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Abstract

Strengthening agricultural carbon emissions (ACE) reduction is an inherent requirement to promote 
the integrated development of ecological greenery in the Yangtze River Delta (YRD), and it has 
a significant driving effect and benchmarking significance for China to achieve carbon peaking and 
carbon neutrality. Based on panel data of 41 cities in the YRD from 2001 to 2019, this study reveals the 
spatial and temporal evolution pattern of ACE and identifies the influencing factors through methods 
such as CV, SDE, ESDA and SDM. The results are summarized as follows: (1) the ACE in the YRD 
show a fluctuating downward trend, and the gap between cities tends to widen; (2) the YRD shows 
emission characteristics dominated by agricultural material input, with a proportion of over 50% over 
the years, followed by rice cultivation and livestock breeding with the lowest proportion. In addition, 
Jiangsu and Anhui have higher proportions, followed by Zhejiang, and Shanghai; (3) these cities with 
high ACE are mainly located in the northwest regions of the YRD, and those with low ACE are mainly 
located in the southeast regions of the YRD. Furthermore, cities in the YRD have a positive global 
spatial autocorrelation, and the local spatial agglomeration pattern has strong characteristics of stability 
and spatial dependence; (4) the agricultural economic development level has an inverted U-shaped 
effect on ACE in the YRD. Meanwhile, the total rural population, total power of agricultural machinery, 
and urbanization level have a significant positive impact, while the agricultural planting structure 
and trade openness level are not significantly affected, but the rural non-farm employment level have  
a significantly negative impact on ACE. SDM further supports the influence of various factors, and 
it can be found that the agricultural economic development level and trade openness level exhibit 
significant negative spillover effects.
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Introduction

Global warming caused by man-made greenhouse 
gases is a serious threat to human survival and 
development, and the formulation of relevant carbon 
reduction policies has gradually become an important 
issue for major countries in the world [1]. As the 
world’s largest emitter of greenhouse gases, China has 
made voluntary emission reduction commitments at 
international conferences and put them into practice, 
making an important contribution to the regulation and 
control of global greenhouse gases. President Xi Jinping 
attended the 75th United Nations General Assembly in 
September 2020, and proposed to strive to peak China’s 
carbon dioxide emissions by 3030 and achieve carbon 
neutrality by 2060, demonstrating the responsibility of  
a major responsible country [2].

Industry and services are the main sources of 
carbon emissions, but the boosting role of the rapid  
development of agriculture cannot be ignored [3]. Over 
the past 40 years of reform and opening up, China’s 
agricultural development has achieved remarkable 
results, and its grain production capacity has reached 
new heights, ensuring national food security [4]. 
However, China’s agricultural production mode is 
still dominated by decentralized management, with 
scattered agricultural land and excessive use of 
agricultural materials such as pesticides, fertilizers, and 
agricultural films, resulting in high energy consumption 
in agricultural production and a large amount of 
greenhouse gas emissions [5]. Some data show that 
China’s agricultural carbon emissions (ACE) account 
for 17% of the country’s total carbon emissions, far 
exceeding the global average [6]. Statistics from the 
Food and Agriculture Organization (FAO) of the United 
Nations show that in 2017, China’s ACE accounted for 
approximately 29.01% of Asia’s ACE and 12.54% of the 
world’s ACE [7]. Therefore, ACE reduction is not only 
related to the high-quality development of agriculture, 
but also directly affects the realization of China’s “dual 
carbon” goal. 

ACE are accompanied by agricultural development, 
run through all stages of human social development, 
and has become a key research topic in environmental 
science, agronomy, geography and other disciplines. 
Currently, relevant studies on ACE can be roughly 
divided into several categories. The first is the 
measurement and evaluation of ACE. For example, 
West and Marland conducted systematic research 
on the measurement of ACE in the USA, involving 
four dimensions: fertilizers, pesticides, agricultural 
irrigation and seed cultivation [8]. Johnson et al. 
believed that the ACE should involve five types of 
carbon emission sources in the agricultural production 
process: agricultural management activities, poultry 
farming, agricultural energy consumption, solid 
waste disposal and biomass burning. Based on this, 
they built a detailed index system to measure carbon 
emissions from agricultural production in the USA [9]. 

Lal systematically determined the carbon emissions 
generated by agricultural operations, pointing out that 
farming and irrigation were the most direct sources of 
ACE, and chemical fertilizers and pesticides were the 
most important indirect sources of ACE [10]. Thus, the 
diversification and complexity of agricultural production 
determine ACE diversity.

The second is the multi-dimensional relationship 
between ACE and agricultural economic growth. 
On the one hand, some studies investigate whether 
the environmental Kuznets curve (EKC) hypothesis 
exists between ACE and agricultural economic 
growth. For example, Managi was the first to discuss 
the EKC relationship between agricultural activities 
and greenhouse gases, and believed that agricultural 
technology innovation would have a long-term positive 
effect on reducing carbon emissions in the USA [11]. 
Based on the time series data of Sichuan province in 
China from 1997 to 2008, Li and Zheng found that the 
agricultural industry in Sichuan was in a stage of rapid 
development and had not yet reached the EKC inflection 
point [12]. Yan et al. found that China’s ACE had an 
“inverted-N” EKC relationship with double inflection 
points [13]. On the other hand, some scholars have used 
the Tapio model to analyze the decoupling relationship 
between ACE and agricultural economic growth. Xiong 
et al. explored the relationship between ACE and the 
agricultural economy in Hotan, China, and found that 
the decoupling index between the two presented a 
dynamic evolution process of “decoupling, hooking, and 
decoupling” [14]. Han et al. examined the decoupling 
relationship between agricultural carbon emissions and 
agricultural economic growth in 30 provinces in China, 
and found that Beijing, Shanghai, Guangdong and other 
eastern provinces were in a state of strong decoupling, 
whereas most central and western provinces had a low 
degree of decoupling [15]. Additionally, in-depth studies 
have been conducted on the causal relationship between 
ACE and agricultural economic growth. For example, 
Zhang et al. based on time series data of China’s major 
grain producing areas from 1996 to 2015, found that 
there was a two-way causal relationship between ACE 
and agricultural economic growth in the short and long 
term [16]. In general, the relationship between ACE and 
agricultural economic growth shows great heterogeneity 
in different regions and periods.

