Original Research

Changes in Morphology of *Nitraria tangutorum* Nebkhas at different Successional Stages in the Oasis-Desert Ecotone, Northwest China

Meiying Liu^{1,5}, Yajuan Wei^{2,3*}, Wenlong Li⁴, Ji Wang²

¹College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, PR China
²College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
³Department of Resource and Environment, Baotou Teachers' College, Baotou 014030, PR China
⁴Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010018, PR China
⁵Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, PR China

Received: 20 May 2022 Accepted: 6 October 2022

Abstract

Nebkhas play a tremendous role in maintaining the ecological functions of deserts and in slowing land desertification processes. Numerous nebkhas are distributed in the northwestern edge of the Ulan Buh desert, Nitraria tangutorum nebkhas are the most typical dunes in this area. However, our knowledge of the effect of those factors on the succession of nebkhas, including their succession in different sandy land types, is limited. The goal of this study was to reveal their factors influencing the morphological characteristics of N. tangutorum nebkhas in different sandy land types (shifting sandy land, semi-fixed sandy land, and fixed sandy land) in the Ulan Buh desert. Our results showed the densities of N. tangutorum nebkhas were 34, 51, and 77 dunes per hain the shifting, semi-fixed, and fixed sandy lands, respectively. The density of N. tangutorum nebkhas gradually increased and N. tangutorum nebkhas started to degenerate with the increasing fixation of sandy land. The successional stage had significant effects on all the morphological characteristics, and sandy land types had significant effects on the length (L), height (H), volume (V), horizontal scale (D) and ratio of width to height (H/W). Almost all of the morphological parameters of N. tangutorum nebkhas were correlated at different successional stages, indicating a strong interrelationship among the morphological parameters of nebkhas. The successional stages of N. tangutorum nebkhas had significant effects on the density of branch (M), height (h), coverage (C), deadwood rate (DR), and length of new branches (LB) of the N. tangutorum shrub. The M, h, C, and LB first increased and then decreased, and DR increased with the succession of N. tangutorum nebkhas. These results indicated that we should focus on nebkhas succession to ensure the ecological stability of oases in a dessert.

Keywords: *N. tangutorum*, nebkhas, morphological characteristics, successional stage, sand fixing capacity, sandy land types

^{*}e-mail: weiyajuan0305@163.com

Introduction

Deserts cover an area of about 1.3 million km² in northwestern China and are expanding into adjacent ecosystems due to climate change and human activities [1-2]. The nebkha is a constructive and dominant species endemic to arid and semi-arid regions. The nebkha controls the local landscape in northwest China due to its unique ability to fix sand, and plays an important ecological role in preventing or slowing down the movement of sand particles [3]. Therefore, the succession of nebkhas is a key ecological factor in the maintenance of regional ecological security in arid environmental systems.

Nebkha, formed by the accumulation sand near shrubs in the landscape that reduce the sand carrying capacity of the of sand-saturated wind when encountering an obstacle, is one of the main types of sanddune landscape [4-6]. Their appearance is ubiquitous in arid and semi-arid desert environments with hot and desert climates [7]. In China, nebkha is mainly distributed in the agro-pastoral ecotone, desert steppe, and desert margins [8]. Their formation is determined by several factors such as climate change [9], vegetation degradation, anthropogenic activities, and changes in local hydrogeological conditions [10-13]. Nebkhas have attracted little attention concerning their succession and vegetation features. Most studies are focused on community composition and richness [8, 14-15], soil nutrients [8,16-17], ecological adaptation [18-19] and developmental processes [20-22]. However, there is much more that needs to be studied about nebkhas. The formation and disintegration of nebkhas are closely related to the positive and negative processes of land desertification, and the invasion of the species forming nebkhas is synonymous with massive nutrient loss and increased soil erosion in the desertification process [23]. It can be seen that the successional stage of nebkhas can indirectly reflect the process of land desertification [4]. Currently, there is not enough evidence to establish the relationship between the appearance of nebkhas and vegetation types and terrain. The quantitative description of the formation and succession of nebkhas is still pending.

The formation of nebkhas is closely related to the environmental conditions [18, 24]. Undoubtedly, the morphological characteristics of nebkhas can reflect the characteristics of wind and sand environment and land desertification at the spatio-temporal scale [25]. On a large scale, the characteristics of deposition and morphology in nebkhas formed can appear different due to conditions such as wind conditions, physical sources, vegetation types, and surface conditions in different regions [8]. Among them, plant type and sand conditions strongly influence the morphological characteristics of the developing nebkhas [22]. The morphological parameters of nebkhas are not uniform under different habitat conditions, but exhibit characteristics that are adapted to the local aeolian sand environment [26].

With the same observation area, distinct subsurface conditions exhibit different influences on the starting wind speed, leap height, and energy attenuation of sand grains, making the wind-sand flux and structure show obvious spatial differences along the wind direction, and the abundance of sand supply affects the spatial scale of nebkhas. Therefore, nebkhas are localized and complex. On a small scale, the size and shape of nebkhas will depend on factors such as plant growth habit, plant density, and structural form [21, 26-27]. It is by plants changing the structure of near-surface wind and sand flow in three ways that nebkhas are formed: plants providing the ground coverage, slowing down the wind and blocking the flow of sand [27]. It is believed that surface vegetation coverage is the most effective measure to control wind erosion in arid and semi-arid regions, especially in the desert-oasis transition zone of northern China.

Few researchers have examined the effects of sandy land type, successional stage, and vegetation features on the morphological characteristics of *N. tangutorum* nebkhas in the oasis-desert ecotone. The research on morphological characteristics of *N. tangutorum* nebkhas on different sandy land types in an oasis-desert ecotone can effectively provide a theoretical basis and support for the protection and rehabilitation of oasis-desert ecotones in hyperarid regions. In this research, we (1) evaluated the relationships between nebkhas density and sandy land types, (2) quantitatively analyze the effect of succession on the morphological characteristics of *N. tangutorum* nebkha, and (3) determined whether different successional nebkhas have different influences in terms of morphology and vegetation characteristics.

