, radiometric correction, and seamless mosaic 
before use. When the study area is large, with many 
bad pixels, such as clouds, researchers will waste 
much time on the preliminary preparation. The Google 
Earth Engine platform provides an extensive archive 
of historical remote sensing data and cloud computing 
services, based on JavaScript language programming, 
making research on large-scale scales possible [29]. 
The GEE platform has been used to detect the dynamic 
changes of RSEI in highly geohazard susceptible zones, 
mountain ranges, river basins, and urban agglomerations 
[30-34]. Our research used JavaScript language to 
process the data on the cloud server, saving much time 
than using, e.g., ENVI software. Besides, the approach 
is easy to generalize. When using the Landsat series’ 
data, scholars can well solve the problems of large cloud 
volume and wide range in the study area.

Xi’an is an important central city in western China 
and an essential base for scientific research, education, 
and industry. Since the Western Development Strategy 
in 2000 and officially becoming a national central 
city in 2018, the economic development of Xi’an has 
produced dramatic changes and a vast expansion of 
the city’s form. Xi’an is located in the northwest inland 
ecologically fragile area [35]. The study of regional 
ecological environment quality changes is essential 
for identifying urban ecological security patterns, 
local and regional ecological management, and policy 

H-H and L-L clustering. This study provides significant information to identify ecologically fragile 
urban areas and support ecological environment policymaking.
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formulation. Yue et al. studied the ecological quality 
changes of 35 Chinese cities from 1990 to 2015 using 
RSEI and identified Xi’an as a city with declining 
ecological quality [36]. However, the remote sensing 
images they selected was imaged in November, when 
the vegetation cover in Xi’an was not the maximum, 
which would affect the NDVI worthy weights. Besides, 
the surface temperature inversion could not accurately 
reflect summer’s urban heat island phenomenon. Zhu 
et al. constructed an integrated ecological index using 
remote sensing images of Xi’an from 1992 to 2014 
to explore the effects of the soil adjusted vegetation 
index (SAVI), the normalized difference moisture 
index (NDMI), the normalized difference soil index 
(NDSI), and the normalized difference built-up index 
(NDBI) on LST. Still, his study did not further explore 
the mechanism of the spatially divergent effects of the 
index [37]. 

This paper processed remote sensing images of Xi’an 
city from July to September 2000 to 2020 using the 
Google Earth Engine platform. The authors calculated 
the RSEI values and area changes and detected the 
influence of natural and social factors affecting the 
spatial differentiation of RSEI using the geodetector 
model. This paper explores a fast measurement of urban 
ecological environment quality and the influencing 
factors to provide a basis for regional ecological 

environment evaluation and environmental remediation 
policy formulation.

Material and Methods

Study Area

Xi’an (107.40°E-109.49°E, 33.42°N-34.45°N) 
is located in the central part of Guanzhong Plain, 
bordering the Wei River in the north and the Qinling 
Mountains in the south, with a total area of 10,108 
square kilometers. The terrain of Xi’an shows low and 
flat in the north and mountainous in the south. The plain 
area of Xi’an is a semi-humid continental monsoon 
climate of warm temperate zones. The annual average 
temperature is 13.0-13.7ºC, and the annual precipitation 
is 522.4-719.5 mm. According to the seventh census 
data, by November 1, 2020, the permanent resident 
population of Xi’an was 12,952,907. The GDP of Xi’an 
was 1002.039 billion CNY in 2020. In the Development 
Plan of Guanzhong Plain Urban Agglomeration, Xi’an is 
approved by the State Council of China as an important 
central city in the western region of China. It includes 
13 districts (counties), Lianhu, Xincheng, Beilin, 
Yanta, Weiyang, Baqiao, Yanliang, Gaoling, Chang’an, 
Lintong, Lantian, Huyi, and Zhouzhi (Fig. 1).

Fig. 1. Study area: Location map of Xi’an, China.
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Data and Preprocessing

This study acquired the elevation data from the 
Geospatial Data Cloud (http://www.gscloud.cn) and 
the administrative divisions’ data from the National 
Basic Geographic Database of the Chinese National 
Geographic Information Resource Directory Service 
System (https://www.webmap.cn). The land use type 
data and GDP density raster data were obtained from 
the Resource and Environment Science and Data 
Center of the Chinese Academy of Science (https://
www.resdc.cn). The population density raster data 
were obtained from the WorldPop project (https://www.
worldpop.org). In this paper, the “LANDSAT/LT05/
C01/T1_SR” datasets of the Landsat 5 TM satellites 
and the “LANDSAT_LC08_C01_T1_SR” datasets of 
the Landsat 8 OLI satellites were selected, respectively. 
The Landsat series surface reflectance (SR) datasets 
have been geometrically corrected, atmospherically 
corrected, and radiometrically calibrated, with a spatial 
resolution of 30 m and a temporal resolution of 16 days. 
Based on the Quality Assessment (QA) band in the 
SR datasets provided by the GEE platform, this paper 
used the “CFMASK” function to remove clouds. The 
process collects all remote sensing images from July 
to September in the target year and the year before and 
after and then replaces the identified bad pixels with 
transparent sky pixels without cloud coverage. The 