The third is an analysis of the factors that influence 
ACE. Most of the literature applies the Kaya identity, 
logarithmic mean Divisia index (LMDI) model, 
STIRPAT model, computable general equilibrium 
(CGE) model and other methods to conduct detailed 
research on the influencing factors. For example, 
using an improved Kaya identity, Li et al. found that 
economic development significantly increased China’s 
ACE, while agricultural subsidies could effectively 
reduce ACE [17]. Using LMDI model, Zhao et al. 
believed that a higher proportion of water and soil 
resources would lead to higher agricultural inputs 
and more ACE [18]. Nguyen et al. used the STIRPAT 
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analytical framework to examine the drivers of the 
ACE in major global economics. They found that  
trade openness and FDI inflows were beneficial for 
increasing ACE in the short run, but had negative 
effects in the long run [19]. Laborge et al. established  
a global CEG model to simulate and estimate the 
impact of current agricultural support measures on 
ACE, and found that coupled subsidies made ACE show 
an increase trend [20]. Additionally, some scholars 
have used econometric model methods such as quantile 
regression and geographically weighted regression  
to further explain the causes of ACE at the provincial 
scale in China [21, 22]. Overall, ACE is a complex 
formation process, and its dominant influencing factors 
may differ in different research areas and development 
stages. 

To summarize, there is abundant research on ACE, 
which lays a good foundation for the analysis in this 
paper, but there are still the following shortcomings: 
(1) in terms of research scale, most of them focus on 
the national or provincial level, while research on 
the perspective of urban agglomeration is relatively 
lacking. Although urban agglomeration plays a crucial 
role in China’s urbanization process, the contradiction 
between human and land is also extremely prominent. 
How to effectively reduce the carbon emission level of 
urban agglomerations has become the key to China’s 
regional carbon emission governance; (2) in terms of 
research content, existing studies mostly focus on how 
to measure ACE, but fail to reveal their spatial-temporal 
evolution characteristics, and ignore the spatial 
heterogeneity and inter-regional correlation effect of 
ACE. The spatial autocorrelation method can describe 
the spatial relationship and degree of correlation 
between any regional unit and its neighboring units 
through the spatial weight matrix. Therefore, the 
application of this method can clarify the degree 
of spatial correlation of ACE and reveal its spatial 
distribution pattern; (3) in terms of influence method, 
the traditional econometric method treats the research 
units as independent and homogeneous individuals, 
ignoring the spatial connection between neighboring 
units. However, by nesting the spatial and temporal 
effects, the spatial econometric model can clarify the 
direct and indirect effects of various factors on ACE.

The Yangtze River Delta (YRD) is one of the 
regions with the highest comprehensive strength in 
China. However, in the process of rapid urbanization of 
the YRD, ecological problems such as water pollution, 
climate warming, and deteriorating air quality are 
becoming increasingly serious. In addition, with the 
continuous accumulation of a large number of people 
in urban centers, the increasing demand for agricultural 
production and the intensification of urban-rural 
conflicts pose challenges to the sustainable development 
of agriculture. In view of this, this study takes the YRD 
as the research object, and first conducts an effective 
measurement of ACE of the 41 cities in China from 
2001 to 2019. Then, this paper also uses methods such 

as coefficient of variation (CV), standard deviation 
ellipse (SDE), and exploratory spatial data analysis 
(ESDA) to reveal the evolutionary characteristics of 
the spatial-temporal pattern of ACE. Finally, the main 
influencing factors are discussed in combination with 
the ordinary panel model and the spatial Dubin model 
(SDM) to provide certain decision-making thinking for 
promoting agricultural emission reduction and assisting 
the “dual carbon” goal.

Materials and Methods

Study Area

According to the “the Outline of the Yangtze River 
Delta Regional Integrated Development Plan” issued 
by the Central Committee of the Communist Party of 
China and the State Council in 2019, the YRD includes 
the Shanghai, Jiangsu, Zhejiang and Anhui provinces 
(Fig. 1). The YRD is located on the eastern coast of 
mainland China, with an area of 356,700 km2. It is one 
of the regions with the most dynamic economy, the 
highest degree of openness, and the strongest innovation 
capability in China. It is also an important production 
area for a variety of agricultural products. In 2019, the 
YRD accounted for 3.72% of China’s land, creating 
13.12% of China’s total agricultural output value and 
12.73% of its grain output. 

The study takes the four provinces of the YRD as the 
research area. According to the current administrative 
divisions in 2019, there were 13 prefecture-level cities 
in Jiangsu, 11 prefecture-level cities in Zhejiang, and  
16 prefecture-level cities in Anhui. Thus, there are  
41 basic units in the study area (Fig. 1). 

Data Sources

This study employs a panel dataset consisting of 41 
cities in YRD between 2001 and 2019. Agricultural data 
and relevant socio-economic data are obtained from 
China City Statistical Yearbook, China Rural Statistical 
Yearbook, Shanghai Statistical Yearbook, Jiangsu 
Statistical Yearbook, Zhejiang Statistical Yearbook 
and Anhui Statistical Yearbook from 2001 to 2019. 
Geographical data of provincial boundaries in China 
and city boundaries in the YRD, at a spatial resolution 
of 1:4000,000 are released by the National Geomatics 
Center of China. Considering that the current price of 
the total agricultural output value cannot be compared 
across years, this study uses constant prices in 2001 to 
eliminate the effect of inflation. Because the number 
of livestock provided by the official data is the number 
of livestock at the end of the year, the feeding cycle, 
breeding and slaughter of different species of livestock 
will have an impact on the number of livestock raised 
in the year. Therefore, this study adjusts the average 
annual feeding quantity of pigs, cattle and sheep by 
referring to Tian et al. [23]. 