Materials and Methods

Study Area

The study was carried out in the oasis-desert ecotone in Jilantai Township, Inner Mongolia, China (39°38′-39°49′N, 105°35′-105°46′E). The average elevation is 1020-1030 m. The climate of the Jilantai desert oasis ecotone is arid, with a temperate continental monsoon climate. Precipitation amounts to 102.2 mm yr¹ but is highly variable, and most of which occurs between July and September (1965-2020). The potential annual evaporation is 29.4 times higher than the precipitation with 3006 mm. The long-term mean annual temperature is approximately 8.60°C, and the annual sunshine is 3316 h. The prevailing wind direction is northwesterly. The mean annual wind speed is 3.54 m/s, and occasionally up to 15 m/s. The total mean annual typical day with strong winds is 34 d. The region has typically fixed dunes without any human interference. This landscape consists of nebkhas of different sizes covered by aeolian sandy soils. The vegetation is dominated by the shrub species N. tangutorum. The common psammophytic

vegetation includes Agriophyllum squarrosum, Salsola collina, Artemisia desertorum, Achnatherum splendens, Phragmites australlis and Sophora alopecuroides.

Experimental Design and Methods

We defined four succession stages of nebkhas based on our morphometric measurements, vegetation status and combined with the experience of previous studies [28-30]. Successional stages of *N. tangutorum* nebkhas were classified based mainly on the mortality rate of branches of *N. tangutorum*, and *N. tangutorum* nebkhas were divided into rudimental stage (RUD), developing stage (DEV), stabilizing stage (STA), and degrading stage (DEG).

Fieldwork was carried out in August 2019. We selected three sample plots with different sandy land types, representing shifting sandy land, semi-fixed sandy land, and fixed sandy land (Fig. 1). In the field investigation, we selected 3 plots (100 m×100 m) in each sandy land type. The distance between plots was no more than 20 m. The wind conditions, precipitation, and other natural factors of *N. tangutorum* nebkhas are similar, and the basic situation of the sample plot is shown in Table 1. In each plot, the morphology of all *N. tangutorum* nebkhas was measured, including length (*L*), width (*W*), height (*H*), windward slope length (*Y*), leeward slope length (*B*), and horizontal scale

(D). In total, the study examined 507 nebkhas. The sand axis along the main wind direction is defined as length (L), and the sand axis perpendicular to the main wind direction is defined as W. The H of nebkha was calculated as the mean heights in four directions. The length of the distance from the bottom of windward slope to the top of nebkha is Y. The same method was used to determine the B. The D was calculated using the formula [(L+W)/2].

The base area (A_1) and volume (V_1) of shield-shaped nebkhas were calculated as follows:

$$A_1 = \frac{1}{2}WL \tag{1}$$

$$V_1 = \frac{1}{6}WLH \tag{2}$$

The base area (A_2) and volume (V_2) of cone-shaped nebkhas were calculated as follows:

$$A_2 = \frac{1}{4}\pi WL \tag{3}$$

$$V_2 = \frac{1}{12}\pi HWL \tag{4}$$

The base area (A_3) and volume (V_3) of hemi-ellipsoid nebkhas were calculated as follows:

Fig.1. Sample plots of the different sandy land types in the oasis-desert ecotone of Jilantai Township.

Sandy land types	Latitude and longitude	Altitude/m	Vegetation coverage/%	Soil type	Associated species
Shifting sandy land	105°43′12″E- 39°48′48″N	999	999 3.12±1.05c Windy sa hard cale lay		Agriophyllum squarrosum, Salsola collina
Semi-fixed sandy land	105°43′17″E- 39°48′40″N	983	25.66±6.79b	Windy sandy soil, hard calcareous layer	Calligonum mongolicum, Haloxylon ammodendron, Artemisia desertorum, Agriophyllum squarrosum
Fixed sandy land	105°43′28″E- 39°48′21″N	972	65.35±12.44a	Windy sandy soil	Achnatherum splendens, Phragmites australlis, Sophora alopecuroides

Table 1. Basic characteristics of different sandy land types.

Note: Values are means \pm SD. Different lowercase letters in the same column represent significant differences of *N. tangutorum* indices among different successional stages (*P*<0.05).

$$A_3 = \frac{1}{4}\pi WL \tag{5}$$

$$V_3 = \frac{1}{6}\pi HWL \tag{6}$$

Twenty N. tangutorum nebkhas in the successional stage were randomly selected for measuring their shrub characteristics, shrub parameters including the density of branch (M), height (h), coverage (C), deadwood rate (DR), and length of new branch (LB) of N. tangutorum shrub. Five small quadrats (1.0 m×1.0 m) were set at the top, midslope and bottom of windward, and midslope and bottom of windward of nebkha, respectively. The C was estimated by calculating the vertical projection area ratio for vegetation in each small quadrat. The M was determined by counting the number of individuals in each small quadrat. The h is the natural height of N. tangutorum. The DR was estimated by the sampling method as the ratio of the projected area of dead branches in the quadrat to the quadrat area. The LB of the current year was measured in each sample square. New branch length was calculated by measuring the natural length of newborn branches in the current year in each small quadrat. The mean values of 5 small quadrats were taken as the mean value of nebkha.

Statistical Analysis

The coefficient of variation (C_v) is used to express the variation of nebkhas' morphometric parameter data in the different successional stages. Statistics were performed using the SPSS 21.0 software package (SPSS, Inc., Chicago, IL, USA). Statistical significance was determined with one-way ANOVA analysis. We used two-way ANOVA to test the effects of sandy land type (SL) and successional stage (SS) on morphological

Fig. 2. The number of different successional stages of *N. tangutorum* nebkhas in different sandy land types. RUD:rudimental stage; DEV:developing stage; STA:stabilizing stage; DEG:degrading stage.

characteristics. Figures and regression analysis were drawn with Origin 9.0 (Origin Lab, Northampton, MA, USA).