MNDWI was used to identify water bodies in the area 
to reduce the influence of water bodies on the results 
[38]. The crop growing season around Xi'an city is from 
July to September, and crop growth strongly influences 
regional NDVI and NDBSI. Among the years selected, 
there were many clouds in remote sensing images 
of this period in 2000, 2005, 2010, 2015, and 2020. 
Contemporaneous images of neighboring years (the 
previous and the following year) were chosen and 
performed median processing to fill the gaps [39]. 

Remote Sensing Ecological Index Model

RSEI Metrics Extraction

The Remote Sensing Ecological Index (RSEI) model 
is based on remote sensing information [28]. The model 
is established considering the vegetation growth state, 
soil moisture, soil dryness, building land condition, and 
surface temperature. Normalized Difference Vegetation 
Index (NDVI) is selected as the greenness index, and 
Wetness (WET) is selected as the moisture index after 
tassel hat transformation. Land Surface Temperature 
(LST) is selected as the heat index, and the Normalized 
Difference Built-up and Soil Index (NDBSI), the 
composite result of Soil Index (SI), and Index-based 
Built-up Index (IBI) are selected as the dryness index 
(Table 1). The RSEI is expressed as follows [40]:

Table 1. Formula and explanation of four indexes of RSEI model.

Index Formula Explanation

NDVI
Where NDVI is taken in the range [-1,1]. ρNIR is 
the reflection value in the NIR band, and ρRed is 

the reflection value in the red band.

WET

 
Where ρBlue, ρGreen, ρRed, ρNIR, ρSWIR1, ρSWIR2 denote 

the blue, green, red, near-infrared, and short-
wave infrared 1 and 2 bands, respectively [41, 

42].

LST

Where λ is the wavelength of the emitted 
radiance (11.435µm for brand 6 of Landsat 5 
and 10.9µm for band 10 of Landsat 8); ρ is a 

constant (1.438×10−2 m K); ε is the land surface 
emissivity [43, 44]; Tsensor is the at-satellite 

brightness temperature in Kelvin; Lλ is the at-
sensor spectral radiance; Gain and Bias are the 
band gain and offset values, respectively; DN 
represents the digital number of a given pixel; 
K1 and K2 are calibration parameters [36, 45].

NDBSI Where SI and IBI represent Soil Index and 
Building Index, respectively [28].
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     (1)

where NDVI, WET, LST, NDBSI represent the 
greenness, wetness, heat, and dryness, respectively.

Comprehensive Index Construction

Principal Component Analysis (PCA) can transform 
multiple variables into a few crucial variables by a 
linear transformation, eliminate redundant information, 
and obtain a comprehensive index that concentrates 
most of the characteristics of the original index. Each 
index measure unit is not unified and needs to be 
normalized by the formula as follows:

                             (2)

where NIi is the normalized index value in the range of 
[0, 1], Ii is the index value at pixel i, and Imax and Imin 
are the maximum and minimum values of the index, 
respectively.

Principal component calculations of RSEI indicators 
were performed using the normalized indicators, and 
the results were similarly normalized as follows:

               (3)

where larger value stands for better ecological 
environment quality condition, and con-versely, the 
lower, the worse.

Geodetector Model

Geodetector can detect whether a particular factor 
effectively affects the spatial distribution of a specific 
type of indicator, including four types of detectors: 
factor detector, interaction detector, risk detector, and 
ecological detector [46]. Geodetector was widely used 
in the  evaluation of spatial variation in ecological 
quality [47, 48]. In this paper, the authors introduced 
the factor detector to explore the influence mechanism 
of the spatial distribution of each influencing factor. 
It is used to detect the spatial heterogeneity of remote 
sensing indices, i.e., the degree of influence of a 
particular factor X on the spatial heterogeneity of each 
remote sensing index Y in the RSEI model. The q value 
measures the influence degree, and the larger the q 
value is, the more noticeable the influence of X on the 
spatial heterogeneity of Y, which can be expressed as:

             (4)

where h = 1 ,..., L is the stratification of the ecological 
index value influence factor, Nh and N are the number 

of cells in stratum h and the whole area, respectively; 
σh

2 and σ2 are the variances of Y value in stratum h and 
the whole area, respectively; SSW, SST are the sum 
of variance within a stratum and the total variance of 
the whole area, respectively. Suppose the independent 
variable X generates the stratification. In that case, the 
larger value of q indicates the stronger explanatory 
power of factor X on Y; on the contrary, the power is 
weaker [49].