Ma W., et al.186

Research Method

Measurement of ACE

Referring to the existing literature [12-15, 21-24], 
ACE are mainly based on three aspects: agricultural 
material input, rice cultivation and livestock breeding 
(Table 1). Agricultural material input includes the six 
sources of fertilizers, pesticides, agricultural plastic 
films, diesel oil, irrigation and tillage. For livestock 
breeding in the study, I only measure the three main 
types of poultry: pigs, cattle and sheep. Based on 
agricultural carbon sources, this study chooses the 
corresponding carbon emission coefficients to measure 
the ACE in the YRD. The formula is as follows:

                    (1)

where E is the quantity of ACE (104 t); Ei is the carbon 
emission of specific source i; Ti is the amount of specific 
source i; δi is the ACE coefficient of specific source 
i. The ACE coefficients and the reference sources 
corresponding to each ACE source are listed in Table 1. 
For comparison and analysis, all values are converted to 
units of standard carbon equivalents.

Coefficient of Variation

CV is usually expressed as the ratio of the standard 
deviation to the mean of the sample and is used to 

reflect the discrete degree of the sample data. CV can 
be expressed as:

                (2)

where xi is the ACE value of city i; x̄  is the average 
ACE value of all cities; n represents the number of cities, 
n = 41. 

Standard Deviation Ellipse

The SDE is an analytical method used to 
characterize the spatial orientation distribution of 
geographic elements [29]. It mainly includes four basic 
elements: the ellipse center, rotation angle, long axis 
and short axis, which represent the relative position of 
the spatial distribution pattern, the main trend direction, 
and the degree of dispersion in the main and secondary 
directions. The specific calculation formula for the four 
elements can be found in earlier research [30].

Spatial Autocorrelation Analysis

In this study, the ESDA is introduced to reveal the 
degree of spatial clustering of ACE in the YRD. Among 
them, Global Moran’s I is used to judge whether the 
distribution of attribute values in global space exhibits 
clustering or dispersion phenomenon [31]. Global 
Moran’s I can be expressed as:

Fig. 1. Map of the YRD.



Spatial-Temporal Pattern Evolution... 187

the parameters to be estimated for P, A and T; e is the 
error term. After taking the logarithm of both sides of 
Equation (5), Equation (5) can be transformed into:

      (6)

To study the factors influencing ACE, combined 
with the availability of data and the actual situation 
of YRD, this study establishes the extended STIRPAT 
model. The specific equation is as follows: 

(7)

where I is the total amount of ACE; P is population size, 
expressed by the total rural population; A is agricultural 
economic development level, expressed by the total 
agricultural output value; T is technology, expressed 
by the total power of agricultural machinery; S is 
agricultural planting structure, expressed by dividing the 
grain planting area by the crops planting area; E is rural 
non-farm employment level, expressed by percentage of 
rural non-agricultural employees in rural employees; U 
is urbanization level, expressed by percentage of urban 
population in total population; O is trade openness 
level, expressed by percentage of total import and 
export trade in GDP; a1, a2, ..., a7 are exponents for the 
independent variables to be estimated; a0 is the constant 
coefficient and ε is the error term. To test whether there 
is an inverted U-shaped curve between the agricultural 
economic development level and ACE, this study 
decomposes lnA in Equation (7) into lnA and (lnA)2. 
Equation (7) can be transformed into:

(8)

where β2, β3 are the regression parameters for lnA 
and (lnA)2, respectively. If β2 is significantly positive 

     (3)

where xi(xj) is the value of ACE of city i( j); x̄ is the 
average value of ACE of all cities; Wij is the spatial 
weight matrix, space adjacency is equal to 1, and non-
adjacent is equal to 0; when the value of global Moran’s 
I is close to 1, -1 and 0, it presents the cluster, disperse 
and random states of the ACE pattern, respectively;  
S2 = Σn

i =1 (xi – x̄ )2.
In terms of local spatial autocorrelation, Local 

Moran’s I can be used to explain the spatial correlation 
types and distribution pattern of attribute values 
between each regional unit and its neighboring units 
[32]. Local Moran’s I can be expressed as:

      (4)

where the value range of the Local Moran’s I is [-1, 1]. 
When the value is greater than 0 and passes the 5% 
significance test, it means that the city is of the High-
High (HH) or Low-Low (LL) agglomeration type; when 
the value is less than 0 and passes the 5% significance 
test, it means that the city is of the High-Low (HL) or 
Low-High (LH) agglomeration type; if the value fails 
the significance test, it is not significant.

Influence Model Setting

The STIRPAT model is used to quantify the effects 
of human activities on the ecological environment [33], 
which originates from the IPAT identity (I = P × A × T).
The standard form of the STIRPAT model is as follows:

                        (5)

where I, P, A, and T represent the ecological environment 
impact, population size, affluence and technology, 
respectively; a is a constant coefficient; b, c, and d are 

Table 1. ACE sources, coefficients and references.

Types ACE sources ACE coefficients References

Agricultural material input

Fertilizers 0.8956 kg CE/kg West and Marland [8]

Pesticides 4.9341 kg CE/kg Li et al. [12]

Agricultural plastic films 5.1800 kg CE/kg Tian et al. [23]

Diesel oil 0.5927 kg CE/kg IPCC [25]

Irrigation 266.4800 kg CE/hm2 Dubey and Lal [26]

Tillage 3.1260 kg CE/hm2 Wu et al. [27]

Rice cultivation 1.4322 t CE/hm2 NDRC [28]

Livestock breeding

Pigs 34.0910 kg CE/(head·year) IPCC [25]

Cattle 415.9100 kg CE/(head·year) IPCC [25]

Sheep 35.1819 kg CE/(head·year) IPCC [25]
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and β3 is significantly negative, indicating that there is 
an inverted U-shaped curve between the agricultural 
economic development level and ACE in the YRD. 
Explanations of the specific variables are shown  
in Table 2.