Results

Characteristics of *N. tangutorum* Nebkhas in Different Sandy Land Types

The density of *N. tangutorum* nebkhas was 34, 51 and 77/hm² in shifting sandy land, semi-fixed sandy land and fixed sandy land, respectively. In shifting sandy land, *N. tangutorum* nebkhas in RUD dominated 81.76%, and the rest are all *N. tangutorum* nebkhas in DEV. No *N. tangutorum* nebkhas in STA and DEG in shifting sandy land. In semi-fixed sandy land, *N. tangutorum* nebkhas in RUD, DEV, STA, and DEG

Table 2. Characteristics of *N. tangutorum* nebkhas in different successional stages.

Successional stage	Height/m	Nebkha characteristics	N. tangutorum Characteristics	Form
RUD	<1.0	The nebkha is short, with a large head and small tail, irregularly shaped, with a long tail of wind shadow, and a relatively gentle slope.	Most of <i>N. tangutorum</i> branches are newborn and have a white appearance.	Shield shape
DEV	1.0~5.0	The nebkha is large with steep slopes.	<i>N. tangutorum</i> grows luxuriantly, with white skin. <i>Phragmites australlis</i> and other plants are occasionally seen on nebkhas	Cone-shape
STA	1.0~2.0	The nebkha is large with steep slopes.	<i>N. tangutorum</i> branches are denser, gray, or black in appearance, with a lot of <i>Phragmites australlis</i> and other plants settling on the surface.	Semi-ellipse
DEG	0.5~1.5	The nebkha is short, and the slope is uneven and low.	The <i>N. tangutorum</i> is in weak growth condition with a black appearance and a large number of exposed roots.	Semi-oval

Note: Values are means \pm SD. Different lowercase letters in the same column represents significant differences of *N. tangutorum* indices in different successional stages (*P*<0.05). RUD:rudimental stage; DEV:developing stage; STA:stabilizing stage; DEG:degrading stage

Factors	Effect	L	W	Н	Y	В	A	V D		H/L	H/W
$\begin{array}{c cccc} Sandy \ land \\ types (ST) & F & 6.75 & 0.55 & 6.68 \\ \hline P & 0.001^{***} & 0.577 & 0.001^{***} \\ \hline Successional & F & 159.28 & 90.24 & 286.33 \\ \hline \end{array}$	F	6.75	0.55	6.68	6.75	0.55	4.42	8.24	4.42	2.46	3.25
	0.001***	0.001***	0.577	0.013	<0.001***	<0.05*	0.086	<0.05*			
Successional stage (SS)	F	159.28	90.24	286.33	159.28	90.24	176.02	89.39	176.02	146.62	107.48
	Р	<0.001 ***									
ST×SS	F	15.26	13.01	19.30	15.26	13.01	19.78	16.77	19.78	0.53	0.30
	Р	<0.001 ***	0.72	0.88							

Table 3. Results of ANOVA for the effect of sandy land type and successional stage on morphological parameters of *N. tangutorum* nebkhas.

Note: F-values (*F*) and associated probabilities (*P*) are shown, with significant experimental effects indicated by asterisks (*P<0.05; **P<0.01; **P<0.001). RUD:rudimental stage; DEV:developing stage; STA:stabilizing stage; DEG:degrading stage

were 40, 97, 9, and 7, respectively. *N. tangutorum* nebkhas in DEV accounted for the largest proportion of all successional stages (63.40%), *N. tangutorum* nebkhas in RUD accounted for 26.14%, and it started to appear *N. tangutorum* nebkhas in STA and DEG. In fixed sandy land, abundant *N. tangutorum* nebkhas occurred at STA and DEG. Among them, *N. tangutorum* nebkhas

in DEV and STA accounted for 25.76% and 52.40%, respectively.

A two-way ANOVA analysis demonstrated that sandy land types had significant effects on L, H, V, D, and H/W, and successional stage had significant effects on all the morphological characteristics. There were significant interactive effects of sandy land type and the

Table 4. The morphological characteristics of different successional stages of nebkhas.

Successional stage	Index	<i>L</i> /m	W/m	<i>H</i> /m	Y/m	<i>B</i> /m	A/m^2	V/m ³	D/m	H/L	H/W
Successional stage RUD DEV STA DEG	Mean±SD	5.20± 1.27d	4.32± 1.19d	0.67± 0.15d	6.93± 1.7d	3.03± 0.83d	7.49± 1.81d	9.18± 6.64d	4.76± 1.15d	0.13± 0.01c	0.16± 0.02c
	Maximum	8.9	7.41	1.1	11.87	5.19	12.84	37.95	8.16	0.18	0.23
	Minimum	3.01	2.08	0.38	4.01	1.46	4.03	1.27	2.56	0.10	0.12
	C _v /%	24.47	27.42	21.9	24.47	27.42	24.12	72.35	24.12	8.78	12.29
	Mean±SD	9.95± 2.99a	6.99± 2.02a	1.68± 0.47a	13.26± 3.99a	4.89± 1.41a	13.34± 3.49a	73.54± 63.95a	8.47± 2.22a	0.17± 0.02b	0.24± 0.04a
DEV	Maximum	8.86	4.34	1.29	11.81	3.04	10.39	26.07	6.60	0.15	0.30
	Minimum	5.45	3.70	1.05	7.27	2.59	7.73	12.90	4.91	0.13	0.18
DEV	Cv/%	30.09	28.91	28.21	30.09	28.91	26.18	86.96	26.18	10.99	17.18
RUD DEV STA DEG	Mean±SD	8.28± 2.53b	6.21± 0.63b	1.50± 0.29b	11.04± 3.37b	4.35± 0.44b	11.41± 2.49b	42.71± 24.49b	7.24± 1.58b	0.18± 0.02a	0.24± 0.02a
	Maximum	10.06	6.66	1.71	13.42	4.66	13.16	60.03	8.36	0.20	0.26
	Minimum	6.49	5.76	1.29	8.65	4.03	9.65	25.4	6.13	0.17	0.22
	Cv/%	30.54	10.18	19.47	30.54	10.18	21.81	57.32	21.81	11.41	9.39
	Mean±SD	7.1± 0.79c	5.65± 1.84c	1.24± 0.12c	9.47± 1.06c	3.96± 1.29c	10.04± 0.82c	25.83± 7.97c	6.38± 0.52c	0.18± 0.04b	0.23± 0.05b
DEG	Maximum	7.66	6.96	1.32	10.21	4.87	10.62	31.46	6.75	0.20	0.26
	Minimum	6.54	4.35	1.15	8.72	3.05	9.46	20.19	6.01	0.15	0.19
	Cv/%	11.17	32.53	9.40	11.17	32.53	8.20	30.84	8.20	20.46	23.48