Spatial Autocorrelation Analysis

Spatial auto-correlation is an vital indicator for 
testing the correlated significance of attribute value 
of an ecological index with the attribute value of its 
adjacent space [50]. The Global Moran’s I (Moran’s I) 
index reflects the correlation of attribute values of 
adjacent spatial units [51]. The Global Moran’s I can be 
calculated as follows [52]:

 (5)

where wij, xi, xj, μ and N indicate the normalized 
weights, RSEI value in the ith pixel, RSEI value in the jth 
pixel, mean RSEI value of the study area, and the total 
number of pixels, respectively.

Local Moran’s I (LISA) index can effectively reflect 
the correlation between the ecological environment 
quality of each grid unit in the study area [53].  
The calculation formula is as follows:

    (6)

where the calculation parameters are the same as the 
Moran’s I index. LISA cluster map has five types of 
local spatial aggregation, namely High-High (H-H), 
Low-Low (L-L), Low-High (L-H), High-Low (H-L), and 
No Significant.

Results and Discussion

PCA Results of the Four Indicators

Table 2 shows the results of the principal component 
analysis of four indicators in Xi’an. The contribution 
rates of PC1 in the five years were 77.76%, 83.04%, 
79.86%, 90.81%, and 88.25%, respectively, indicating 
that the PC1 concentrated most of the information of 
the four indicators: NDVI, WET, LST, and NDBSI.  
The eigenvectors of NDVI and WET were positive,  
and the eigenvectors of LST and NDBSI were negative. 
This result is consistent with objective facts and 
other studies. In 2000 and 2010, the absolute value 
of the eigenvector of NDVI was the highest, and 
the eigenvector of NDBSI followed. In 2005, 2015,  



Yang S., Su H.932

and 2020, the absolute value of the eigenvector of 
NDBSI rose to the highest. The absolute value of 
the eigenvector of WET remains the lowest, and the 
absolute value of LST remains the third place for five 
years. The NDVI and NDBSI affected the RSEI value 
the most of the four indicators.

As the average RSEI value is 0.647 for the periods, 
Xi’an’s ecological environment remains suitable for 
20 years. According to the average value of RSEI, the 
ecological quality of Xi’an showed a trend of decreasing 
and then increasing. The RSEI value was 0.665 for the 
year 2000, and the RSEI value dropped to 0.653 in 

2005, and the lowest, 0.623 in 2010, with a reduction of 
6.32%. The continued decrease remained until 2010; the 
RSEI value in 2015 rose to 0.644, and the RSEI value 
in 2020 was 0.651, the highest in the recent ten years. 
Table 4 shows the average values of four indicators of 
RSEI. From 2000 to 2010, the average value of NDVI 
decreased from 0.680 to 0.635, which shows the most 
significant decline of the four indicators, and in 2015, 
the NDVI value rose to 0.698, with an increase of 
9.92%. The NDVI value remained almost constant in 
2020. The average value of WET decreased slightly in 
2005, reduced by 0.007, and rose to its highest, 0.699, 

Table 2. Principal component analysis indexes of RSEI.

Year Indicator PC1 PC2 PC3 PC4

2000 NDVI 0.566 -0.077 -0.641 -0.513

WET 0.408 -0.224 0.756 -0.461

LST -0.444 -0.865 -0.134 -0.193

NDBSI -0.562 0.444 0.009 -0.698

Eigenvalue 0.150 0.024 0.017 0.002

Contribution rate 77.76% 12.38% 8.80% 1.07%

2005 NDVI 0.566 0.506 -0.360 0.542

WET 0.388 -0.764 0.232 0.461

LST -0.454 -0.322 -0.793 0.248

NDBSI -0.568 0.240 0.433 0.657

Eigenvalue 0.165 0.022 0.009 0.002

Contribution rate 83.04% 11.31% 4.68% 0.97%

2010 NDVI 0.592 0.512 -0.423 0.457

WET 0.319 -0.758 0.130 0.554

LST -0.507 -0.233 -0.814 0.164

NDBSI -0.539 0.332 0.377 0.676

Eigenvalue 0.182 0.030 0.013 0.003

Contribution rate 79.86% 13.20% 5.69% 1.26%

2015 NDVI 0.545 0.112 -0.707 -0.436

WET 0.432 -0.568 0.528 -0.461

LST -0.434 -0.772 -0.465 0.012

NDBSI -0.573 0.263 0.077 -0.773

Eigenvalue 0.235 0.015 0.008 0.001

Contribution rate 90.81% 5.80% 3.11% 0.28%

2020 NDVI 0.514 0.230 -0.593 0.576

WET 0.382 -0.522 0.594 0.478

LST -0.409 -0.746 -0.507 0.142

NDBSI -0.650 0.344 0.200 0.648

Eigenvalue 0.255 0.023 0.009 0.002

Contribution rate 88.25% 8.02% 3.16% 0.57%
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in 2015. The average value of LST and NDBSI both 
showed a decreasing trend followed by an increasing 
trend from 2000 to 2020. The highest average value of 
LST was 0.503 in 2005, and the highest NDBSI value 
was 0.382 in 2010.