The ordinary panel model does not consider the 
spatial interaction effect of the dependent variable, 
leading to biased parameter estimation results. Since 
ACE between cities may have spatial autocorrelation, 
the influence of each variable on ACE in the YRD 
can be explored through a spatial econometric model 
incorporating spatial-temporal effects based on the 
ordinary panel model [34]. Spatial error model (SEM), 
spatial lag model (SLM) and SDM are the three main 
types of spatial econometric model. In contrast to SEM 
and SLM, SDM fully considers the spatial correlation 
of independent and dependent variables and focuses 
on reveal the exogenous interaction effect caused by 
the correlation between the ACE of a certain city and 
various influencing factors of neighboring cities [35]. 
The formula used is as follows:

 (9)

where ρ is the spatial autoregressive coefficient; W is 
the spatial weight matrix; γ1, γ2, ..., γ7 are the influence 
coefficients of all factors on ACE; γ8, γ9, ..., γ14 are the 
influence coefficients of the explanatory variables of 
spatial lag; γ0 is the constant coefficient and ε is the error 
term.

Results and Discussion

Temporal Evolution Characteristics of ACE

As shown in Fig. 2, ACE in the YRD present  
a fluctuating downward trend overall, from 24.58×106 t 
in 2001 to 23.19×106 t in 2019, with an average annual 
decrease of 0.32%. Specifically, ACE have five-stage 

evolution characteristics: (1) the first stage (2001-2003), 
ACE are in steadily declining. The reasons may be as 
follows: on the one hand, because of the heavy burden on 
farms, the “three rural issues” have become increasingly 
prominent, and the enthusiasm of farms to cultivate land 
has been frustrated, resulting in a significant slowdown 
in the growth rate of agricultural material input [13]. 
On the other hand, China joined the WTO in 2001, and 
YRD is located on the frontier of China’s opening up, 
which has effectively promoted the transformation of 
farms from farming to labor [36]; (2) the second stage 
(2003-2004), ACE show a linear upward trend, with an 
increase of 6.99%. The central government gradually 
increased its emphasis on agricultural development 
and issued the “No.1 Document” to benefit farmers. 
The overall recovery of agricultural production led to 
an increase in agricultural inputs and the continuous 
expansion of the scale of rice cultivation; (3) the third 
stage (2004-2008), ACE fall again. At this stage, the 
national government emphasized the importance of 
sustainable agricultural development and encouraged 
the development of circular agricultural and ecological 
agriculture. In addition, the frequent occurrence 
of natural disasters in 2007-2008, coupled with the 
outbreak of the international financial crisis, had a very 
significant negative impact on agricultural production; 
(4) the fourth stage (2008-2013), ACE show a steady 
upward trend, accompanied by the emergence of 
“carbon peaks”, from 24.12×106 t in 2008 to 26.07×106 t
in 2013. After 2008, agricultural production gradually 
recovered. The increase in input of agricultural  
materials was the key factor for the significant 
increase in ACE during this period; (5) the fifth stage  
(2013-2019), ACE show a plummeting trend.  
The energy conservation and emission reduction 
targeted of the “Twelfth Five-Year Plan” and the 
continuous introduction of a series of agricultural 
ecological governance policies by the state and local 
governments put forward new requirements for 
agricultural development. According to the formula (2), 
this study uses CV to measure the difference in ACE 
in the YRD. CV shows a slight upward trend, from  
0.52 in 2001 to 0.64 in 2019, which indicates that the 
gap in ACE between cities in the YRD tends to widen.

Table 2. Explanation and descriptive statistics of independent variables.

Independent variable Definition Unit Minimum Maximum Mean

P Total agricultural population Ten thousand people 15.780 691.980 216.436

A Total agricultural output value One hundred million yuan 7.896 647.444 159.045

T Total power of agricultural machinery Million kilowatts 31.015 874.620 278.326

S Grain planting area/crops planting area % 30.260 94.952 63.794

E Rural non-agricultural employees/rural 
employees % 6.415 94.677 60.323

U Urban population/total population % 17.720 89.600 54.024

O Total import and export trade/GDP % 0.530 280.750 32.517
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Fig. 3 shows the evolution of the proportions of 
these three types. It can find that the YRD presents 
the characteristics of the ACE structure dominated 
by agricultural material input. In 2019, agricultural 
material input accounts for 58.32% of the total ACE, 
followed by rice cultivation at 33.33%, while livestock 
breeding is the lowest at 8.35%. This has some 
similarities with the research conclusions of Wang et 
al., who found that carbon emissions from agricultural 
material input accounted for a relatively high  
proportion of China’s ACE, reaching 40.65% in 2016 
[37]. From the perspective of the change in proportion, 
only livestock breeding shows a downward trend, from 
19.60% in 2001 to 8.35% in 2019, with a decrease of 
11.25%. Due to the outbreak of major animal diseases 
such as African swine fever, the increased efforts of 
local governments to remediate the rural environment 
and the tightening of land resource constraints,  
the animal husbandry industry has shrunk sharply 
[38]. In general, the carbon emissions from agricultural 
material input far exceed those of the other two  
types. Therefore, to effectively control ACE in the 
YRD, inputs of chemical fertilizers, pesticides, and 
other materials should be reduced to ensure grain  
yield.

Fig. 4 shows the evolution of the ACE proportion 
in the four provinces. Jiangsu and Anhui have higher 
proportions, followed by Zhejiang, and Shanghai. From 
the perspective of the change in proportion, Anhui 

shows a relatively obvious upward trend, from 36.81% 
in 2001 to 42.64% in 2019, with an increase of 5.83%.  
In addition, Jiangsu’s share has remained at 
approximately 38%, while Zhejiang and Shanghai both 
show a certain downward trend. In terms of regional 
prevention and control, attention should be paid to 
sustainable agricultural governance in Jiangsu and 
Anhui.