Note: *L*, *W*, *H*, *Y*, *B*, *C*, *A*, *V*, *D*, *H*/*W* and *H*/*L* represent the length, width, height, windward slope length, leeward slope length, circumference, area, volume, horizontal scale, ratio of height and width and the ratio of height and length of *N*. *tangutorum* nebkhas. RUD:rudimental stage; DEV:developing stage; STA:stabilizing stage; DEG:degrading stage

successional stage on L, W, H, Y, B, A, V, D, H/L and H/W (Table 3).

The morphological parameters of the *N. tangutorum* nebkhas in the oasis-desert ecotone varied significantly along the succession from the RUD to the DEG. Except for H/L and H/W, all parameters increased from RUD to DEV and then decreased in DEG (P<0.05). Furthermore, H/L and H/W, which were indicators of the degree of expansion, also increased significantly with the successional stage (P<0.05), meaning that the horizontal expansion speed of *N. tangutorum* nebkhas was greater than the vertical expansion speed in the oasis-desert ecotone. Except for V, the C_v of *N. tangutorum* nebkhas' morphological parameters

in different successional stages were smaller. This indicated that morphological parameters of nebkhas at each successional stage did not differ significantly.

Almost all of the morphological parameters of N. *tangutorum* nebkhas have a good correlation at different successional stages, which indicated a strong interrelationship among the morphological parameters of nebkhas (Table 5). The height was significantly and positively correlated to nebkha length, width, horizontal scale, area, and volume, respectively. Significant correlations were also observed between length and width, between windward slope length, and leeward slope length, as well as between area and volume, respectively.

Table 5. Correlation coefficients between morphological parameters of N. tangutorum nebkhas.

Successional stage	Form parameters	L	W	H	Y	В	A	V	D	H/L	H/W
	L	1.000									
RUD	W	0.747 **	1.000								
	Н	0.937 **	0.928 **	1.000							
	Y	1.000 **	0.747 **	0.937 **	1.000						
	В	0.747 **	1.000 **	0.928 **	0.747 **	1.000					
(n = 159)	А	0.939 **	0.930 **	0.998 **	0.939 **	0.930 **	1.000				
	V	0.900 **	0.897 **	0.956 **	0.900 **	0.897 **	0.962 **	1.000			
	D	0.939 **	0.930 **	0.998 **	0.939 **	0.930 **	1.000 **	0.962 **	1.000		
	H/L	-0.439 **	0.242 **	-0.109	-0.439 **	0.242 **	-0.118	-0.112	-0.118	1.000	
	H/W	-0.012	-0.643 **	-0.333 **	-0.012	-0.643 **	-0.338 **	-0.321 **	-0.338 **	-0.821 **	1.000
	L	1.000									
	W	0.548 **	1.000								
	Н	0.917 **	0.819 **	1.000							
	Y	1.000 **	0.548 **	0.917 **	1.000						
DEV	В	0.548 **	1.000 **	0.819 **	0.548 **	1.000					
DEV (n = 179)	Α	0.924 **	0.825 **	0.992 **	0.924 **	0.825 **	1.000				
	V	0.835 **	0.825 **	0.972 **	0.835 **	0.825 **	0.940 **	1.000			
	D	0.924 **	0.825 **	0.992 **	0.924 **	0.825 **	1.000 **	0.940 **	1.000		
	H/L	-0.399 **	0.472 **	-0.018	-0.399 **	0.472 **	-0.054	0.103	-0.054	1.000	
	H/W	0.563 **	-0.343 **	0.239 **	0.563 **	-0.343 **	0.224 **	0.171 *	0.224 **	-0.836 **	1.000

Table 5. Continued.

STA (n = 129)	L	1.000									
	W	0.214	1.000								
	Н	0.841 **	0.702 **	1.000							
	Y	1.000 **	0.214 *	0.841 **	1.000						
	В	0.214 *	1.000 **	0.702 **	0.214 *	1.000					
	A	0.853 **	0.692 **	0.996 **	0.853 **	0.692 **	1.000				
	V	0.788 **	0.752 **	0.972 **	0.788 **	0.752 **	0.984 **	1.000			
	D	0.853 **	0.692 **	0.996 **	0.853 **	0.692 **	1.000 **	0.984 **	1.000		
	H/L	-0.657 **	0.553 **	-0.165	-0.657 **	0.553 **	-0.190 *	-0.121	-0.190 *	1.000	
	H/W	0.586 **	-0.612 **	0.095	0.586 **	-0.612 **	0.106	-0.013	0.106	-0.894 **	1.000
	L	1.000									
	W	0.428 **	1.000								
	Н	0.811 **	0.876 **	1.000							
	Y	1.000 **	0.428 **	0.811 **	1.000						
DEC	В	0.428 **	1.000 **	0.876 **	0.428 **	1.000					
$\frac{\text{DEG}}{(n=41)}$	A	0.811 **	0.876 **	1.000 **	0.811 **	0.876 **	1.000				
	V	0.769 **	0.897 **	0.992 **	0.769 **	0.897 **	0.992 **	1.000			
	D	0.811 **	0.876 **	1.000 **	0.811 **	0.876 **	1.000	0.992 **	1.000		
	H/L	-0.035	0.883 **	0.553 **	-0.035	0.883	0.553 **	0.591 **	0.553 **	1.000	
	H/W	0.454	-0.585 **	-0.136	0.454 **	-0.585 **	-0.136	-0.189	-0.136	-0.876 **	1.000

