
Introduction

Over the past several years, Thailand, especially in 
the northern region, has suffered from high particulate 
matter (PM) levels, particularly PM2.5 during the dry 
season. Many northern provinces have an average of 
PM2.5 concentration exceeding the safe level according 
to the WHO guideline.  An air quality monitoring 
station in many provinces reported a PM2.5 level higher 
than 200, which is above health-hazard levels. Some 
provinces in the region exceed the safe level for several 
consecutive days affecting people’s health. The short-

term effects are eye, nose, throat, and lung irritation, 
coughing, sneezing, and shortness of breath. The long-
term effects may be associated with increased lung 
cancer and cardiopulmonary diseases. The sources of 
PMs in the region are mainly caused by wildfire smoke 
and agricultural burning. The ability to anticipate the 
levels of PM2.5 is crucial as it can guide the people in the 
area on how to avoid exposure to air pollutants. Many 
techniques, such as machine learning and regression 
models, have been used to study and forecast PM 
concentrations using air pollutants and meteorological 
data [1-3]. 

Another approach to be used is time series analysis 
which aims to provide information and predict outcomes 
from historical data. Many time series methods, such 
as exponential smoothing (ETS) and autoregressive 
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integrated moving average (ARIMA), is broadly used to 
capture structures in time series data. It is constructed 
based on the dependent relationship between an 
observation and some number of lagged observations. 
Another statistical method often used in time series 
prediction is a state-space model. It is also a dynamic 
linear model (DLM), commonly used in complex time 
series modeling, including linear, nonlinear, non-
stationary, structural changes, and irregular patterns. 
DLM and ARIMA are often used interchangeably in 
time series modeling. Generally, statistical modeling is 
a versatile method to apply in diverse fields for studying 
trends and forecasting, for example, prediction of 
environmental data [4-8], in epidemiology [9], and in 
finance [10]. 

Air pollution forecasting is one of the popular topics 
for statistical modeling, and there is much literature 
about the application. [11] used ARIMA to forecast 
ambient air pollutants, particularly O3, NO, NO2, and 
CO, in Delhi, India. They suggested that the model is 
appropriately applied to forecast the pollutants for short-
term purposes. [12] adapted ARIMA to forecast air 
quality in Hong Kong. They concluded that statistical 
modeling is suitable for the short run and forecasting 
performance can be diverse depending on locations 
and timescales. [13] used the time series models 
ARIMA and Holt Winter models to forecast short-term 
concentrations of pollutants in Indonesia. For predicting 
CO, NO2, and O3, the Holt Winter model outperforms 
the ARIMA model, while ARIMA was better at 
predicting PM10 and SO2 concentrations. [14] used 
ARIMA, ETS, and singular spectrum analysis (SSA) to 
forecast 24-hour average for PM10 concentrations in the 
most polluted cities in Turkey. They found that, overall, 
the SSA model showed stronger results than ETS and 
ARIMA, especially short-term forecasts. However, the 
ETS performed better in some areas, especially for the 
long-term forecast.

As statistical modeling uses collections of 
probability distributions and assumptions to generate 
sample data and make predictions, machine learning, 
on the other hand, concentrates on a prediction by 
using learning algorithms to find patterns based on 
available data. As a result, these two fields overlap 
significantly, as they can apply to deal with data and 
make a prediction. Deep learning and machine learning 
are often used interchangeably. However, deep learning 
is considered a more specialized and sophisticated 
machine learning algorithm. It uses a layered structure 
of algorithms called an artificial neural network 
(ANN) inspired by the human brain’s biological neural 
network. A recurrent neural network (RNN) is a class 
of artificial neural networks where connections between 
nodes form a directed graph along a temporal sequence. 
In other words, it means that it allows previous outputs 
to be used as inputs while having hidden states.  
As a result, it can perform as a time series model as the 
computation takes historical information into account. 
A long short-term memory (LSTM) is also an artificial 

recurrent neural network that is an architecture used in 
deep learning. Generally, LSTM is an extended RNN 
that uses cell state, input, output, and forget gates to 
store long-term dependencies to overcome vanishing 
gradient problems in typical RNNs. The applications of 
deep learning techniques for time series prediction and 
forecasting can be seen in [15-18]. Many researchers 
used machine learning algorithms to forecast PM2.5 
concentrations [19-21].