By choosing the above typical years involving 2001, 
2008, 2013, and 2019, with the help of ArcGIS 10.2 
software, this study calculates the parameters of SDE 
(Table 3), and draws the trajectory of the center of gravity 
and the distribution of the standard deviation ellipse 
(Fig. 5). From the center of gravity path, the center  
of ACE moves with Nanjing, and movement direction  
is generally toward the northwest, roughly moving  
31.81 km, which fully indicates that ACE in the 
northwest of the YRD are relatively high. From the 
rotation angle, it increases from 132.79° to 134.53° 
with a small change, which indicates that the main 
development direction of ACE in the YRD is the 
northwest-southeast. This is probably because, the 
southeastern part of the YRD, involving southern 
Jiangsu, Shanghai and Zhejiang, has rapid non-
agricultural economic development and a high level of 
urbanization, which has increased the occupation of 
arable land, resulting in a low ACE. Correspondingly, 
the northwestern part of the YRD, involving northern 
Jiangsu and Anhui, is rich in arable land resources, 
and agriculture plays a vital role in local economic 
development, therefore the ACE in this region are 
relatively high. From long and short axis of ellipse,  
the length of long axis decreases from 300.42 km to 
280.45 km, and the length of short axis increases from 
189.00 km to 190.84 km, indicating that ACE in the 
YRD show a shrinking and concentrated trend in the 
northwest-southeast direction, and a slight expansion 
trend in the southwest-northeast direction.

Spatial Evolution Characteristics of ACE

To visually reflect the different spatial distribution 
pattern of ACE in the YRD, this study grades ACE 
values and draws spatial distribution maps for ACE 

Fig. 2. The trend of ACE in the YRD. Fig. 4. The trend of ACE in different provinces in the YRD.

Fig. 3. The structure and trend of ACE in the YRD.
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in 2001, 2008, 2013, and 2019 (Fig. 6). As shown 
in Fig. 6, the spatial differences in ACE at the city 
scale are obvious, with the characteristics of high 
in the northwest and low in the southeast. In 2001, 
Yancheng, Xuzhou, Bozhou, Fuyang, and Lu’an are the 
5 cities with the highest ACE, followed by Shanghai, 
Nantong, Anqing, Chuzhou, Huaian, Suqian, and 
Suzhou (in Anhui), whereas the ACE values of Huaibei, 
Ma’anshan, Tongling, and Huangshan are the lowest. 
In 2008, Yancheng, Xuzhou, Anqing, Lu’an, and 
Chuzhou are the 5 cities with the highest ACE, followed 
by Nantong, Huaian, Suqian, Lianyungang, Fuyang, 
and Suzhou (in Anhui), and the cities with the lowest 
ACE do not change. Overall, it still shows a trend of 
being high in the northwest and low in the southeast.  
In 2013, the number of cities with the highest 
ACE increase significantly, forming a “band-like” 
distribution in space, followed by Nantong, Suqian, 

Lianyungang, Bengbu, and Suzhou (in Anhui), 
whereas Huaibei, Tongling, and Huangshan continue 
to display the lowest ACE. In 2018, the number of 
cities with the highest ACE has decreased to a certain 
extent, whereas the number of cities with the lowest 
ACE has increased significantly. In short, the spatial 
pattern of high northwest and southeast low is clearer. 
In terms of the change in the number of categories, 
the proportion of cities with the ACE between 25 and  
100 t decreases from 78.05% in 2001 to 65.85% in 
2019. The number of cities with ACE greater than 100 t 
remained stable, while the proportion of cities with ACE 
less than 25 t increased from 9.75% in 2001 to 12.20% 
in 2019. It can be seen that the number of cities with 
higher ACE tends to decrease and the number of cities 
with lower ACE increases significantly, which further 
proves the objective reality of the decline of ACE in the 
YRD.

Table 3. Parameters of SDE of ACE in the YRD.

Year Long Axis 
(km)

Short Axis 
(km)

Rotation 
Angle (°)

Center of Gravity Path

Longitude (X) Latitude (Y) Moving 
Direction

Moving 
Distance(km)2001 300.42 189.00 132.79 118.83°E 31.91°N

2008 292.29 194.04 136.21 118.81°E 31.97°N Northwest 7.04

2013 287.35 193.51 135.99 118.70°E 32.02°N Northwest 11.98

2019 280.45 190.84 134.53 118.67°E 32.12°N Northwest 12.79

Fig. 5. SDE and center of gravity path of ACE in the YRD.
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Using GeoDa software, this study calculates 
the Global Moran’s I to conduct the global spatial 
autocorrelation analysis from 2001 to 2019. During 
the study period, Global Moran’s I is all positive and 
all P values are less than 0.05 (at the 5% significance 
level), indicating that cities in the YRD have a positive 
global spatial autocorrelation, that is, cities with high  
ACE or cities with low ACE tend to gather together. 
In addition, the evolution of Global Moran’s I for 
ACE shows three stages of development. In the first 
stage, Global Moran’s I presents a slight upward trend 
from 2001 to 2008, which means that the spatial 
autocorrelation of ACE is increasing. In the second 
stage, after 2008, Global Moran’s I shows a steady 
development trend, mainly because of the negative 
impact of the 2008 international financial crisis on 

the agricultural economic development of the YRD. 
In the last stage, Global Moran’s I shows a significant 
upward trend, from 0.36 in 2013 to 0.50 in 2019. With 
the continuous strengthening of agricultural ecological 
regulation by the state and local governments, the 
spatial concentration of ACE has increased significantly. 

In order to reveal the local spatial correlation of ACE 
in the YRD, according to the time period characteristics 
of the Global Moran’s I, with the help of GeoDa software 
and ArcGIS 10.2 platform, LISA cluster map of ACE  
in 2001, 2008, 2013, and 2019 is drawn, respectively  
(Fig. 7). As shown in Fig. 7, the local spatial 
agglomeration characteristics of ACE are evident, with 
HH agglomeration and LL agglomeration being the 
main types. In 2001, HH agglomeration cities include 
Nantong, Huaian, Suqian, and Lianyungang, while LL 

Fig. 6. Spatial distribution of ACE in the YRD.
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agglomeration cities include Hangzhou, Xuancheng, 
Chizhou, and Wuhu, and LH agglomeration city is 
Huainan. In 2008, HH agglomeration cities don not 
change, HH agglomeration cities add Quzhou, and 
LH agglomeration cities add Yangzhou. In 2013, 
HH agglomeration cities reduce Nantong. In 2019, 
only Quzhou changes from LH agglomeration to 
an insignificant one. In general, the local spatial 
agglomeration pattern has strong stability and spatial 
dependence.