Spatial Distribution of RSEI in Xi’an

Overall Evaluation of Ecological Environment Quality 
of Xi’an

According to Xu’s research, we classified the 
RSEI value into five levels: Bad (0-0.2), Fair (0.2-0.4), 
Moderate (0.4-0.6), Good (0.6-0.8), and Excellent  
0.8-1). Table 5 shows the proportion of each grade of 
RSEI in 2000, 2005, 2010, 2015, and 2020, respectively. 
The Good and Excellent level area covered more than 
50 percent of the total land area. The area of Bad level 
of RSEI continuously increased from 2000 to 2020. 
In 2000, the Bad level area covered 597.20 km2, and 
the number rose to 1081.30 km2 in 2020. The area of 
Fair level was 1597.68 km2 in 2010 and thus causing 
the lowest RSEI value. The area of Moderate was the 
smallest of the twenty years in 2015, while the Good 
level area decreased by 58.09 km2 compared to 2010. 
The Excellent level area showed an upward trend, rising 
from 3518.87 km2 in 2000 to 4480.71 km2 in 2020. 

Fig. 2 shows the spatial distribution of RSEI values 
in Xi’an from 2000 to 2020. In 2000, the Bad level 
and Fair level of RSEI were mainly in the city’s built-
up area and the hills in Lintong District and Lantian 
County next to the urban area. The ecological quality 
of the Qinling Mountains in the south was quite good. 

A large amount of cultivated land surrounds the central 
metropolitan area of Xi’an and contributes a lot to the 
good ecological quality. In 2000, the area of Bad level 
only covered 6.07% of the total area, and the number 
increased rapidly as fast as the urbanization of Xi’an 
in the past decades. In 2005, the proportion of Bad 
levels increased to 7.05% of the total area. A sharp 
decline in the RSEI level occurred in the Weiyang and 
Gaoling Districts, two districts on the northwest side 
of Xi’an’s main urban area, next to Xianyang City. The 
RSEI in Yanliang District also decreased because of 
the expansion of the impervious surface area. In 2010, 
the Bad level area reached 9.12%, and the Moderate 
level and Good level decreased to 15.58%, 16.84%, and 
20.18%, respectively. The Fair level area’s proportion 
reached 15.58%, the highest of the five years. The area 
of Bad level area in 2020 was 193.88km2 larger than 
in 2015, with an increase of 1.8%. The area of Fair 
and moderate slightly decreased by 1.06% and 1.87%, 
respectively. The Excellent level area increased by 
402.12 km2 from 2015 to 2020, and the proportion rose 
to 44.51%.

Dynamic Changes of RSEI in Xi’an 
from 2000 to 2020

As mentioned above, the RSEI images of 2000, 
2005, 2010, 2015, and 2020 were reclassified into five 
levels. By overlapping and subtracting the RSEI level 
maps after reclassification, we can obtain the change 
levels of RSEI between different years as +4, +3, +2, 
+1, 0, -1, -2, -3, and -4 (Fig. 3). The five categories of 
RSEI changing levels were recognized as Obvious 

Table 3. Average value of RSEI indicators.

Year NDVI WET LST NDBSI RSEI

2000 0.680 0.633 0.499 0.360 0.665

2005 0.658 0.626 0.503 0.354 0.653

2010 0.635 0.657 0.475 0.382 0.623

2015 0.698 0.699 0.469 0.379 0.644

2020 0.698 0.680 0.483 0.349 0.651

Table 4. The proportion of each grade of urban ecological environment quality of Xi’an.

RSEI Level
2000 2005 2010 2015 2020

Area
(km2)

Pct.
(%)

Area
(km2)

Pct.
(%)

Area
(km2)

Pct.
(%)

Area
(km2)

Pct.
(%)

Area
(km2)

Pct.
(%)

Bad/(0-0.2) 611.42 6.07 708.58 7.05 918.98 9.12 914.34 9.21 1108.22 11.01

Fair/(0.2-0.4) 951.63 9.45 1013.85 10.08 1597.68 15.58 1345.83 13.56 1258.24 12.50

Moderate/(0.4-0.6) 1621.89 16.10 1729.07 17.20 1696.68 16.84 1607.95 16.20 1442.68 14.33

Good/ (0.6-0.8) 3392.75 33.68 3114.15 30.97 2033.99 20.18 1975.90 19.91 1777.86 17.66

Excellent/ (0.8-0.1) 3495.42 34.70 3488.33 34.70 3829.76 38.00 4079.50 41.11 4481.62 44.51
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Improvement (+4, +3), Slight Improvement (+2, +1), 
Constant (0), Slight Deterioration (-1, -2), and Obvious 
Deterioration (-3, -4). Table 5 showed the details of 
reclassification. we divided the overall RSEI changes 
into nine levels. The five categories of RSEI changing 
levels were recognized as Obvious Improvement (OI), 
Slight Improvement (SI), Constant, Slight Deterioration 
(SD), and Obvious Deterioration (OD). Table 5 shows 
the statistics of area and proportion changes in RSEI 
levels. 