Both statistical and deep learning neural networks-
based methods can provide predictive values for time 
series data. Many researchers have examined the 
performance of statistical methods compared with 
machine learning-based techniques [22-25]. The results 
indicated that both methods are comparable. However, 
there is no sufficient evidence to certify that statistical 
methods are superior to machine learning and vice 
versa. The accuracy of the methods mainly depends 
on the data. According to the literature, statistical and 
deep learning methods are good for forecasting air 
pollution in many areas. In this study, for the first time, 
statistical and deep learning techniques are compared 
to forecast the daily PM2.5 concentration in Thailand. 
The study area is the northern region of Thailand, 
where the number of days a year in which the PM2.5 
exceeds the standard levels is more than the other 
regions. This causes great concern for public health in 
the community. In this study, we aim to compare the 
performance of statistical methods and deep learning 
techniques for forecasting the daily PM2.5 concentration 
in northern Thailand.

Materials and Methods  

Study Area and Data 

The data used in this research is the daily 
average (24-hour average) of PM2.5 concentration 
(micrograms per cubic meter, µg/m3) in the northern 
region of Thailand collected and provided by the 
Pollution Control Department, Air Quality and 
Noise Management Bureau, The Ministry of Natural 
Resources and Environment of Thailand. According to 
the data source, there are 17 provinces classified in the 
northern region: Chiang Mai, Chiang Rai, Lampang, 
Lamphun, Mae Hong Son, Nan, Phrae, Phayao, Tak, 
Nakhon Sawan, Uttaradit, Phitsanulok, Sukhothai, 
Phetchabun, Kamphaeng Phet, Phichit and Uthai Thani. 
However, the air monitoring stations in Uttaradit, 
Phitsanulok, Sukhothai, Phetchabun, Kamphaeng Phet, 
Phichit, and Uthai Thani are relatively new installed, 
so we do not include these stations in the study. As a 
result, the data from 16 stations in 10 provinces are 
analyzed. The locations of the considered stations are 
shown in Fig. 1. The dataset contains the daily average 
of PM2.5 concentration from January 2018 to December 
2020. Therefore, the complete dataset consists of  
n = 1095. However, in some stations, the data have 
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not been recorded in early 2018 and contain some 
missing values. These missing data are handled prior to 
modeling by the moving average method. The summary 
statistics of the daily average of PM2.5 concentration for 
each station are provided in Table 1.

The averages of PM2.5 concentration are between 
20 to 40 µg/m3, and the medians are slightly lower. Most 
stations have standard variation between 20-35 µg/m3, 
except station 53t and 73t, which show high variations. 
The highest mean, standard deviation, median, and 
maximum PM2.5 concentration is found at station 73t, 
located in Chiang Rai, the most northern province 
in Thailand. Meanwhile the smallest mean, standard 
deviation, median, and maximum PM2.5 concentration 
are at station 41t, located in Nakhon Sawan, the lower 
northern region. The time series plots and boxplots 
of the daily average PM2.5 concentration are displayed 
in Fig. 2 and 3, respectively. They illustrate that all 
stations have a similar pattern, having seasonality 
with high concentration period from January to May, 
and low concentration period from June to December. 
Station 73t has the highest peak, whereas 41t shows less 
peak than other stations. The boxplot shows that the 

data in all stations are right skewed with a large number 
of extreme values. 

In addition, we model with the first 80% of the data, 
denoted by the training set, and the remaining 20% is 
used for evaluating the models’ performance, denoted 
by the testing set.  Note that the testing set is in a low 
concentration period, from July to December 2020. The 
data are normalized before modeling using the min-
max normalization technique. To validate the prediction 
performance of the models, the root mean squared error 
(RMSE) is presented.

	
Methods

In this section, we present brief statistical methods 
as well as deep learning methods that are to be 
employed in predicting the PM2.5 concentration. For 
statistical methods, we adopt three techniques, including 
exponential smoothing, autoregressive integrated 
moving average, and dynamic linear modeling. For 
deep learning methods, we adopt the recurrent neural 
network and long-short term memory.  