Influencing Factors Analysis of ACE

Before estimating the spatial panel model, this paper 
first conducts a regression analysis on the two-way fixed 
effect model that does not consider the spatial correlation 
of ACE. At the same time, in order to eliminate the 

multicollinearity between variables, this study also 
uses the stepwise regression method to analyze the 
influencing factors of ACE (Table 4). As shown in Table 
4, when independent variables are gradually introduced, 
the sign and statistical significance of the independent 
variables do not change significantly. The only change 
is the size of the parameter estimates, and the range of 
change is not large, which indicates that the influence 
of the above factors on ACE in the YRD is real without 
the spatial effect. The specific results are as follows:

The primary and secondary terms of the agricultural 
economic development level are positive and negative 
at the significance levels of 1% and 5%, respectively, 
indicating that the impact of the agricultural economy 
on ACE is an inverted U type. It can be seen that in 
the early stage of agricultural development, a large 
amount of ACE are generated because agricultural 

Fig. 7. LISA cluster map of ACE in the YRD.
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economic growth is strongly dependent on the input of 
agricultural production factors. After the development of 
agriculture to a certain stage, with the wide application 
of agricultural technology and more emphasis on 
high-quality development of agriculture, the input of 
pesticides, fertilizers and other elements has gradually 
reduced, so ACE will drop significantly [15]. 

The influence coefficient of the total rural 
population on ACE in the YRD is positive, passing 
the significance test at the 1% level. This means that 
the more concentrated rural population will promote 
ACE. A possible reason is that, on the one hand, the 
agglomeration of rural population increases the demand 
for crops such as grain, which increases the input of 
pesticides, fertilizers and other elements; on the other 
hand, it has also brought about the construction of a 
large number of agricultural infrastructures, resulting 
in a large amount of resource consumption and 
environmental pollution in rural areas, and an increase 
in ACE. 

The influence coefficient of the total power of 
agricultural machinery on ACE in the YRD is positive, 
passing the significance test at the 1% level. This means 
that the higher agricultural machinery level will promote 
ACE. Agricultural mechanization is rapidly spreading in 
rural areas of the YRD, but the agricultural technology 
level is low and still requires a large amount of fossil 
fuel consumption [21]. Therefore, while accelerating 
economic development, the YRD should pay more 
attention to agricultural science and technology, and 
gradually reduce the use of high-energy-consuming 
agricultural machinery and equipment. 

The influence coefficient of the agricultural planting 
structure on ACE in the YRD is negative and does 
not pass the significance test at the 10% level. The 
reason why the agricultural planting structure has no 
significant impact on ACE may involve positive and 
negative effects. In terms of negative impact, different 
crops have different growth characteristics, and there 
are certain differences in the demand for agricultural 
chemicals. Compared with commercial crops, food 
crops generally have less demand for agricultural 
chemicals such as fertilizers, pesticides, and agricultural 
films [39]. Therefore, as the proportion of food crops 
increases, the input of agricultural factors may show 
a downward trend, and ACE will also decrease. In 
terms of positive impact, due to its unique natural 
geographical advantages, the YRD is very suitable for 
rice production. With the expansion of the planting 
area, ACE is bound to increase. Therefore, the influence 
of positive and negative interactions are not significant.

The influence coefficient of the rural non-farm 
employment level on ACE in the YRD is negative, 
passing the significance test at the 1% level. This means 
that the shift of farmers to non-agricultural industries 
will limit the ACE. This conclusion differs from those 
in the existing literature. For example, some scholars 
believe that the accumulation of surplus rural labor 
in cities and non-agricultural industries has led to a 

surge in the consumption of agricultural chemicals 
such as pesticides and fertilizers, as well as energy 
consumption such as diesel and electricity, in order to 
alleviate the impact of the reduction of rural labor force 
on agricultural production, which in turn worsens the 
rural ecological environment [40]. However, we believe 
that the transfer of rural labor to the manufacturing 
and service industries can effectively improve their 
cultural literacy and make rational use of advanced 
agricultural technology. In addition, the transfer of rural 
labor has promoted large-scale agricultural production. 
The emergence of new business entities, such as large-
scale farms and family farms, has paid more attention 
to investment in machinery and technology, which has 
a positive impact on agricultural production and the 
agricultural ecological environment.

The influence coefficient of the urbanization 
level on ACE in the YRD is positive, passing the 
significance test at the 10% level. This means that the 
more agglomerated urban population and the higher 
the urbanization rate will promote ACE. With the 
acceleration of urbanization, the rural population 
moving into cities and occupying part of the arable land 
resources will inhibit agricultural carbon emissions to a 
certain extent. However, an improvement in the level of 
urbanization means that the scale of cities will expand 
and secondary and tertiary industries will continue to 
develop, which in turn will place higher requirements on 
agricultural production and aggravate the contradiction 
between supply and demand between urban and rural 
areas. In addition, young labor is transferred to cities 
and towns, and rural labor is characterized by aging, 
feminization and part-time employment. To avoid 
agricultural production reduction, a large amount 
of agricultural chemicals has been invested in, thus 
significantly increasing agricultural carbon emissions.

The influence coefficient of the trade openness 
level on ACE in the YRD is negative, not passing 
the significance test at the 10% level. Grossman and 
Krueger [41] divided the environmental effect of foreign 
trade into scale, structure and technology effects.  
In terms of the scale effect, the development of regional 
foreign trade will promote the expansion of agricultural 
production scale and the input of more agricultural 
factors, thereby causing resource consumption and 
environmental pollution. In terms of the structure 
effect, the development of trade can introduce regional 
agriculture into the international market and then 
force the internal structure of agriculture to adjust and 
reorganize the layout of agricultural production. This 
may lead to a series of changes in agricultural factor 
inputs, surface planted crop varieties, poultry feeding, 
etc., and there are uncertainties in the impact on the 
ecological environment. In terms of the technology 
effect, trade openness not only provides opportunities 
for the exchange of international agricultural production 
technology, promotes technology spillover in the import 
process, and improves the input-output efficiency of 
agricultural production, but also reduces environmental 
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pollution in the production process through the 
introduction of green technology, clean technology, and 
good land management. Therefore, by combining these 
three effects, this study presents an insignificant effect.