From 2000 to 2020, the urban ecological pattern of 
Xi’an changed dramatically (Fig. 3). The Deterioration 
level area from 2000 to 2010 was mainly distributed 
around the urban area of Xi’an. The main area of Xi’an 
expanded to the north and west during this decade. In 
2006, the Xi’an city government moved from Lianhu 
District to the Weiyang District, which led to rapid 
urbanization in the northwestern part of the city. Many 
Deterioration level areas were located in the northwest 
corner of the city. Besides, Improvement level areas 

Fig. 2. Spatial distribution of RSEI values in Xi’an from 2000 to 2020.

Table 5. Area and proportion changes of RSEI levels from 2000 to 2020.

Year
Obvious 

Improvement
Slight 

Improvement Constant Slight 
Deterioration

Obvious 
Deterioration

level +4 +3 +2 +1 0 -1 -2 -3 -4

2000 
to 

2005

Area/ km2 0.25 20.03 267.77 1777.70 5681.31 1797.52 355.29 110.20 17.40

Change area/ km2 20.28 2045.47 5681.31 2152.81 127.60

Percentage/ % 0.20 20.40 56.66 21.47 1.27

2005
to 

2010

Area/ km2 0.33 7.96 92.80 1422.14 6102.42 1837.78 476.21 93.31 3.99

Change area/ km2 8.29 1514.94 6102.42 2313.99 97.31

Percentage/ % 0.08 15.09 60.80 23.05 0.97

2010 
to 

2015

Area/ km2 1.62 45.12 416.88 2040.28 5909.72 1141.6 390.38 105.21 5.62

Change area/ km2 46.74 2457.15 5909.72 1531.55 110.84

Percentage/ % 0.46 24.43 58.77 15.23 1.10

2015
to

2020

Area/ km2 5.89 71.29 333.04 1501.61 6367.09 1444.16 280.86 47.82 2.35

Change area/ km2 77.18 1834.66 6367.09 1725.02 50.17

Percentage/ % 0.77 18.25 63.33 17.16 0.50

2000
to

2020

Area/ km2 6.84 82.15 497.35 2236.21 4541.69 1420.81 795.65 383.50 77.87

Change area/ km2 89.00 2733.56 4541.69 2216.46 461.37

Percentage/ % 0.89 27.22 45.23 22.07 4.59
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were distributed on the city’s southeast side. After 
systematic ecological remediation, the vegetation cover 
of the area has increased significantly. The RSEI value 
in this area increased accordingly. From 2010 to 2020, 
the deterioration level area expansion appeared to be 
in a southwest and northeast direction. The Northwest 
part of the urban area stopped expanding because of 
the saturation of building land. The construction of 
green space in some areas along the river also resulted 
in higher RSEI values. With the increase of rural 
settlements and land for construction, RESI values 
in Yanliang District and Gaoling District continue to 
decrease. The Deterioration areas of RSEI were mainly 
distributed in the north, west, and south directions of 

Xi’an urban area, and the Improvement areas were 
primarily distributed in the southeastern mountains.

Detection and Analysis of Factors Influencing 
Ecological Environment Quality

Complex human activities and diverse environmental 
variables influence the changes in RSEI. Topographical 
factors are key factors affecting the intensity of human 
activities, and differences in elevation and slope lead 
to variations in the ecological environment quality 
[31]. Precipitation and temperature significantly affect 
the vegetation growth in the region, which directly 
leads to differences in NDVI values and further affects  

Fig. 3. Change detection of RSEI levels in Xi’an from 2000 to 2020.
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the measured RSEI [54]. The spatial differentiation of 
land use types directly influences the supply of ecosystem 
services and the expansion of human built-up areas 
and the construction of roads can significantly affect 
the regional ecological environment [55]. Accordingly, 
urban areas with various levels of development have 
different GDP and population densities, which also 
affect the spatial differentiation of RSEI [56]. Therefore, 
in this study, the RSEI in 2020 was selected as the 
dependent variable, and elevation, slope, average 
annual precipitation, average annual temperature, 
distance to main roads, distance to settlements, land 
use types, GDP, and population density were selected as 
independent variables concerning existing studies [57-
59]. All the nine influencing factors were reclassified 
using the natural breakpoint method. We used ArcGIS 
10.2 to generate a 3 km×3 km grid and sampled  
1129 sample points with the center of the grids. In the 
following, DEM represents the elevation of the region, 
SLO represents the slope, PRE represents the average 
annual precipitation, TEM represents the average 
annual temperature, ROA represents the distance to 
main roads, SET represents the distance to settlements, 
LUC represents the land use types, GDP represents 
the GDP density, and POP represents the population 
density.