Note: (*) Correlation significant at the P<0.05 level; (**) Correlation is significant at the P<0.01 level. L, W, H, Y, B, C, A, V, D, H/W and H/L represent the length, width, height, windward slope length, leeward slope length, circumference, area, volume, horizontal scale, ratio of height and width and ratio of height and length of N. *tangutorun* nebkhas. RUD:rudimental stage; DEV:developing stage; STA:stabilizing stage; DEG:degrading stage.

Relationship between Morphological Parameters of *N. tangutorum* nebkhas

To reflect the development of N. tangutorum nebkhas at different successional stages, we performed regression analyses of the morphological parameters. As shown in Fig. 3a), the regression relationship between nebkha L and W fitted to quadratic and parabolic functions in STA and maintained a linear and increasing trend in RUD, DEV, and DEG, respectively. The regression relationship between D and H of nebkhas, between L and H of nebkhas, between W and H of nebkhas, and A and H of nebkhas illustrated significant linearly increasing trends in all successional stages, respectively (Fig. 3b,c,e,f). These results revealed that the nebkha horizontal scale, length, width and area increased with the height of N. *tangutorum* nebkhas at all successional stages, respectively.

The regression relationship between B and Y of nebkhas fitted to quadratic and parabolic functions in DVE and STA, and maintained a linear and increasing

Fig. 3. Regression relationships between morphological parameters of *N. tangutorum* nebkhas in different successional stages. RUD:rudimental stage; DEV:developing stage; STA:stabilizing stage; DEG:degrading stage.

trend in RUD and DEG, respectively (Fig. 3d). However, the regression relationship between H and V of nebkhas fitted to power functions in all successional stages, which were found to best fit on nebkhas size from the study area (Fig. 3g).

The regression relationship between A and V of nebkhas fitted to the second-order polynomial functions in all successional stages (Fig. 3h). In both RUD, STA, and DEG, the fitted trend curves go up over the entire time domain. Yet, in DEV, the fitted trend curve rises at the beginning. Since then, it becomes slightly flat and then shows a slightly decreasing trend.

Vegetation Growth of *N. tangutorum* in Different Sandy Land Types

As shown in Table 6, the developmental stage of N. *tangutorum* nebkhas had significant effects on M, h, C, DR, and LB. The M, h, C, and LB showed firstly increased and then decreased, and DR showed an

increasing trend with the succession of *N. tangutorum* nebkhas. For *M* and *C*, the *M* and *C* of *N. tangutorum* shrubs at DEV were both significantly higher than other successional stages (P<0.05). For *h*, the h of *N. tangutorum* shrubs at STA was significantly higher than RUD and DEV (P<0.05). For *DR*, the *DR* of *N. tangutorum* shrubs at DEG was significantly higher than other successional stages (P<0.05). For *LB*, the *LB* of *N. tangutorum* shrubs at DEV was significantly higher than at STA and DEG.

Discussion

Characteristics of *N. tangutorum* nebkhas in Different Sandy Land Types

In this study, the H/L and H/W of *N. tangutorum* nebkhas ranged from 0.14 to 0.17 and 0.17 to 0.24 at different successional stages, indicating that the

Developmental stage	M/(number/m ²)	<i>h</i> /cm	<i>C/%</i>	<i>DR</i> /%	<i>LB</i> /cm
RUD	10.37±3.21b	22.49±2.77c	16.22±4.36c	3.55±0.58d	11.12±3.27ab
DEV	22.12±10.55a	34.86±7.17bc	45.77±10.66a	9.56±2.25c	15.69±5.55a
STA	13.47±5.69b	45.42±2.88a	35.44±8.88b	25.69±7.88b	7.41±1.13c
DEG	8.11±2.58c	37.85±6.67ab	14.33±3.28c	40.36±11.25a	5.14±1.15cd

Table 6. Vegetation characteristics of N. tangutorum nebkhas in different successional stages.

Note: Values are means±SD. Different lowercase in the same column represents significant differences of *N. tangutorum* indices in different successional stages (*P*<0.05). RUD:rudimental stage; DEV:developing stage; STA:stabilizing stage; DEG:degrading stage.

horizontal growth rate of N. tangutorum nebkhas is much greater than the vertical growth rate, which is a growth strategy of N. tangutorum nebkhas due to self-protection. Our results were in accordance with both Toranjzar et al. [31] and Yang et al. [32]. The morphological parameters of nebkhas are important indexes for desertification monitoring, and the morphological characteristics of nebkhas are driven by shrub, sand sources, and climatic factors [33]. In this study, the morphology is closely related to sandy land types and succession (Table 3). The density of N. tangutorum nebkhas increased gradually with sand fixation (Fig. 2). The key reason was vegetation coverage, that is to say, the vegetation coverage of shrubs gradually increases as the sand become fixed, thereby increasing its interception of sand material and promoting the formation of nebkhas [34-35]. In addition, in this study, the size of the N. tangutorum nebkhas gradually increased as the sand became fixed. One reason for this phenomenon is the distance from sand source, N. tangutorum nebkhas adjacent to the sand source are subject to strong wind erosion and are less likely to form larger N. tangutorum nebkhas. The N. tangutorum nebkhas adjacent to the sand source is also greatly damaged by wind and sand, thus limiting the growth condition of *N. tangutorum* and eventually affecting the accumulation of N. tangutorum nebkhas [36]. Another important reason is that the development time of N. tangutorum nebkhas remote from the sand source is earlier, and some N. tangutorum nebkhas have developed to STA, when all morphological parameters of N. tangutorum nebkhas have reached the maximum. Therefore, large N. tangutorum nebkhas generally formed in the fixed sandy land.