According to the above calculation results of Global 
Moran’s I, there is a significant positive agglomeration 
effect of ACE between cities, and it shows the 
local spatial autocorrelation characteristics of HH 
agglomeration and LL agglomeration. Considering the 
spatial interaction effect, the SDM of two-way fixed 
effect is used to estimate the impact of different factors 
on ACE.

Because SLM and SEM are non-nested models, the 
test results of SDM should be further considered. This 
study adopts the Wald and LR tests and determines 
whether SDM can be reduced to SLM or SEM according 
to the two hypotheses ofH0: γ = 0 and H0: γ + δβ = 0.
If the hypothesis of H0: γ = 0 cannot be rejected, 
SDM should be reduced to SLM; if the hypothesis of 
H0: γ + δβ = 0 cannot be rejected, the SDM should 
be reduced to SEM; the SDM is the optimal model if 
both hypotheses are rejected. The relevant test statistics 
are calculated using Stata 10.6 software, as shown in 
Table 5. According to the results in Table 5, the Wald 
and LR tests of the SLM and SEM all passed the 
significance test at the 1% level, and the two hypotheses 
are rejected, so the SDM cannot be simplified to SLM 
and SEM.

Compared with Model 5 in Table 4, there are some 
similarities and differences in the influence of the 
independent variables on SDM (Table 5). In terms of 
similarities, regardless of whether spatial interaction is 
considered, the significances of the respective variables 
remain unchanged. For example, the agricultural 
economic development level, total rural population, 
total power of agricultural machinery, and urbanization 

level all show a significant positive impact, while rural 
non-farm employment has a significant negative effect, 
while the agricultural planting structure and trade 
openness level have no significant effect. However, in 
terms of different points, if the spatial interaction effect 
is considered, the impact of the total rural population 
is significantly enhanced, and the total power of 
agricultural machinery is significantly reduced. 

In this study, partial differential equations are used 
to decompose the influence effects of independent 
variables in the SDM into direct and indirect effects (or 
spillover effects) [42]. Among them, direct effects are 
the influence of the independent variables of this city 
on the ACE of this city, and indirect effects are the 
influence of independent variables of this city on the 
ACE of adjacent cities. As shown in Table 5, the direct 
effect of agricultural economic development level on 
local city is 0.464, and the indirect effect on neighboring 
city is -0.912, both of which pass the significance test of 
1%, indicating that enhancing the agricultural economic 
development level has a promoting effect on ACE in 
local city, but has an inhibiting effect on neighboring 
city. The direct effect of the total rural population on 
local city is 0.287, and the indirect effect on neighboring 
city is 0.685, both of which pass the significance test 
of 1%, indicating that promoting rural population 
agglomeration has an enhanced effect on ACE in both 
the local city and the neighboring city. The direct effect 
of the total power of agricultural machinery on local 
city is 0.317, and the indirect effect on neighboring city 
is 0.475, both of which pass the significance test of 1%, 
indicating that the promoting agricultural machinery 
level has an enhanced effect on ACE. The direct 
effect of the agricultural planting structure on local 
city is -0.066, and the indirect effect on neighboring 
city is 0.128, both of which not pass the significance 

Table 4. Baseline regression results.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

lnP 0.130*** 0.128*** 0.108*** 0.183*** 0.194*** 0.173***

lnA 0.599*** 0.604*** 0.599*** 0.576*** 0.569*** 0.763***

(lnA)2 -0.030**

lnT 0.369*** 0.372*** 0.392*** 0.379*** 0.382*** 0.398***

lnS -0.032 -0.033 -0.032 -0.039 -0.015

lnE -0.138*** -0.139*** -0.136*** -0.125***

lnU 0.131* 0.157** 0.140*

lnO -0.013 -0.015

Constant -1.371*** -1.272*** -0.710*** -1.428*** -1.510*** -1.805***

City-Fe Yes Yes Yes Yes Yes Yes

Time-Fe Yes Yes Yes Yes Yes Yes

R2 0.743 0.743 0.751 0.752 0.752 0.754

Note: *, ** and *** indicate that statistics are significant at the 10%, 5% and 1% level of significance, respectively.
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test of 10%, indicating that the agricultural planting 
structure has no impact on ACE. The direct effect of 
the rural non-farm employment level on local city is 
-0.148 (P<1%), and the indirect effect on neighboring 
city is -0.039 (P>10%), indicating that promoting non-
agricultural economic development and guiding non-
agricultural employment of rural surplus labor are of 
great significance in reducing the local city’s ACE. 
The direct effect of urbanization level on local city is 
0.110 (P>10%), and the indirect effect on neighboring 
city is 0.520 (P<5%), indicating that accelerating local 
urbanization will significantly increase the level of ACE 
in surrounding cities. The direct effect of the trade 
openness level on local city is -0.002 (P>10%), and the 
indirect effect on neighboring city is -0.073 (P<5%), 
indicating that the development of trade has a spillover 
effect, which will significantly improve the level of 
agricultural technology in surrounding cities, thereby 
reducing ACE.

Conclusions

Based on panel data of 41 cities in the YRD from 
2001 to 2019, this study measures ACE and analyzes 
the spatial-temporal evolution pattern of ACE in the 
YRD. On this basis, the ordinary panel model and 
SDM are used to empirically test the driving effects 
of the agricultural economic development level, rural 
population, agricultural machinery, agricultural planting 
structure, and other factors on ACE. The following 
conclusions are drawn.