The results of the single factor detection showed that 
the p values of all the impact factors were zero, which 
indicated that the influencing factors had significant 
effects on the spatial differentiation characteristics 
of RSEI (Table 6). The q-value of PRE remained the 
highest among other factors, indicating that annual 
precipitation significantly affects the spatial variation 

of RSEI in the region. The q-value of population 
density was the smallest. Mainly, the rankings were: 
PRE>TEM>DEM>ROA>LUC>SLO>GDP>SET>POP. 
The determinants of the interaction results were all 
higher than the independent determinants of the 
original 2 factors (Table 7). The spatial heterogeneity of 
ecological, environmental quality in Xi’an resulted from 
a single influencing factor and the combined effect of 
multiple factors interacting and then reinforcing each 
other. Therefore, all interaction items showed a bilinear 
enhancement. In terms of the explanatory power of the 
interactions of the two impact factors, the interactions 
of PRE ∩ ROA have the strongest explanatory power 
for the regional RSEI. This demonstrates the effect of 
the interaction of regional precipitation and distance 
to roads on the spatial distribution of RSEI. PRE had 
the strongest explanatory power for the interaction, 
followed by TEM, DEM, and ROA, in agreement with 
the single factor detection results. 

Spatial Autocorrelation Analysis of RSEI

To study the spatially divergent characteristics of 
the RSEI values in Xi’an from 2000 to 2020, we used 
Geoda software to calculate the Global Moran’s index 
and the Local Moran’ I index for the study area. We 
used a 3 km × 3 km grid to resample RSEI images of 
Xi’an in the five years. We used the default threshold 
value of 3.17 km in Geoda software as the search radius, 
generated the distance weight matrices, and performed 
the spatial autocorrelation analysis. The Local Moran’s 
I and the Global Moran’s I have the same spatial weight 
matrix. The scatterplots of Global Moran’s I are shown 

Table 6. Results of single factor detector.

Table 7. Detection results of interaction of influencing factors on RSEI.

Impact factor DEM SLO PRE TEM ROA SET LUC GDP POP

q-Statistic 0.4072 0.2538 0.5001 0.4095 0.3750 0.1848 0.3084 0.2105 0.0807

p-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ranking 3 6 1 2 4 8 5 7 9

Factors DEM SLO PRE TEM ROA SET LUC GDP POP

DEM 0.4072

SLO 0.4619 0.2538

PRE 0.5290 0.5350 0.5001

TEM 0.4313 0.4680 0.5277 0.4095

ROA 0.4656 0.4523 0.5451 0.4615 0.3750

SET 0.4562 0.3642 0.5379 0.4620 0.4514 0.1848

LUC 0.4403 0.3812 0.5234 0.4466 0.4429 0.3728 0.3084

GDP 0.4735 0.3515 0.5429 0.4708 0.4645 0.3393 0.3799 0.2105

POP 0.4175 0.2871 0.5187 0.4222 0.3915 0.2362 0.3409 0.2329 0.0807
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in Fig. 4. Moran’s I of these years were all above 0.5 
and passed the significance test (p ≤ 0.05). The Moran’s 
I was 0.513 in 2000, 0.659 in 2005, 0.749 in 2010, 0.716 
in 2015, and 0.631 in 2020, respectively, with the highest 
value in 2010. As shown in the figures, the scatter points 
are mainly distributed in the first and third quadrants, 
indicating that the ecological environment quality has  
a strong positive spatial correlation. 

The Local Moran’s I were calculated to identify 
the hot and cold spots of RSEI in Xi’an city. As shown 
in Fig. 5, the LISA cluster map offers a visual 
representation of the spatial distribution of the 
ecological security pattern of Xi’an city. The No 
Significant area was mainly distributed in the rural area 
around the central city. In contrast, the H-H clustering 
area was distributed primarily in the northern part of 
the city, and the L-L clustering area was distributed 
in the middle and east. In the L-L clustering area, the 
terrain is low and flat, and there were large impervious 
surfaces in the settlements, thus affecting the RSEI of 
the area. The H-H area was in the Qinling Mountains. 
The area has high vegetation cover and low human 
activities, the ecological protection red line area. In 
2000, 2005, and 2010, the L-L sample points were 
distributed in the urban area and the low vegetation-

covered mountains in the east. From 2010 to 2015, the 
L-L area in Xi’an showed a westward shift in the center. 
We used the Matlab 2020a to project the sample points 
to detect the relationship between RSEI and the four 
indicators of 2020 [60]. The 3D scatterplots are shown 
in Fig. 6. NDVI and WET contributed positively to 
RSEI, and LST and NDBSI contributed negatively to 
RSEI.