Holt-Winters Exponential Smoothing (ETS)

The predicted value at time t  is calculated based 
on the first observation, y1, through the most recent 
observation yt–1. The level Lt, trend Tt, and season St 
are updated through updating equations with three 
smoothing parameters α, β, γ. The ETS method can 
be implemented with an “additive” structure or a 
“multiplicative” structure depending on the behavior of 
time series data. The equations for the additive model 
are as follows:

1 1( ) (1 )( ),t t t c t tL y S L Tα α− − −= − + − +        (1)

1 1( (1 ) ,t t t tT L L Tβ β− −= − + −                (2)

( ) (1 ) ,t t t t cS y L Sγ γ −= − + −                (3)

ˆ ,t k t t t c ky L kT S+ − −= + +                    (4)

where yt is the observed value of the time series at time 
t, c is the number of periods in the seasonal cycle, k is 
the number of periods in the forecast lead-time, and ŷt+k 
is the forecast at k periods ahead. The equations for the 
multiplicative model with multiplicative seasonality are 
as follows:

( )1 1(1 ) ,t
t t t

t c

yL L T
S

α α − −
−

= + − +
           (5)

( )1 1(1 ) ,t t t tT L L Tβ β− −= − + −
             (6)

Fig. 1. Location of stations.
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(1 ) ,t
t t c

t

yS S
L

γ γ −= + −
               (7)

( )ˆ .üüüy L kT S+ − += +
               (8)

Autoregressive Integrated Moving Average (ARIMA)

A standard notation for the model is ARIMA (p, d, 
q), where p is the number of previous (lag) observations 
that related to the current observation, q is the number 
of previous (lag) errors that related to the current 
observation, and d is the degree of differencing between 
observation and previous observation, in order to make 
the time series stationary. The values of p and q can be 
determined using the autocorrelation function (ACF) 
and partial autocorrelation function (PACF) plots. The 
specific ARIMA (p, d, q) model is written as

 (9)

where c is a constant, φ1, ..., φp, θ1, ..., θp are parameters 
to be estimated, and ϵt is an error term. The point 
forecast of k-step ahead forecasting in ARIMA model, 
given the observations up to time t, is denoted by ŷt+k. 
It can be obtained by replacing t with t + k, starting with 
k = 1. These steps are repeated for k = 2, 3, ... for all 
future periods required.

Dynamic Linear Model (DLM)

The DLM is a class of state space model when state 
transition and observation functions are set to be linear, 
with design matrices F and G, with Gaussian noises. 
A basic structure of the DLM is expressed as follows:

1 , ~ (0, ),t t t t tx Fx w w N W−= +        (10)

, ~ (0, ).t t t t ty Gx v v N V= +           (11)

The xt denotes the state of the system at time t and 
yt denotes the corresponding observation. The wt is a 
stochastic component representing a simulator noise,   
wt ~ N(0, Wt), and vt denotes a stochastic measurement 
noise, vt ~ N(0, Vt). The four parameters F, G, Wt, Vt are 
used for completely determining posterior distributions 
of the states in the DLM. 

The posterior distribution of the state at time  
t given the observations up to time t, p(xt | y1:t), where 
y1:t = {y1, ..., yt} is assumed to be Gaussian. Thus, 
recursive Bayesian filtering algorithms, or Kalman 
filter, can be used to compute the posterior mean, mt|t, 
and variance, Ct|t,

( )1: | || ~ , .  t t t t t tx y N m C
              (12)

Consequently, the predictive distribution of the 
state p(xt+k | y1:t) and the predictive distribution of the 

Table 1. Descriptive statistics of daily average of PM2.5 concentration.

Code Province Starting n Missing Mean S.D. Median Min. Max.

35t Chiang Mai 1 Jan 18 1095 3 33.028 27.508 23.000 7.250 228.250

36t Chiang Mai 1 Jan 18 1095 62 29.559 27.128 19.667 3.550 209.708

37t Lampang 17 Oct 18 807 0 29.895 26.550 20.000 2.833 157.136

38t Lampang 17 Oct 18 807 3 24.766 22.312 14.000 2.750 127.524

39t Lampang 17 Oct 18 807 2 25.833 28.311 12.917 2.792 265.524

40t Lampang 1 Jan 18 1095 12 28.292 23.503 19.542 3.357 151.042

41t Nakhon Sawan 17 Oct 18 807 5 26.842 15.582 23.104 6.125 76.042

57t Chiang Rai 18 Jul 18 897 1 29.300 33.139 17.917 3.708 254.333

58t Mae Hong Son 21 Jul 18 894 2 27.471 41.294 10.783 1.833 270.792

67t Nan 20 Jul 18 895 4 26.582 24.529 17.333 3.667 167.583

68t Lamphun 18 Jul 18 897 23 29.021 21.510 22.500 3.056 182.958

69t Phrae 17 Oct 18 807 3 29.711 26.135 21.688 3.083 157.708

70t Phayao 17 Oct 18 807 117 27.496 26.777 18.542 3.458 245.500

73t Chiang Rai 17 Oct 18 807 13 39.379 55.304 18.500 2.833 398.125

75t Nan 1 Jan 18 1095 25 24.824 31.530 12.771 2.545 262.208

76t Tak 1 Jan 18 1095 21 28.508 22.523 21.176 2.176 133.250
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Fig. 2. Time series plots of the daily average of PM2.5 concentration.