Overall, the ACE in the YRD show a fluctuating 
downward trend, with an average annual decrease of 
0.32%, and the gap between cities tends to widen. In 
terms of internal structure, the YRD shows emission 
characteristics dominated by agricultural material input, 
with a proportion of over 50% over the years, followed 
by rice cultivation and livestock breeding with the 
lowest proportion. In addition, Jiangsu and Anhui have 
higher proportions, followed by Zhejiang, and Shanghai. 
In terms of the center of gravity path, the center of the 
ACE moves with Nanjing, and the movement direction 
is generally toward the northwest. In terms of spatial 
distribution, cities with high ACE are mainly located 
in the northwest regions of the YRD, and those cities 
with low ACE are mainly located in the southeast 
regions of the YRD. In addition, cities in the YRD have 
a positive global spatial autocorrelation, and the local 
spatial agglomeration pattern has strong characteristics 
of stability and spatial dependence, for example, 
Huaian, Suqian, and Lianyungang have always been 
HH agglomeration, whereas Hangzhou, Xuancheng, 
Chizhou, and Wuhu have been LL agglomeration. 
In the regression analysis of factors affecting ACE 
in the YRD, the ordinary panel model shows that the 
agricultural economic development level has an inverted 
U-shaped effect on ACE, and the total rural population, 
total power of agricultural machinery, and urbanization 
level show a significant positive impact. Meanwhile, 
the agricultural planting structure and trade openness 
level are not significantly affected, but the rural non-
farm employment level is significantly negative impact 
on ACE. Further, this study also uses SDM to analyze 

Table 5. Regression results of the SDM.

Variable Coefficient T Value P Value Direct Effects P Value Indirect 
Effects P Value

lnP 0.251*** 5.200 0.000 0.287*** 0.000 0.685*** 0.000

lnA 0.567*** 15.560 0.000 0.464*** 0.000 -0.912*** 0.000

lnT 0.274*** 9.810 0.000 0.317*** 0.000 0.475*** 0.000

lnS -0.070 -1.300 0.193 -0.066 0.189 0.128 0.246

lnE -0.119*** -4.240 0.000 -0.148*** 0.000 -0.039 0.662

lnU 0.158** 2.250 0.024 0.110 0.113 0.520** 0.022

lnO -0.005 -0.470 0.638 -0.002 0.842 -0.073** 0.047

W×lnP 0.190* 1.730 0.083 rho = 0.305*** (P = 0.000)

W×lnA -0.458*** -5.410 0.000 R2 = 0.761

W×lnT 0.106** 2.110 0.035 Wald test spatial lag = 61.010*** (P = 0.000)

W×lnS 0.047 0.560 0.577 LR test spatial lag = 57.690*** (P = 0.000)

W×lnE 0.087 1.450 0.148 Wald test spatial error = 46.510*** (P = 0.000)

W×lnU 0.452*** 3.250 0.001 LR test spatial error = 243.580*** (P = 0.000)

W×lnO -0.061*** -2.830 0.005

Note: *, ** and *** indicate that statistics are significant at the 10%, 5% and 1% level of significance, respectively.
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the spillover effects of influencing factors, and find that 
the agricultural economic development level and trade 
openness level exhibit significant negative spillover 
effects.

Based on the above conclusions, we put forward the 
following suggestions.

First, under the integrated development framework 
of ecological and green development in the YRD, 
at the government level, an interactive cooperation 
mechanism for ACE reduction and high-quality 
agricultural development should be established 
between different cities; at the enterprise level, the 
level of green technology development of family farms, 
cooperatives or agricultural enterprises should be 
improved; at the farmer level, improving the farmer’s 
own cultural quality and cultivating awareness of low-
carbon development, such as the rational application of 
chemical fertilizers and pesticides.

Second, there is a significant spatial autocorrelation 
of ACE in the YRD, which provides favorable evidence 
for regional integrated governance. While focusing 
on coordinated development, we should also pay 
attention to adapting measures to local conditions 
and adopting corresponding low-carbon agricultural 
development strategies for different types of cities. For 
LL agglomeration cities, they should make reasonable 
use of their own development advantages, and focus on 
breakthroughs in agricultural low-carbon technologies 
and changes in low-carbon agricultural management 
concepts; for HH agglomeration cities, they should 
improve the efficiency of agricultural resource 
allocation and minimize pesticides and fertilizers and 
other factorsThird, the significant inverted U-shaped 
relationship between ACE and agricultural economy 
in the YRD indicates that the inflection point of 
agricultural development has come. Therefore, in the 
future process of the agricultural economy, a modern 
agricultural industrial system, production system, and 
management system should be constructed to develop 
low-carbon agriculture and ecological agriculture, and 
then improve agricultural quality and competitiveness. 
In addition, differentiated agricultural development 
models should be developed according to the natural 
geographical conditions and economic advantages of 
each region. For the southeastern part of the YRD, the 
proportion of traditional agriculture should be reduced, 
and the advantages of economy, talents, science and 
technology should be used to vigorously develop modern 
agriculture, urban agriculture, tourism agriculture, 
sightseeing agriculture, leisure agriculture, etc., so as 
to improve the versatility of agricultural production and 
effectively reduce ACE; for the northwest of the YRD, 
it is necessary to make full use of local advantageous 
agricultural resources, effectively improve traditional 
agricultural production efficiency, and moderately 
develop modern agriculture.

Finally, the YRD should pay attention to the level 
of agricultural science and technology, and strengthen 
the improvement of traditional agricultural machinery 

and equipment, so that agricultural mechanization can 
be accelerated in the direction of large-scale, complex, 
energy-saving, efficient, intelligent, and precise.  
The speed of urban expansion in the YRD is too 
fast, and urbanization process should be promoted 
reasonably, and the development of low-carbon 
agriculture should be integrated into the whole process 
of urban and rural coordinated development. Trade 
openness has a significant negative spillover effect 
on the ACE of surrounding cities, indicating that the 
YRD should continue to expand the regional openness 
pattern, actively introduce advanced international 
low-carbon agricultural technologies, and realize 
the complementary advantages of the domestic and 
international markets.
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