Relationship between Morphological Parameters of N. tangutorum Nebkhas

This study found that there was a good correlation among morphological parameters of N. *tangutorum* nebkhas at different successional stages, indicating that the succession of N. *tangutorum* nebkhas was synergistic in different sandy land types [37]. In this study, the regression relationship between nebkha length and width fitted to quadratic and parabolic functions in STA (Fig. 3a). Our result was often at odds

with those reported by Yan et al. [37] who showed that the regression relationship between nebkha length and width maintained a linear and increasing trend. It can be inferred that length and width of N. tangutorum nebkhas may simultaneously increase in RUD and DEV, and tended to be STA when the long axis reached -b/2a, or wind erosion and activation start from both sides of the windward side of N. tangutorum nebkhas, and the activated substances deposit on the leeward side of N. tangutorum nebkhas, resulting in the increase of length [21], thereby accelerating N. tangutorum nebkhas into DEG. In this study, the height of N. tangutorum nebkhas at different successional stages is a linear function of horizontal scale, and this result was often at odds with both Tengberg and Chen [38] and Tengberg [5]. Who showed that the height and horizontal scale of nebkhas follow quadratic functions. This suggests that there was a strong correlation between height and horizontal scale, regardless of the successional stage of N. tangutorum nebkhas. Then, we conclude that it is irrelevant to determine the successional stage of nebkhas by the relationship between height and horizontal scale in isolation.

The Morphology and Development of Shrub Determines the Succession of Nebkhas

In arid and semi-arid regions, N. tangutorum nebkha is one of the most abundant and widely distributed nebkhas. Nevertheless, variations in climate and environment have motivated N. tangutorum nebkhas to new characteristics to cope with the complexity of the ecology [14]. In this study, according to field observations, the overall morphology of N. tangutorum nebkhas appears on approximate shield shape, coneshape, or semi-ellipse. This is essentially the same finding as described by Li et al. [39], as mention above. This is likely because nebkha landscapes are dynamic at different successional stages, as the growth status of nebkhas often changes to adapt to the external environment. Several studies have suggested that morphological variation was associated with both successional stage of nebkha and ecological characteristics of N. tangutorum [5-6, 39]. In this study, the mean height of the nebkhas formed N. tangutorum nebkha was between 0.38 m and 1.50 m, which was much larger than those reported for *Retama raetam* nebkhas in the Lake Bardawi [6], but smaller than *Tamarix* nabkhas in Hotan River Basin, Xinjiang [39]. This has been attributed largely to shrub characteristics. The height of nebkhas is determined by certain plant attributes [22]. Due to *N. tangutorun* has a prostrate growth habit, sand sources in the study area is abundant and *N. tangutorum* forms numerous sprouting branches after being buried. Sand burial stimulated photosynthesis in buried *N. tangutorum*, and transferred biomass allocation from belowground to aboveground parts, and promoted the growth state of *N. tangutorum* in a good direction [40-41]. As a result, the shrub size and the sediment interception increase [18, 35].

[42] and Sun et al. [43] found that the Zhu growth status of shrubs affected the formation and succession of nebkhas, only when the vegetation height exceeds 10~15 cm could effectively intercept fine sand material. The larger the density of plant branches is, the smaller the plant permeability is, and the stronger the intercepting ability of sand grains is. When the vegetation coverage exceeds 15%, surface wind erosion can be effectively controlled [44]. In this study, we found that the density, height, coverage, deadwood rate and length of new branch of N. tangutorum shrubs were directly related to the size and succession of nebkha [20]. Our data showed that N. tangutorum shrubs have a certain ability to fix sand, and especially at DEV, which has the strongest wind-proof and sand-fixing ability. Yet, the vegetation coverage ranged from 14.3 to 43.8% at different successional stages, thus leading to the N. tangutorum nebkhas being in a mounded state at other successional stages, whereas the N. tangutorum nebkhas being in a wind erosion state at DEG, and the size of N. tangutorum nebkhas decreases and finally disappears. Several previous studies have found that large nebkhas can conserve and increase soil moisture and nutrient content which stimulated the growth and activity of soil microorganisms, and promoted plant growth [14, 20, 45]. In this study, the length of new branch showed an increase, then decreasing trend with N. tangutorum nebkhas succession, indicating that in RUD and EDV, wind-deposited sand accumulated among roots, growing shoots, and shoots of N. tangutorum, thus driving the development of N. tangutorum nebkhas. However, when N. tangutorum nebkhas developed to DEV and DEG, an excessive amount of sand mass piles up within nebkhas, leading to insufficient air within the nebkhas and consequently to the necrosis of N. tangutorum, which led to the destruction and degradation of N. tangutorum nebkhas. Conversely, the deadwood rate of N. tangutorum gradually increased with successional stage, sparse near-ground branch coverage makes sand accumulation unfavorable. Shrub characteristics were similar to those of succession of nebkha, confirming previous observations.

Conclusions

Through the field investigation of 507 N. tangutorum nebkhas in three sandy land types (shifting sandy land, semi-fixed sandy land, and fixed sandy land), we found that the successional processes of N. tangutorum nebkhas were classified. Large morphological variations existed between successional stages, implying that the sand fixation capacity of N. tangutorum nebkhas changed in different successional stages. The converging effects of shrubs on N. tangutorum nebkhas formation and sand fixation capacity increased with increasing nebkhas size. We conclude that the morphology and size of N. tangutorum nebkhas were governed by successional stage, sandy land type, and vegetation growth. However, much remains to be learned about the relationship between morphological parameters and shrub types. The results indicated that N. tangutorum nebkhas in the study area is in the middle and early stages of succession due to the abundant supply of sand, and characterized by high density and small size in the landscape. If the expansion of desert into the oasis is to be stopped, more emphasis on the management of the nebkhas in the area will be necessary, especially N. tangutorum nebkhas, which are in the degrading stage.