Fig. 3. Boxplots of the daily average of PM2.5 concentration.
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gate’s activation vector, and c �t is the cell input activation 
vector. The ct and ht are the cell and hidden layer vectors 
where ° denotes the element-wise product operator, and 
xt is the input vector. The W and U are the weighted 
matrices of the input and recurrent connections, 
respectively. The σg and σh are the activation functions. 
The bf, bi, bo and bc are bias terms.

Packages and Programming

In this work, the application of statistical and deep 
learning analyses is performed using R statistical 
software programming. For statistical methods, the ETS 
is performed via a function ets in package forecast. The 
function automatically estimates the model parameters 
and uses the Akaike information criteria (AIC) to select 
an appropriate ETS model, then returns fitted values 
and predicted values at k-step ahead forecasting; the 
ARIMA uses auto.arima function in forecast package 
which returns the best ARIMA model according to 
the AIC, or the Bayesian information criterion (BIC) 
value, and the DLM uses package dlm which includes 
functions for maximum likelihood estimation of the 
parameters of a DLM and Kalman filtering including 
functions dlmMLE,  dlmFilter, and dlmForecast.  

For deep learning techniques, we use layer_simple_
rnn function for the RNN and layer_lstm in Keras 
package. To optimize the performance of deep learning 
models, it was necessary to find the optimal the hyper-
parameters for each model [26-28]. The optimal 
values of the hyper-parameters of the examined deep 
learning methods were determined by searching grid on  
a training set. For the number of input node, it is based 
on the number of AR terms used in the Box-Jenkins 
model (p = 1) [29]. Deep learning models are trained on 
100 epochs with 4 sample in batch sizes based on the 
GPU memory. We used a two-layer of hidden layer with 
10, 30, and 60 neurons for each layer. For activation 
function, we use the sigmoid and hyperbolic tangent 
functions to find the best model with root mean squared 
error (RMSE) as a loss function.

Results and Discussion

We predict the daily PM2.5 concentration for 16 
stations.  For each station, the first 80% of the data is 
used as the training set, and the remaining 20% is the 
testing set. To evaluate the performance of the models, 
the RMSEs are calculated and compared.

Statistical Models Evaluation

We focus on forecasting one and seven days ahead 
(k = 1, 7) for all periods in the testing set. To complete 
the k = 1, 7 days ahead prediction for all testing periods, 
we shift a training data set by one day walk-forward 
validation. The average RMSEs for one day and seven 
days ahead forecasting are presented in Table 2. 

observation p(ŷt+k | y1:t) at k-step ahead forecasting is 
also Gaussian. The predictive mean and variance can be 
obtained by propagating the previous forecasts 

1: | || ~ ( , ),t k t t k t t k tx y N a R+ + +            (13)

1: | |ˆ | ~ ( , ).t k t t k t t k ty y N f Q+ + +           (14)

Recurrent Neural Network (RNN)

The RNN has the recurrent hidden layer that 
means the input of the hidden layer also contains the 
state of the previously hidden layer. In other words, 
the nodes of the hidden layer can be self-connected or 
interconnected. The RNN network can be express as 
the following equations:

1( ),t h h t h t hh W x U h bσ −= + +           (15)

( ),t y y t yy W h bσ= +
                 (16)

where ht are the hidden layer vectors, xt is the input 
vector, yt is the output vector, Wy is the weighted matrix, 
Uh is the transition matrix, σh denotes the activation 
function in the hidden layer and σy denotes the activation 
function in the output vector, and bh and bY are bias 
terms.