Driving Factors of RSEI Changes

RSEI, consisting of NDVI, WET, LST, and NDBSI, 
is a composite indicator, and its variation mechanism 
has become a hot spot for scholars [31]. In different 
study areas, due to the similar driving mechanisms,  
the trends of regional changes in ecological  
environment quality were significant due to the impact 
of human activities. As the regional population density 
and the impervious surface area grows, the RSEI showed 
a downward trend in Xiong’an New Area, China [61]. 
Such findings are consistent with Hang’s study, where 
in Nanjing City, China, the urbanization rate and RSEI 
evidenced a high negative correlation coefficient value 
[62]. The common method to examine the influencing 
factors of RSEI is the use of the correlation coefficient 

Fig. 4. Moran scatterplot of RSEI during 2000-2020.
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[63, 64]. This method is intuitive, and can directly 
identify the different factors with a high or low level 
of influence through plots [39, 65]. Urban population 
density, GDP per capita, land-use types, etc. all have 
significant positive or negative synergistic relationships 
with RSEI. To further investigate the driving factors 
of spatial divergence in RSEI, scholars have studied 
various regions using the geodetector model [56, 57, 
66]. There are differences in the extent of the study area 
due to the various unit scales of the geodetector. Still, 
the results are informative due to the similarity of the 
selected driving factors. Generally, the selected driving 
factors all significantly influence the spatial variation 
of ecological quality in the 5% interval [57]. And the 
driving forces of natural factors were generally greater 
than the driving forces of social factors [58, 59]. 

Although natural factors play a more pronounced 
role in the spatial variation of RSEI, the variation of 
RSEI in a region is mainly influenced by anthropogenic 

factors. In the regions after land remediation, the 
vegetation cover was significantly improved, and 
the soil moisture increased. This phenomenon was 
often found in abandoned mining areas and important 
ecological areas such as coastal zones and ecological 
reserves. In contrast, in rapid urbanization areas, the 
RSEI value decreased significantly due to the rapid 
expansion of the construction land, which triggers the 
heat island effect and the drying of urban land. As a 
rapidly urbanizing region, government of Xi’an should 
pay extreme attention to ecological changes and focus 
on ecological restoration during urban development.

Validation of LST Inversion Results

In this paper, we used Landsat datasets to obtain the 
30 m resolution surface temperatures for 2000, 2005, 
2010, 2015, and 2020 in the study area by inversion. The 
LST result that stands for heat index is a crucial factor 

Fig. 6. 3D scatterplots of NDVI, WET, NDSI, LST, and RSEI of the sampling points.

 
Fig. 5. LISA cluster map of the RSEI in Xi’an.
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in the analysis of the RSEI model. Therefore, accuracy 
validation is required. The surface temperature product 
of MODIS datasets (MOD11A2) has been widely 
used to measure regional-scale surface temperature 
characteristics [67, 68]. MOD11A2 data have a spatial 
resolution of 1 km and a temporal resolution of eight 
days. We screened the high-quality MOD11A2 data 
with the same study time in this paper. After we 
resampled the inversion Landsat surface temperature 
data to 1 km resolution, we compared them with the 
corresponding MOD11A2 data. After linear fittings, 
the inversion results of surface temperature in Xi’an 
for 2000, 2005, 2010, 2015, and 2020 fit well with the 
MOD11A2 datasets with the R2 of 0.70, 0.72, 0.77, 0.79, 
and 0.80, respectively. The LST results in this paper are 
in high agreement with the MOD11A2 products and can 
meet the accuracy requirements.

Geodetector Accuracy Analysis

Different grid sizes influenced the results of 
geodetector, which can produce scale effects [69]. We 
chose different sizes of grids of the geodetector for 
measurement, and the analysis of the results selected 
the best grid size for the study area. In this paper,  
3 km resolution and 5 km resolution grids were chosen 
for sampling in the research process. The results 
showed that the main impact factors of the two methods 
remain unchanged. However, differences emerge in 
the detection results of impact factors that had a more 
negligible impact on the ecological quality of the region, 
which indicated that the accuracy of the geographic 
detectors was relatively improved the smaller the grid 
and the more sampling points. Since the dependent 
variable of the geodetector needs to be discretized, and 
different discretization methods can lead to different 
results, this paper compares the results of two methods, 
quantile grading and natural breakpoint method [48]. 
In the geodetector model settings, the larger the q-value 
of the model results, the more reasonable the grading 
results are implied. Since the natural breakpoint method 
is based on the natural grouping of data and can 
maximize the differences between groups, the natural 
breakpoint method is finally chosen as the grading 
method in this paper.