Acknowledgments

This research was funded byNatural Science Foundation of Inner Mongolia(2022MS04013) and Carbon and nitrogen storage and distribution pattern of salt lake protection forest in arid region (STZX202213).

Conflict of Interest

The authors declare no conflict of interest.

References

- HUANG J.P., JI, M.X., XIE Y.K., WANG S.S., HE Y.L., RAN J.L. Global semi-arid climate change over last 60 years. Climate Dynamics. 46, 1131, 2015.
- HUANG J.P., YU H.P., GUAN X.D., WANG G.Y., GUO R.X. Accelerated dryland expansion under climate change. Nature Climate Change. 6, 166, 2015.
- 3. QUETS J.J., TEMMERMAN S., El-BANA M.I., Al-ROWAILY S.L., ASSAEED A.M., NIJS I. Unraveling landscapes with phytogenic mounds (nebkhas): anexploration of spatial pattern. Acta Oecologica. **49**, 53, **2013**.
- 4. QUETS J.J., EI-BANA M.I., AI-ROWAILY S.L., ASSAEED A.M., TEMMERMAN S., NIJS I. A mechanism of self-organization in a desert with phytogenic mounds. Ecosphere. 7, 1, 2016.
- TENGBERG A. Nebkha dunes as indicators of wind erosion and land degradation in the Sahel zone of Burkina Faso. Journal of Arid Environments. 30, 265, 1995.

- El-BANA M.I., LI Z.Q., NIJI I. Role of host identity in effects of phytogenic mounds on plant assemblages and species richness on coastal arid dunes. Journal of Vegetation Science. 18, 635, 2007.
- El-BANA M.I., NIJS I., KOCKELBERGH F. Microenvironmental and vegetational heterogeneity induced by phytogenic nebkhas in an arid coastal ecosystem. Plant and Soil. 247, 283, 2002.
- ZHANG P.J., YANG J., ZHAO L.Q., BAO S., SONG B.Y. Effect of *Caragana tibetica* nebkhas on sand entrapment and fertile islands in steppe-desert ecotones on the Inner Mongolia Plateau, China. Plant and Soil. **347**, 79, **2011**.
- GARCIA-ROMERO L., HESP P.A., PEA-ALONSO C., GMD SILVA, HERNANDEZ-CALVENTO L. Climate as a control on foredune mode in Southern Australia. Science of The Total Environment. 694, 1, 2019.
- RAHMONOV O., SNYTKO V.A., SZCZYPEK T. Phytogenic hillocks as an effect of indirect human activity. Zeitschrift Fur Geomorphologie. 53, 359, 2009.
- YANG Y.Y., LIU L.Y., SHI P.J., ZHAO M.D., DAI J.D., LYU Y.L., ZHANG G.M., ZUO X.Y., JIA Q.P., LIU Y., LIU Y. Converging effects of shrubs on shadow dune formation and sand trapping. Jounal of Geophysical Research-earth Surface. 124, 1835, 2019.
- CABRERA-VEGA L.L., CRUZ-AVERO N., HERNANDEZ-CALVENTO L., HRENANDEZ-CORDERO A.I., FERNANDEZ-CABRERA E. Morphological changes in dunes as an indicator of anthropogenic interferences in arid dune fields. Journal of Coastal Research. 65, 1271, 2013.
- BAO F., LIU M., CAO Y., LI J., WU B. Water addition prolonged the length of the growing season of the desert shrub *Titraria tangutorum* in a temperate desert. Frontiers in Plant Science. 11, 1, 2020.
- LUO W., ZHAO W., LIU B. Growth stages affect species richness and vegetation patterns of nebkhas in the desert steppes of China. Catena. 137, 126, 2016.
- ZHOU H., ZHAO W.Z., LUO W.C., LIU B. Species diversity and vegetation distribution in nebkhas of *Nitraria tangutorum* in the Desert Steppes of China. Ecological Research. 30, 735, 2015.
- 16. CAO C.Y., ABULAJIANG Y., ZHANG Y., FENG S.W., WANGT.T., REN Q., LI H.L. Assessment of the effects of phytogenic nebkhas on soil nutrient accumulation and soil microbiological property improvement in semi-arid sandy land. Ecological engineering. 91, 582, 2016.
- POOL M.R., POOL S.K., PARVANEH I., DEHGHANI Z., ROSTAMIAN M. Nebkhas of *Salvadora persica* and their effect on the growth and survival of *Prosopis cineraria*, *Tamarix aphylla*, and *Capparis decidua* trees and shrubs. Flora. 208, 502, 2013.
- LUO W., ZHAO W. Adventitious roots are key to the development of nebkhas in extremely arid regions. Plant and Soil. 442, 471, 2019.
- BAO F., XIN Z.M., LI J.Z., LIU M.H., CAO Y.L., LU Q., GAO Y., WU B. Effects of the simulated enhancement of precipitation on the phenology of *Nitraria tangutorum* under extremely dry and wet years. Plants-Basel. 10, 1, 2021.
- HESP P., MCLACHLAN A. Morphology, dynamics, ecology and fauna of Arctotheca populifolia and Gazania rigens nabkha dunes. Journal of Arid Environments. 44, 155, 2000.
- HESP P.A., SMYTH T.A.G. Nebkha flow dynamics and shadow dune formation. Geomorphology. 282, 27, 2017.