Long-Short-Term Memory (LSTM)

The LSTM network is an extension of RNN, which 
consists of a more complex structure in the hidden layer 
and has forget gates to store long-term dependencies 
to overcome vanishing gradient problems in typical 
RNN. The LSTM processes the data sequentially, 
passing the information as it propagates forward. The 
operations within the LSTM allow it to forget or keep 
the information. The LSTM network can be expressed 
as the following equations:

1( ),t g f t f t ff W x U h bσ −= + +
         (17)

1( ),t g i t i t ii W x U h bσ −= + +
           (18)

1( ),t g o t o t oo W x U h bσ −= + +
         (19)

         (20)

                (21)

( ),t t h th o cσ= °                     (22)

where ft is the forget gate’s activation vector, it is the 
input/update gate’s activation vector, ot is the output 
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Table 2. The average RMSEs of statistical models for the one day and seven ahead forecasting.

Station
Training Testing (k = 1) Testing (k = 7)

ETS ARIMA DLM ETS ARIMA DLM ETS ARIMA DLM

35t 12.171 11.285 12.061 2.756 2.643 2.728 4.328 4.145 4.444

36t 12.759 11.882 12.603 2.952 2.917 2.926 4.570 4.402 4.711

37t 10.589 9.865 10.511 3.671 3.552 3.656 5.891 5.224 6.094

38t 8.493 7.943 8.432 3.215 3.258 3.189 4.645 4.039 4.701

39t 13.316 12.680 13.195 2.260 2.206 2.256 3.477 2.993 3.580

40t 10.022 9.553 9.943 3.496 3.394 3.462 5.140 4.611 5.234

41t 7.195 6.789 7.179 4.653 4.462 4.623 7.461 6.611 7.323

57t 15.325 14.290 15.110 3.570 3.700 3.560 6.105 6.011 6.138

58t 13.534 13.221 13.491 2.092 2.162 2.122 3.086 3.239 3.149

67t 9.124 8.119 9.052 3.001 3.017 3.001 5.099 4.825 5.188

68t 9.517 8.759 9.433 3.553 3.443 3.563 5.926 5.601 6.149

69t 10.759 10.059 10.675 3.404 3.398 3.396 5.739 5.041 5.882

70t 11.213 9.886 11.110 3.602 3.785 3.643 7.369 6.955 7.580

73t 22.681 20.744 22.409 3.683 3.607 3.682 6.030 6.199 6.150

75t 11.522 10.982 11.421 2.345 2.302 2.291 4.009 3.692 3.796

76t 8.142 7.723 8.147 2.828 2.814 2.821 4.263 4.210 4.380

Fig. 4. One day ahead forecasting results.
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From Table 2, the ARIMA outperforms the ETS and 
DLM models as it provides the smallest values of the 
RMSE in all stations in the training set. In the testing 
set, on the other hand, the DLM and ETS models 
perform better than ARIMA in some stations, especially 
when k =1. Unsurprisingly, when k = 7 all models 
perform worse than k = 1. The RMSEs in the training 
set are higher than in the testing set in all stations. 
One possible reason is that the training set data are in 
the hot season (March-May) that PM2.5 concentrations 
are usually relatively high. In contrast, the data in the 
testing set start from June or July to December 2020, 
which are in the wet and cool season (June – February) 
with low levels of PM2.5 concentrations. Interestingly, 
station 41t, with the smallest mean, standard deviation, 
median, and maximum PM2.5 concentration in the 
dataset, as shown in Table 1, has the lowest RMSE in 
the training set, but the highest RMSE in the testing 
set. Also, the percentage change of the RMSEs from 
training to testing set of station 41t is the smallest 
compared to other stations. 

To illustrate the prediction of the methods, we plot 
the observed and predicted of PM2.5 concentration 
of the testing set for one day ahead (k = 1) and seven 
days ahead (k = 7) forecasting shown in Fig. 4 and 5, 
respectively. From Fig. 4, forecasting with k = 1, the 
predicted values from all methods resemble each other. 
But for forecasting with k = 7 in Fig. 5, the predicted 

values, especially those obtained from DLM, are more 
different from the observed ones than ARIMA and 
ETS.  The forecasting plots for k = 1, 7 in each station 
show similar patterns but more errors in k = 7 forecasts.

Deep Learning Techniques Evaluation

Initially, we model the deep learning techniques; 
RNN and LSTM for the training set using a two-
hidden layer with a sigmoid activation function  

Table 3. Number of nodes in the first and the second hidden 
layers.

Fig. 5. Seven days ahead forecasting results.