Limitations and Future Perspectives

This study evaluated the urban ecological 
environment quality of Xi’an using the RSEI model 
based on the Google Earth Engine platform. Through 
our research, we further explored the spatial variation of 
urban ecological quality under the influence of natural 
and social factors. This paper presents an exploration 
direction for the RSEI model in the quick evaluation 
of urban ecological environment quality. However, 
this study has some limitations that need improvement 
in future research. Firstly, the cloud removal function 
provided by Google Earth Engine used in this paper 

can only mask a small number of clouds in the practical 
application process. Its effect has been poor for the 
year with more significant clouds. Secondly, the low 
resolution of some data in the geodetector affects the 
q-value of the final result. Thirdly, this paper only 
selected the greenness, wetness, heat, and dryness 
indexes to build the RSEI model. Habitat quality, land 
fragility index, air pollution index, and other reflecting 
indexes, should be considered in future studies.

Despite the above limitations, the RSEI model 
based on Google Earth Engine is a fast method that 
can dynamically monitor the quality of the regional 
ecological environment. We will use remote sensing 
data to build the improved RSEI model for cities in 
different natural and social environments. Further, we 
will focus on the long-time series of dynamic change 
characteristics of RSEI and its synergistic relationship 
with various factors. 

 Conclusions

In this paper, we used the Google Earth Engine 
platform to acquire high-quality remote sensing images 
of Xi’an from July to September 2000, 2005, 2010, 
2015, and 2020. We used the cloud removal function 
provided by the platform to mask the cloud layers. Also, 
we extracted remote sensing indexes such as greenness, 
humidity, dryness, and heat to construct the ecological 
index RSEI using principal component analysis.  
A geodetector model was used to detect the single 
factor explanatory power of eight factors and the degree 
of influence of multifactor interactions, which affect the 
spatially divergent characteristics of the urban RSEI. 
The specific conclusions are as follows.

(1) The results of the principal component analysis 
of the four indicator components of the RSEI model 
can detail the changes in urban ecological quality in 
Xi’an. The eigenvectors of the greenness and humidity 
indicators are positive and have a positive effect on 
the RSEI. In contrast, the eigenvectors of the heat and 
dryness indicators are negative and have a negative 
impact on the RSEI. The greenness and dryness indexes 
greatly influence the region’s RSEI, and the increase in 
vegetation cover and the decrease of surface dryness 
are fundamental reasons for the optimization of RSEI.

(2) The ecological environment quality of Xi’an 
city from 2000 to 2020 showed a temporal trend of 
decreasing and then increasing, and a spatial trend 
of mid-low and surround-high. The RSEI value for 
Xi’an was 0.665 in 2000, 0.653 in 2005, 0.623 in 2010, 
0.644 in 2015, and rose to 0.651 in 2020. The RSEI of 
2010 was the lowest. The RSEI values in the central  
built-up area of Xi’an, i.e., the “six urban districts,” have 
significantly decreased. The RSEI values around the 
settlements in the combined urban-rural areas have also 
degraded. The area of poor ecological quality in Xi’an 
increased from 597.20 km2 in 2000 to 1081.30 km2

in 2020, increasing 81.06%. The area with excellent 
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ecological quality shows a trend of increasing. In 2020, 
compared with 2000, the area increased by 986.20 km2, 
and the area of excellent quality was the smallest in 
2005, accounting for 34.70%. 

(3) Elevation (DEM), slope (SLO), precipitation 
(PRE), temperature (TEM), distance to main roads 
(ROA), distance to settlements (SET), land use/land 
cover (LUC), GDP, and population (POP) significantly 
influenced the regional RSEI spatial differentiation. The 
rankings of the explanatory power of the single factors 
were mainly: PRE>TEM>DEM>ROA>LUC>SLO>GD 
>SET>POP. All factors showed a bi-enhancement trend 
under the interaction from the multifactor interaction 
detection results. PRE has the strongest explanatory 
power for the spatially divergent characteristics of 
RSEI. PRE ∩ ROA is the highest interaction results. 

(4) The RSEI showed significant spatial 
autocorrelation in Xi’an city. The Global Moran’s I was 
0.513 in 2000, 0.659 in 2005, 0.749 in 2010, 0.716 in 
2015, and 0.631 in 2020, respectively, with the highest 
value in 2010. From the results of Local Moran’s I, 
the No Significant area was mainly distributed in 
the rural area around the central city. In contrast, the 
H-H clustering area was distributed primarily in the 
northern part of the city, and the L-L clustering area 
was distributed in the middle and east.
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