- 22. CHANG Z.F., ZHANG J.H., SHI X.G., WANG Q., ZHANG D.K., DUAN X.F. Correlation between nebkhas formation ability and silhouette layer parameters of desert plants. IOP Conference Series-Earth and Environmental Science. 191, 1, 2018.
- OKIN G.S., GILLETTE D.A., HERRICK J.E. Multiscale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. Journal of Arid Environments. 65, 253, 2006.
- 24. LI C.F., YANG F., ZHENG X.Q., HAN Z.Y., PAN H.L., ZHOU C.L., JI C.R. Changes in distribution and morphology of *Tamarix ramosissima* nebkhas in an oasis-desert ecotone. Geosciences Journal. **25**, 661, **2021**.
- 25. CRAMER M.D., MIDGLEY J.J. The distribution and spatial patterning of mima-like mounds in South Africa suggests genesis through vegetation induced aeolian sediment deposition. Journal of Arid Environments. **119**, 16, **2015**.
- 26. HESP P.A., HERNAN DE Z-CALVENTO L., COR DE RO A., JB GALLEGO-FERNAN DE Z, RUZ, M.H. Nebkha development and sediment supply. Science of The Total Environment. 773, 1, 2021.
- DU J.H., YAN P., DONG Y. The progress and prospects of nebkhas in arid areas. Journal of Geographical Sciences. 20, 712, 2010.
- ZHU Y.J., ZHANG X., YANG X.H., LIANG J.Y. Comparison and relationship analysis on related indexes of different development types of *Nitraria tangutorum* sandpiles and plants in desert-riverside ecotone Journal of Plant Resources and Environment. 27, 9, 2018 [In Chinese].
- 29. YANG F., WANG X.Q., YANG D.L., HAN Z.Y. Research on the morphological interactions between *Tamarix ramosissima* thickets and Nebkhas under different sand supply conditions: a case study in Cele oasis-desert ecotone. Acta Ecologica Sinica. **32**, 2707, **2012** [In Chinese].
- 30. WEI Y.J., DANG X.H., WANG J., GAO J.L., GAO Y. Response of C:N:P in the plant-soil system and stoichiometric homeostasis of *Nitraria tangutorum* leaves in the oasis-desert ecotone, Northwest China. Journal of Arid Land. 13, 934, 2021.
- TORANIZAR H., FATHI A., AHMADI A. Study of the morphometric characteristics of nebkhas and the amount of accumulated sand in Nitraria schoberi type in Mighan Playa Arak, Iran. Journal of Rangeland Science. 5, 20, 2015.
- 32. YANG Y.Y., LIU L.Y., SHI P.J., ZHANG G.M., QU Z.Q., TANG Y., LEI J., WEN H.M., XIONG Y.Y., WANG J.P., SHEN L.L., Morphology, spatial pattern and sediment of *Nitraria tangutorum* nebkhas in barchans interdune areas at the southeast margin of the Badain Jaran Desert, China. Geomorphology. 232, 182, 2015.
- 33. LUO W.C., ZHAO W.Z., REN H., LIU B. Nebkha morphological characteristics and soil nutrition content in three regions with different climates in North China. Jounal of Desert Research. 41, 191, 2021 [In Chinese].
- 34. LI Z., WU S., CHEN S.J., LIU X.L., JIN J.H.. Biogeomorphologic features and growth process of *Tamarix nabkhas* in Hotan River Basin, Xinjiang. Journal of Geographical Sciences. 20, 205, 2010.
- MAO D.L., LEI J.Q., ZENG F.J., ZAYNULLA R., WANG C., ZHOU J. Characteristics of wind erosion and deposition in oasis-desert ecotone in southern margin of Tarim Basin, China. Chinese Geographical Science. 24, 658, 2014.

- 36. LI C.F., YANG F., ZHENG X.Q., HAN Z.Y., PAN H.L., ZHOU C.L., JI C.R. Changes in distribution and morphology of *Tamarix ramosissima* nebkhas in an oasisdesert ecotone. Gesciences Journal. 25, 661, 2021.
- YAN N., HASI E., PARK K.H., XIA X.D., CHUN K.W. Study on the Morphological Parameters and Evolution of *Caragana microphylla* Lam. Nebkhas in Inner Mongolia, China. Journal of Korean Forestry Society. 98, 156, 2009.
- TENGBERG A, CHEN D. A comparative analysis of nebkhas in central Tunisia and northern Burkina Faso. Geomorphology. 22, 181, 1998.
- LI Z.Z., WU S.L., CHEN S.J., CHEN X.L., JIN J.H., LIU Q. Bio-geomorphologic features and growth process of *Tamarix nabkhas* in Hotan River Basin, Xinjiang. Journal of Geographical Sciences. 20, 215, 2010.
- DECH J., MAUN M. Adventitious root production and plastic resource allocation to biomass determine burial tolerance in woody plants from Central Canadian coastal dunes. Annals of Botany. 98, 1095, 2006.

- GILBERT M.E., RIPLEY B.S. Biomass reallocation and the mobilization of leaf resources support dune plant growth after sand burial. Physiol Plantarum. 134, 464, 2008.
- 42. ZHU Z.D., CHEN G. T.Land sandy desertification in China. Beijing: Science Press, **1994** [In Chinese].
- SUN T., JIA Z.Q., LIU H.J., SHANG W., LIU J., ZHANG L.H. Spatial pattern of points distribution of sand piles of *Nitraria tangutorum* nebkhas at different developmental stages in desert-oasis ecotone of Minqin. Scientia Silvae Sinicae. 56, 12, 2020 [In Chinese].
- 44. WANG S.P., LI Z.Z., LING Z.Y., CAO X.D. The correlation analysis of the geomorphy morphological characteristics of nabkha in the Ebinur Lake Region, Xinjiang. Journal of Xianyang Normal University. 23, 58, 2008 [In Chinese].
- 45. WANG X.Y., MA Q.L., JIN H.J., FAN B.L., WANG D.B., LIN H.L. Change in Characteristics of Soil Carbon and Nitrogen during the Succession of *Nitraria Tangutorum* in an Arid Desert Area. Sustainability. **11**, 1, **2019**.