Model
Number of nodes

First layer Second layer
RNN1 LSTM1 10 10
RNN2 LSTM2 10 30
RNN3 LSTM3 10 60
RNN4 LSTM4 30 10
RNN5 LSTM5 30 30
RNN6 LSTM6 30 60
RNN7 LSTM7 60 10
RNN8 LSTM8 60 30
RNN9 LSTM9 60 60
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and the Adam optimizer. To find the optimal models 
for each technique, we structure 9 different models 
based on the different numbers of nodes in the first 
and second layer. We denote the models according to 
the number of nodes as shown in Table 3. Note that 

we use dropout equal to 0.5 to reduce the overfitting 
problem. The RMSEs for all models are presented  
in Tables 4-5. In the training set, RNN9 and LSTM9 
give smallest RMSE in most stations, followed by 
RNN6 and LSTM6. In the testing set, for RNNs, 

Table 4. The RMSE of the RNN models.

Station
Training

RNN1 RNN2 RNN3 RNN4 RNN5 RNN6 RNN7 RNN8 RNN9

35t 21.372 19.374 21.702 21.085 18.398 16.434 20.422 20.878 17.552

36t 21.551 15.743 15.831 20.751 16.837 15.915 19.979 19.424 14.991

37t 21.457 19.463 19.041 21.385 21.326 17.316 20.789 15.361 14.501

38t 17.180 15.447 15.652 17.418 12.992 13.330 16.429 11.355 11.976

39t 22.569 20.531 18.240 21.703 18.077 15.123 23.771 17.571 15.557

40t 17.679 14.048 14.056 15.519 12.537 12.662 15.906 12.803 11.450

41t 12.832 11.015 11.742 13.485 11.423 9.754 13.568 11.365 10.690

57t 27.688 26.934 23.999 26.330 22.814 21.350 26.434 24.267 17.533

58t 35.818 27.285 27.654 30.656 27.716 21.917 30.438 23.757 20.518

67t 20.490 18.844 19.038 18.584 12.766 13.142 19.600 17.520 14.170

68t 18.964 15.806 14.209 17.897 14.055 14.471 17.803 13.896 13.748

69t 21.619 19.394 19.091 20.739 14.925 18.961 20.308 18.381 15.188

70t 23.048 21.272 21.164 22.421 21.217 17.622 22.756 19.794 18.914

73t 49.394 46.286 41.397 43.775 32.432 32.194 44.319 38.059 38.031

75t 27.509 18.272 19.573 22.469 13.444 16.125 21.185 16.744 17.419

76t 17.869 15.370 13.365 16.466 13.294 11.723 16.856 14.606 12.824

Station
Testing

RNN1 RNN2 RNN3 RNN4 RNN5 RNN6 RNN7 RNN8 RNN9

35t 15.476 10.116 9.656 11.925 6.892 3.013 12.973 7.321 3.585

36t 18.876 10.564 6.446 14.219 8.102 7.392 13.581 10.446 6.396

37t 9.237 6.986 6.522 6.379 7.147 6.194 6.578 4.962 6.470

38t 8.370 5.656 5.020 7.392 4.251 4.354 7.272 4.027 5.022

39t 10.081 5.036 3.850 6.535 2.779 4.336 8.435 3.020 4.308

40t 13.930 9.105 7.728 9.505 6.205 4.704 10.072 4.416 4.374

41t 6.909 5.690 6.436 6.996 5.650 5.254 7.116 5.625 5.851

57t 12.029 10.093 7.613 8.752 3.897 4.310 8.798 4.606 4.855

58t 16.366 13.926 10.165 9.453 4.743 4.412 10.687 3.728 4.311

67t 10.031 8.808 6.978 6.703 4.194 4.710 6.839 7.319 4.226

68t 5.217 4.281 4.193 4.442 4.308 5.950 4.599 4.308 5.088

69t 8.249 6.222 6.348 5.428 3.803 6.533 5.640 3.918 5.789

70t 8.815 6.046 7.329 6.980 6.542 6.483 7.140 6.512 8.555

73t 15.869 13.992 8.107 11.417 4.041 5.415 11.902 5.875 5.762

75t 17.398 17.428 15.958 12.394 2.659 3.335 9.809 4.523 3.410

76t 17.105 11.296 10.034 17.018 11.423 3.650 13.984 9.600 5.661
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Table 5. The RMSE of the LSTM models.

RNN5 gives the smallest RMSE, followed by RNN8. 
Meanwhile, for LSTMs, LSTM8 shows the smallest 
RMSE, follows by LSTM6. Overall, the RMSEs  
from the LTSM are lower than the RNN in most 
stations. 

Comparison

Several models from the deep learning techniques 
are applied, so we select the model providing the 
least RMSE from RNN and LSTM to compare with 

Station
Training

LSTM1 LSTM2 LSTM3 LSTM4 LSTM5 LSTM6 LSTM7 LSTM8 LSTM9

35t 25.144 17.183 16.976 21.418 16.694 15.862 22.733 18.448 14.244

36t 19.820 31.515 13.446 20.189 16.481 14.879 19.932 14.771 14.344

37t 21.763 20.883 13.309 17.931 14.846 13.936 19.673 28.415 12.673

38t 17.009 12.702 15.429 14.747 15.858 12.182 16.465 11.844 11.583

39t 22.345 20.838 15.913 21.766 16.960 15.725 23.295 18.768 14.924

40t 15.504 14.797 12.590 19.595 13.243 11.658 15.366 25.572 11.794

41t 12.668 11.962 11.393 12.805 11.535 9.670 12.753 10.876 9.133

57t 25.216 22.463 22.055 26.609 21.813 24.009 26.456 20.138 17.433

58t 33.516 22.626 25.589 30.755 24.298 21.995 32.317 23.877 19.601

67t 19.344 16.824 15.859 18.188 17.092 13.392 17.600 16.633 13.648

68t 18.002 16.948 12.432 17.343 14.613 13.714 18.527 15.422 15.001

69t 20.568 16.303 16.164 20.390 16.302 14.661 20.756 17.033 16.908

70t 23.578 20.173 20.582 22.020 20.817 15.585 22.592 17.956 16.492

73t 45.402 35.065 31.159 41.981 33.779 32.294 59.820 32.507 29.361

75t 22.875 16.679 13.043 46.094 13.251 14.588 18.457 12.326 15.238

76t 17.192 14.235 11.995 18.265 14.224 11.789 15.382 12.818 11.950

Station
Testing

LSTM1 LSTM2 LSTM3 LSTM4 LSTM5 LSTM6 LSTM7 LSTM8 LSTM9

35t 22.561 8.424 14.380 13.876 6.902 11.988 14.443 9.232 4.276

36t 14.649 35.572 4.577 14.323 8.082 6.096 15.233 8.925 4.040

37t 9.060 7.235 4.860 6.718 3.627 4.649 6.206 17.302 4.696

38t 7.370 4.988 5.203 6.347 5.506 3.532 6.504 3.530 3.538

39t 9.256 7.866 3.336 8.844 2.959 3.314 5.854 3.056 3.732

40t 10.840 12.182 4.851 17.201 5.886 4.646 9.970 24.510 5.081

41t 6.763 5.640 5.993 6.473 5.492 5.131 6.762 5.320 4.856

57t 9.185 5.629 10.135 9.818 4.612 9.360 8.845 3.768 4.389

58t 17.659 6.960 12.334 10.659 3.570 3.512 12.494 2.790 3.797

67t 7.448 7.360 4.009 6.209 6.513 3.490 6.431 7.216 3.809

68t 4.805 5.573 3.789 5.086 4.184 3.809 4.861 4.064 4.380

69t 6.032 3.789 4.055 6.321 3.921 5.178 5.227 3.647 4.504

70t 7.139 4.846 5.809 6.321 4.822 6.320 6.292 5.704 6.805

73t 12.401 12.369 7.231 9.496 5.854 10.768 29.339 3.850 8.217

75t 11.921 11.872 3.018 38.322 4.561 2.803 9.448 2.866 2.832

76t 16.604 12.356 5.473 19.864 12.785 3.692 13.506 7.413 6.127
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hand, the deep learning approach only use one model 
for any k  days ahead prediction. Although it can be 
computationally demanding depending on the model 
structure, we model once to show all predictions. 

The errors from models tend to be higher when 
the data are in the hot season (March-May) because 
of high PM2.5 concentrations. However, the models 
might perform differently when the data are in other 
seasons. For example, of all stations, station 41t, located 
in Nakhon Sawan, has the poorest forecasting results 
despite its lowest maximum concentration of only 
76.042 µg/m3, whereas other stations are more than 
100 µg/m3. One possible reason is that the data in this 
station have no clear seasonal pattern, as shown in  
Fig. 2. Nakhon Sawan is the lower north province where 
the topography is rather different from other stations 
which are mostly located in the upper north provinces. 

Our results agreed with the works of Liu et al. 
[12] and Syafei et al. [13] that suggested that ARIMA 
provided the best results, especially for short-term 
forecasting of air pollution data. Nonetheless, we could 
indicate that the statistical methods are superior to the 
machine learning techniques, as the first ranks from 
all stations are completely from statistical methods. 
Furthermore, as the structure of the deep learning 
techniques plays a vital role in model performance, 
more possible structures could be investigated  
to improve the predictive results. Unfortunately,  
this is leading to more computationally expensive 
modeling. 

the statistical models in the testing set. Then we rank 
first, second and third according to their RMSE scores.  
The results are shown in Table 6. The statistical models, 
especially ARIMA, outperform other models, followed 
by deep learning techniques, LSTM, and RNN. 
There are no promising results for the deep learning 
techniques to indicate which structure of the models is 
most outstanding. The most effective structure might 
incline to the data in each station. Overall, R2 of the 
models in ranks 1, 2, and 3 are between 0.750-0.941, 
0.614-0.857, and 0.500-0.853, respectively. These values 
are plausible; hence the models shown in Table 6 can 
adequately be used in the prediction.

Discussion

The statistical method, especially the ARIMA, 
shows the outstanding performance to predict the daily 
average of PM2.5 concentration as it occurs in the first 
rank in Table 6. The DLM seems to be the second 
good option. The LSTM can be regarded as the better 
model compared with the RNN as it tends to show the 
smaller RMSE scores in many stations. Although, we 
cannot determine the best choices of model structure, 
the more complex structure tends to give the better 
prediction. While statistical models provide the best 
predictive values, it is important to note that they are 
obtained from using the most updated data to train the 
models. Therefore, the models are needed to be adjusted 
every time for different k days ahead.  On the other 

Table 6. The comparison of the RMSE and R2 in the testing set.

Station
Rank

RMSE (R2)
1st 2nd 3rd

35t ARIMA RNN6 LSTM9 2.643 (0.811) 3.013 (0.752) 4.276 (0.500)

36t ARIMA LSTM9 RNN9 2.917 (0.815) 4.040 (0.643) 6.396 (0.105)

37t ARIMA LSTM5 RNN8 3.552 (0.857) 3.627 (0.852) 4.962 (0.723)

38t DLM LSTM8 RNN8 3.189 (0.777) 3.530 (0.727) 4.027 (0.645)

39t ARIMA RNN5 LSTM5 2.206 (0.757) 2.779 (0.616) 2.959 (0.564)

40t ARIMA RNN9 LSTM6 3.394 (0.767) 4.374 (0.614) 4.646 (0.564)

41t ARIMA LSTM9 RNN6 4.462 (0.777) 4.856 (0.738) 5.254 (0.693)

57t DLM LSTM8 RNN5 3.560 (0.818) 3.768 (0.796) 3.897 (0.782)

58t ETS LSTM8 RNN8 2.092 (0.858) 2.790 (0.748) 3.728 (0.550)

67t ETS/DLM LSTM6 RNN5 3.001 (0.868) 3.490 (0.822) 4.194 (0.742)

68t ARIMA LSTM3 RNN3 3.443 (0.757) 3.789 (0.706) 4.193 (0.640)

69t DLM LSTM8 RNN5 3.396 (0.834) 3.647 (0.809) 3.803 (0.793)

70t ETS LSTM5 RNN2 3.602 (0.905) 4.822 (0.830) 6.046 (0.734)

73t ARIMA LSTM8 RNN5 3.607 (0.813) 3.850 (0.788) 4.041 (0.766)

75t DLM RNN5 LSTM6 2.291 (0.754) 2.659 (0.644) 2.803 (0.604)

76t ARIMA RNN6 LSTM6 2.814 (0.914) 3.650 (0.857) 3.692 (0.853)



Wongrin W., et al.1430

Conclusions

In summary, to predict the daily average of PM2.5 
concentration for the northern region of Thailand, 
the statistical method, particularly ARIMA, is highly 
recommended. It should be noted that the data used 
in the models are needed to be updated to get high 
accuracy. Nonetheless, the deep learning techniques, 
especially LSTM is also considered as a good method. 
Deep learning methods tend to be more computationally 
expensive than the statistical methods, but they can be 
more practical for long term prediction. 
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